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A b s t r a c t 

This work deals with nonlinear boundary value problems for systems 
of differential equations with impulses. Using the lower and upper func­
tions method we prove the existence of a solution of such a problem. We 
consider both problems having upper functions greater than lower ones 
and problems with opposite ordered upper and lower functions. 

K e y w o r d s : Fi rs t order non l inear ordinary sys tems of differential 
equa t ions , lower and upper functions, nonlinear boundary value con­
di t ions, impulses. 

2000 M a t h e m a t i c s Subjec t Classif ica t ion: 34B37, 34B15, 34C25 

1 Introduction 

In this paper we will s tudy impulsive boundary value problems wi th nonlinear 
bounda ry condi t ions. 

Bounda ry value problems with impulses have received a lo t of a t ten t ion in 
the l i tera ture . We can refer to the works [l]-[7]. Mos t of them deal wi th periodic 
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boundary conditions. The scalar case of impulsive problems with nonlinear 
conditions has been studied by E. Liz in [5] and by the authors in [7]. Here, 
we extend the lower and upper functions method on the vector case and prove 
the existence results both for upper functions which are greater than lower ones 
a < /3 and for the opposite case of their ordering a > j3. Our proofs are based 
on the Schauder fixed point theorem. 

Let us consider the interval J = [a, b] C R, where a = to < t\ < — • < tp < 
tp+i = b and p G N. First, let n G N and | • | : R n -> E be the Eukleidian 
norm. We will work with the Banach spaces Xj = Cn[tj,tj+i] (the space of 
functions X(j) : [tj,tj+i] —> R n continuous on [tj,tj+i] with the norm ||«T(j)||c = 
raaxiG[tj}t.+1] \%(j)(t)\) for J = 0, . . . ,p. Further with the Banach space X (the 
space of functions x of the following form 

*(*) 

( x{0)(t) for t G [a,ři] 
X(x)(í) for í G (Í1.Í2] 

[ X(p)(í) for í € (tpyb] 

where xy) € Xj for j = 0, . . . , p . Here we write .x = [#(o),.. . , %(P)]x)- X is 
endowed with the norm ||x|| = maxj=o,...,p ||^(j)lie- Similarly we will use the 
Banach space Y (the space of functions y of the following form 

»(*) - { 

X(o)(í) for t Є [a,ti) 
x{1)(t) for í Є Џut2) 

[ X(p)(t) for t e [tp,b] 

where x^ G Xj for j = 0, . . . ,p, with the norm \\y\\ = maxj=o,...,p H-E(j)HC)- We 
write y = [x(o), • • • ,^(p)]y • We say that / : JxRn -> R n fulfils the Caratheodory 
conditions on J x R n , if / has the following properties: (i) for each x G R n the 
function /(•, x) is measurable on J; (ii) for almost each t G J the function f(t,-) 
is continuous on R n ; (iii) for each compact set K C R n there exists Lebesgue 
integrable function m ^ : J —> R such that \f(t,x)\ < rriK(t) for a.e. t G J and 
all x e K. For the set of functions satisfying the Caratheodory conditions on 
J x R n we write Car(J x R n ) . For a subset H of a Banach space, cl(fi) and 9 0 
stand for the closure and the boundary of 0, respectively. 

2 Existence results provided a < (3 

We will investigate the impulsive problem 

x'(t)= f(t,x(t)) for a.e. te J, (1) 

x(tj+)=Ij(x(tj)), i = l , . . . ,p , (2) 

ft(s(a),a,(&)) = 0 , (3) 

where / G Oar(J x R n ) , Ij G C n ( K n ) , i = 1,. . . ,p, and ft G C ( R 2 n ) . 
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Definition 1 A function F(z,x) : D x Rn -> Rn , D C Rm , m G N, F = 
(F i , . . . , Fn) is called quasimonotonously nondecreasing (nonincreasing) in vari­
able x, if for every i = 1 , . . . , n and for every x = ( x i , . . . , x n ) , ?/ = (u i , . . . , ?/n) E 
Rn for which x < y and xi — u;, the inequality Ft(z,x) < F%(z,y) (Ft(z,x) > 
Fi(z>y)) is valid for each z G D. 

