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A b s t r a c t 

We present n-dimensional analogues to some results obtained by Ezeilo 
and Omari [8], by studying the existence of T-periodic solutions for cer
tain third-order nonlinear differential systems of the form X'" + AX" + 
G(t,X') + CX — P(£), where the dissipative term G and forcing term P 
are vector-valued functions, and A and C are nonsingular constant ma
trices. We shall demonstrate in this study that the transition from the 
scalar to the vector field is by no means trivial. 

K e y w o r d s : Nonlinear dissipation, sharp and nonuniform nonreso-

nance, Leray-Schauder a l ternat ive/cont inuat ion method, Mawhin 's 

coincidence degree. 

2000 M a t h e m a t i c s Subjec t Classification: 34B15, 34C15, 34C25 

1 Introduction 

In the paper by Ezeilo and Omar i [8], the prob lem of nonresonant oscillations 
of the so lutions of the th i rd order scalar differential equat ion 

x'" + ax" + g(x') + ex = p(t) (1.1) 
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and when g = g(t,x') depends also on the t-variable, its generalisation 

x'" + ax" + g(t, x') + cx= p(t) (1.2) 

where a and c are nonzero constants, and g and p are scalar-valued functions, has 
been extensively investigated subject to the 27r-periodic boundary conditions 

x(0) - X(2TT) = ^ (0) - X'(2TT) = x"(0) - x,,(27r) - 0 (1.3) 

Arising from the analysis of an appropriately posed eigenvalue problem, their 
main results establish the existence of 27r-periodic solutions employing first the 
sharp nonresonance conditions 

(9l) k2 + a-(\x'\)<9-^- <(k + lf~a
+(\x'\), keN, 

X 

where a± : (0, +00) -+ E are two nonincreasing functions such that 

lim Ix ' Ic^O' l ) = +00, 
|.c'|—J>+OO 

and then the nonuniform assumptions 

(92) k2 < j~(t) < liminf g-^p~ < l i m s u P g-^P- < 7 + W < (* + I) 2 

|z'|->oo X |xq->oo x 

uniformly in x' G E for a.e. t G [0,27r], where 7 ± G L1(0,27r) such that strict 
inequalities hold on subsets of [0,27r] of positive measure, according as g is 
autonomous or nonautonomous. Some uniqueness results are also given by 
appropriate modifications of the above conditions. 

Since then several other articles have appeared in the literature dealing with 
similar equations in the scalar case. Notable among these is the work of Andres 
and Vlcek [5] who dealt with the problem of existence of periodic solutions 
for certain parametric differential equations involving large nonlinearities of the 
form (1.1) with the coefficient a, however, 6-variable, and c nonlinear. More 
general equations than (1.1) and [5] involving nonlinear coefficients have also 
been studied in Aftabizadeh, Xu and Gupta [1] and Rachunkova [13]. The 
survey paper by Andres [4] which gives a comprehensive bibliographical review 
of some third order equations since 1969, also includes existence results that are 
consequences of nonlinear pertubations of linear problems at resonance as well 
as at nonresonance up to [5] (see [1-3], [7-9], [11] and [14]). 

Alternative sharp hypotheses have recently been proposed by Minhos [11] 
for the problem (1.1)-(1.3), by weakening the condition on the oscillation of a, 
with the conditions (gi) replaced by the two conditions 

(g3) k2 < liminf i&l < l i m S u P i ^ l < (k + 1)2 
|»'|->±oo X \x>\-+±OQ X1 ~ V ^ 

and 

(G) A ; 2 < l i m s u p W ) ) l i m i n f 2 £ ( V ) 
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where Q denotes the primitive of the nonlinear function a, that is, 

0(y) = / (J(T) dT-

Our interest in this paper is to study the vector versions of the above prob
lems, and seek to evolve similar or even equivalent hypotheses of the sharp 
nonresonance type for their solvability 

Specifically, we shall investigate nonlinear differential systems of the form 

X'" + AX" + G(t, X') + CX = P(t) (1.4) 

subject to the T-periodic boundary conditions 

X(0) - X(T) = X'(0) - X'(T) = A"(0) - X"(T) = 0 (1.5) 

on [0,T] with T > 0