Definition 2 By AC~ we mean a set of functions x : J -» Rn , which are 
absolutely continuous on (£j, £j+i) , j = 0 , . . . ,p, x(£j) = x ( l j - ) , j = 1 , . . . , p + 1 , 
u(a) = H(a+). A function x G AC~, which satisfies conditions (l)-(3) is called 
a solution of problem (l)-(3). 

Defini t ion 3 A function o G AC~ is called a lower (upper) function of problem 
(l)-(3) provided the conditions 

[a'(t) - f(t,a(t))}(-l)k > 0 for a.e. t € J, (4) 

[a(tJ+)-IJ(a(tj))](-l)
k>Q, j = l,...,p, (5) 

h(a(a),a(b))(-l)k>0, (6) 

where k = 1 (A; = 2), are satisfied. 

Let a,/? be lower and upper functions of problem (l)-(3) and 

a < /? on J. (7) 

Next, we define function 7 : J x Rn -» Rn by 

{ a*(£) for Xi < oti(t), 

x% ioxai(t)<Xi<Pi(t), (8) 

fa(t) for Pi(t)<Xi, 
for £ G J, a; = ( x i , . . . , xn) G Rn , z = 1 , . . . ,n, where a = (a\,..., a n ) , /3 = 
(/?!,..., /3n), and function / : J x Rn -> Rn by 

f(t,x) = f(t,>y(t,x)), f G C ^ x Rn)- (9) 

Further, we assume that 

b(x, u) is quasimonotonously nonincreasing in variable x, 
and nonincreasing in variable H, 

(10) 

(11) 
Ijj are nondecreasing in all variables, for j = 1 , . . . ,p 

and z = 1 , . . . , n, Ij = ( I j i , . . . , Ijn) 

f(t,x) is quasimonotonously nondecreasing in variable x (12) 

and consider an auxiliary problem 

x'(t) = f(t,x(t)) fora.e. te(tj,tj+1), j = 0,...,p, (13) 

a; ( í j +)- i- ( t J -)=/ í (7(<i ,a : ( ř i ) ) )-7(* j ,a : ( í j ) ) , j = l , . . . . p , (14) 
x-(a) = 7(a,x(o) - h(x(a),x(b))). (15) 
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Propos i t i on 1 Let x be a solution of problem (13)-(15) and let a, P be lower 
and upper functions of problem (l)-(3). Let us suppose (7)-(12) hold. Then 

a < x < P on J, (16) 

and consequently x is a solution of (l)-(3). 

Proof Let us put z(t) = a(t) — x(t) for each t € J (write z = (zi,-.. ,zn)). 
Now, we take arbitrary i G { l , . . . , n } . According to (15), we have Xi(a) G 
[ai(a)1/3i(a)]1 which means that Zi(a) < 0. Suppose that there exists qi G (a,t\) 
such that 

*<(<7i)>0. (17) 

Since Zi is continuous on [a,£i), we can find qo G [O,(7i) such that 

Zi(qo) = 0 and Zi > 0 on (q0,qi]. (18) 

In view of (12), (13) and the fact that jk(t/x(t)) > ak(t) for t G J and for 
k = 1 , . . . , n, k 7-- i, we have 

a?i(<) = /*(*,*(*)) = /i(*>7i (*,*(*))> • • •><*(*), • • • ,7n(*, (*))) > / i ( U W ) 

for a.e. £ G (go,<li)- According to (4), we have 

*{(*) = a'i(t) - x\(t) < fi(t,a(t)) - h(t,x(t)) < 0, for a.e. t e(q0,qi). (19) 

Therefore 
rQi 

0 > / z[(t) dt = Zi(qx) - Zi(q0) = ^i(qi), 

which contradicts (17). Thus, we get 

ai < Xi on [a, t\], for each i = 1 , . . . ,n. 

By this fact, (11) and (14), the inequalities 

<*i(*i+) < Ai(a(t i)) < iii(a;(ti)) = a?i(«i+) 

are true for each i = 1 , . . . ,n, so ^(l-i+) < 0 for i = 1 , . . . ,n. Now, we take 
arbitrary i G { 1 , . . . , n } . Let us suppose that there exists q\ G (£i,£2] such that 
(17) is true. Then we can find qo G [£i,qi) such that 

Zi(qo+) = ® and ^ > 0 on (tfo-tfi]- (20) 

Then, by (19), it is valid 

rQi 

0 > / z[(t) dt = Zi(qi) - Zi(q0+) = Zi(qi) 
Jqo 

and we get a contradiction to (17). We can prove the inequality Zi < 0 on 
(£1,^2] similarly as in the previous paragraph. In such a way we can argue at 



On nonlinear boundary value problem ... 123 

each interval (ij, £7+1], j = 1 , . . . ,p, and we get Z{ < 0 on J for each i = 1 , . . . , n. 
It means that 

a < x on J. 

The second inequality in (16) can be proved similarly putting z = x — /3 on J. 
Due to (16) we have 

x'(t) = f(t,x(t)) = f(t,x(t)) for a.e. t G J, 

and (2) is true. It remains to prove that x fulfils (3). It is sufficient to show 
that 

a(a) < x(a) - h(x(a),x(b)) < /3(a). (21) 

Let us suppose that the first inequality in (21) is not true. Then there exists 
i G { 1 , . . . ,n) such that 

ai(a) > xi(a) - hi(x(a),x(b)). 

In view to (15) we have cY;(a) = Xi(a), thus it follows from (10) that 

0 < hi(x(a),x(b)) < hi(a(a),a(b)) 

which contradicts (6). We prove the second inequality in (21) similarly. • 

T h e o r e m 1 Leta,f3 be lower and upper functions of problem (l)-(S). Further, 
suppose that a < /3 on J and (10)-(12) are true. Then there exists a solution 
x of problem (l)-(S) such that 

a<x < /3 on J. (22) 

Proof Consider the integral equation 

x(t) ='y(a,x(a)-h(x(a),x(b)))+ / f(s,x(s))ds + uj(t,x) for all t G J, (23) 
J a 

where 

' 0 for t € [a,ti] 
/i(7(*i,a?(*i))) - 7(*i,*(*-)) for * € (*i,t2] 

w(t,x) = ^ (24) 

E [ J i ( 7 ( * i , ^ ) ) ) -7 (* i^ (* i ) ) ] for t G (*p,6]. 

This problem is equivalent with problem (13)—(15). Further, define the number 

M = / X(s) d S +(p+l) ( | | a | | + | | /3 | | )+^max{|7,(H) | : a(tj) <u< p(t3)}, (25) 
J j 7 = 1 

where X(t) = sup{\f(t,x)\ : a(t) < x < f3(t)} for all t G J, and the set 

fi = { x G K : ||x|| < M}. 
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Clearly 0 is nonempty, convex, closed and bounded set in X. We can check 
that the operator T : Q —> X given by 

Tx(t) = j(a,x(a) - h(x(a),x(b))) + / f(s,x(s)) ds + u(t,x), 
J a 

where UJ is defined by (24), maps il to itself. Now, we prove that T is continuous. 
Let us take sequence {xm} C ft and x G ft such that xm converges to x in X. 
Then f(t,xm(t)) converges to f(t,x(t)) for a. e. t G J. Since {xm} is convergent 
in X, it follows that we can find a compact set K C R n such that {xm(t)} C K 
for each m G IV and t G J. So there exists a function m/c(t), which is Lebesgue 
integrable on J, with a property 

l / ( - } % W ) l < m/f(t) for all m G IV and a.e. t G J. 

From the Lebesgue convergence theorem it follows that 

lim / / ( s , a : m ( s ) ) d s = / /($,a;(s))ds for each £ G J. (26) 
m-+°°Ja J a 

Further, 

| | T x m - T x | | < / | / ( 6 ' , x m ( S ) ) - /> ,x ( . sO) |d 5 

J a 
+ h(a,xm(a) - h(xm(a),xm(b))) -j(a,x(a) - h(x(a),x(b)))\ 

+ max max \u(t,xm) — u(t,x)\. (27) 
j=o,...ypte{tj,tj+1] 

From (26) and continuity of functions 7, /?, and Ij (j = 1 , . . . ,p), it follows that 
the right side of the inequality (27) approaches zero as m -» 00. Therefore Txm 

converges to Tx in X. 
Let us verify that cl(T(fl)) is a compact set. First, we define Tj C Xj, for 

j = 0 , . . . , p b y 
Tj = {(Tx){j) : x £ X, | |x||c < M } , 

where M is defined by (25). Obviously, if H = [H(o), • • • ,2/(p)]x € T(fi), then 
u(j) G Tj for all j = 0 , . . . ,_p. We can see that the functions of the set Tj are 
equicontinuous and uniformly bounded on compact interval [tj,tj+i] for each 
j = 0 , . . . ,p. We take arbitrary sequence {Txm} C T(ft) and write 

-T^m = bm(o), • • • ,2/m(P)]x for each m G IV. 

From the Arzela-Ascoli theorem, it follows that there exists a subsequence of 
{y771(0)} C r 0 (we write {^m(o)}), which converges in XQ to y(0) € Ko- Further, 
by applying this theorem on sequence {]Jkm(i)} C Vi, we get {H/m(i)}, which 
converges to ^ ^ G Ar

x in X\. Then 

(2//m(0)} -+ 2/(0) i n -^0 and {^m(i)} -> 2/(i) in Ki. 
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In the exactly same way, we proceed till the p-th component. Thus, there 
exists a subsequence of {Tx m }, which converges in X to [2/(0)-2/(1), • • • >2/(p)] x £ 
cl(T(ft)). 

According to the Schauder fixed point theorem, there is a point x G fi such 
that 

Tx = X, 

which means that the function x is a solution of (23) and consequently a solution 
of (13)—(15). Proposition 1 implies that x is a solution of (1) (3) and satisfies 
(22). • 

3 Existence results provided a > (3. 

Now, we will investigate the impulsive problem (1), 

x(tJ-) = IJ(x(tJ)), j = l,...,p, (28) 

and (3), where / G Car(J x R n ) , I3 G C n(R n) , j = 1 , . . . ,p, and h G C(R 2 n) . 

Definition 4 By -4C+ we mean a set of functions x : J -> Rn , which are 
absolutely continuous on ( t j , l j + i ) , j = 0 , . . . ,p, x(t/) = x(£j-f-), j = 0 , . . . ,p, 
u(b) = u(b—). A function x G -4C+, which satisfies conditions (1), (28), (3) is 
called a solution of problem (1), (28), (3). 

Definition 5 A function O G AC* is called a lower (upper) function of problem 
(1), (28), (3) provided the conditions (4), 

[lMW)-°(tH](-l)k><>> i = l,...,p, (29) 

and (6), where fc = 1 (k = 2), are satisfied. 

Let a,/? be lower and upper functions of problem (1), (28), (3) and 

/? < a on J. (30) 

Next, we define function 7 : J x Rn —> Rn by 

f &(*) iorxi<Pi(t) 

Ji(t,x) = < x?: for &(*) < .x, < at(t) for each £ G J, (31) 

[ a*(£) for az(t) < x% 

x = ( x i , . . . , x n ) G R n , fo r i = l , . . . , n , where a = (au ... , a n ) , /? = (/?i,... ,/3n), 
and function / : J x Rn -> Rn by (9). Further, we assume that 

h(x,y) is nondecreasing in variable x, 
and quasimonotonously nondecreasing in variable y .} (32) 
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f(t,x) is quasimonotonously nonincreasing in variable cr, (33) 

it is valid (11) and consider an auxiliary problem (13), 

x(tj~) -x(tj) =Ij(j(tj,x(tj))) -7(*j,-*(*i)), 3 = 1,. . . ,P, (34) 

x(b) = 7(6, x(6) + /i(x(a),x(b))). (35) 

Proposit ion 2 Le£ x be a solution of problem (13), (34), (35) and let a,/3 be 
lower and upper functions of problem (1), (28), (3). Let us suppose (30)-(33), 
(9), (11) hold. Then 

/3 < x < a on J, (36) 

and consequently x is a solution of (1), (28), (3). 

Proof Let us put 

z(t) = x(t) - a(t) for each t G J 

(write z = (zu ... ,zn)). Now, we take arbitrary i G { 1 , . . . , n } . According to 
(35), we have Xi(b) G [Pi(b),ai(b)], which means that Zi(b) < 0. Suppose that 
there exists q\ G [tp,b) such that 

* i ( g i ) > 0 . (37) 

Since Z{ is continuous on (tp,b], we can find Go G (q\,b] such that 

Zi(qo) = 0 and z{ > 0 on [g-, g0). (38) 

In view of (33), (13) and the fact that jk(t,x(t)) < ak(t) for t G J and for 
k = 1 , . . . , n, k y£ i, we have 

*;(0 = /i(*,sW) = ^ 

for a.e. £ G (<li,qo)- According to (4), we have 

**(*) = **(*) ~ <*{(*) > /*&*(*)) - /*(*,<*(*)) > 0, for a.e. t G (quq0). (39) 

Therefore 
r<?o 

0 < / z'i(t)dt = Zi(q0) - Zi(gi) = -Zi(qi), 
Jq1 

which contradicts (37). Thus, we get 

Xi < ai on [tpy 6], for each z = 1 , . . . , n. 

By this fact, (11) and (34), the inequalities 

<*i(tp-) > lpi(0i(tp)) > Ipi(x(tp)) = Xi(tp-) 
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are true for each i = 1 , . . . ,n, so Zi(tp—) < 0 for i = 1 , . . . ,n. Now, we take 
arbitrary i G { ! , . . . , n } . Let us suppose that there exists gi G (£p_i,£p) such 
that (37) is true. Then we can find go £ (gi,£p] such that 

2iv7o-) = 0 a n d Zi> 0 on [gi,g0)- (40) 

Then, by (39), it is valid 

0 < / z[(t) dt = ^ ( g 0 - ) - ^(Oi) = -z?;(gi) 
Jgi 

and we get a contradiction to (37). We can prove the inequality Z{ < 0 on 
[tp-i,tp) similarly as in the previous paragraph. In sucli a way we can argue 
at each interval [tj,tj+i), j = 0 , . . . ,p — 1, and we get Zi < 0 on J for each 
i = 1 , . . . , n. It means that 

x < a on J. 

The second inequality in (36) can be proved similarly putting z = /3 — x on J. 
Due to (36) we have 

_'(*) = f(t,x(t)) = f(t,x(t)) for a.e. /; € J, 

and (28) is true. It remains to prove that x fulfils (3). It is sufficient to show 
that 

/3(b) <x(b) + h(x(a),x(b)) <a(b). (41) 

Let us suppose that the second inequality in (41) is not true. Then there exists 
i G { 1 , . . . , n} such that 

ai(b) < Xi(b) + hi(x(a),x(b)). 

In view to (35) we have Xi(b) = cYf(b), thus it follows from (32) that 

0 < hi(x(a),x(b)) < hi(a(a),a(b)) 

which contradicts (6). We prove the second inequality in (41) similarly. • 

T h e o r e m 2 Let a, ft be lower and upper functions of problem (1), (28), (3). 
Further, suppose that ft < a on J and (11), (32), (33) are true. Then there 
exists a solution x of problem (1), (28), (3) such that 

/? < x < a on J. (42) 

Proof Consider the integral equation 

x(t) =j(b,x(b) + h(x(a),x(b)))+ f(s,x(s))ds + r(t,x) for all* G J, (43) 
Jb 
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where 

т(t,x) = { 

£ [IjЫtjMtj))) - ittjЛtj))] for * Є [o,íi) 

Ž tø(7fø,.efø))) - ^ f ø . a t ø ) ) ] for t Є [ í ь í 2 ) 
J'=2 

(44) 

Ip(l(tp,x(tp))) -j(tp,x(tp)) for * G [tp-i,tp) 

v 0 fortG[tp,6] 

This problem is equivalent with problem (13), (34), (35). Further, define the 
number 

M = / A(4f)d«+(p+l)(|H| + | | / ? | | ) + ^ m a x { | / i ( u ) | : P(tj) <u<a(tj)}, (45) 
J j 3 = 1 

where X(t) = sup{| /( t ,x)\ : fi(t) <x< a(t)} for all t € J, and the set 

ft = { x G Y : ||x|| < M } . 

Clearly H is nonempty, convex, closed and bounded set in Y. Now, we define 
the operator T : fi —> Y given by 

Tx (t) = j(Ъ,x(Ъ) + h(x(a),x(Ь))) + f f(s,x(s))ds + т(t,x), 
Jь 

where r is defined by (44). Similarly, we can verify that T maps fl to itself, is 
continuous and that cl(T(fi)) is a compact set as in the proof of Theorem 1. 

According to the Schauder fixed point theorem, there is a point x G l ) such 
that 

Tx = x, 

which means that the function x is a solution of (43) and consequently a solution 
of (13), (34), (35). Proposition 2 implies that x is a solution of (1), (28), (3) 
and satisfies (42). • 

E x a m p l e 1 Let us consider problem (l)-(3), where n = 2, / = (f\,f2), 

fi(t,xi,x2) = -x\ +x2 + 10cbs£, 

f2(t,xux2) = xi - x\ + 15 + t, 

with impulsive functions I\, I2 

h(x) = hx, fci G (0,1), 
I2(x) = k2x, k2 G (0,1), 

and boundary value conditions (periodic conditions) 

h(x,y) =x-y = 0. 

(46) 

(47) 
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We see that /i, Ii, I2 and / fulfil conditions (10)—(12). We can take lower and 
upper functions as constant functions. That is 

a = (ci,c2), (3 = (dud2), (48) 

where Ci, C2, d\, d2 E R are suitable constants, such that a < f3 and the condi­
tions (4)-(6) are satisfied. We can construct such functions easily, if we take 
ci,C2 < 0 sufficiently small and d\1d2 > 0 sufficiently large. Thus, we can use 
Theorem 1 and get that problem (l)-(3) has at least one solution. On the other 
hand Theorem 2 cannot be used for this problem. 

E x a m p l e 2 Let us consider problem (1), (28), (3), where n = 2, / = ( / i , /2) , 

/ i (£, x\, x2) = x\ - x2 + 10 e\ 

f2{t,X\,x2) = -x\ + x\ + 15 sinr, 

with impulsive functions (46) and boundary value conditions (47). Now, condi­
tions (11), (32) and (33) are valid. We can again take lower and upper functions 
in the form (48). If we take C\, C2 > 0 sufficiently large and d\ ,d2 < 0 sufficiently 
small, we get that j3 < a and the conditions (4), (29), (6) are satisfied. Thus, 
according to Theorem 2, problem (1), (28), (3) has at least one solution. Let us 
note that Theorem 1 is not applicable for this problem. 
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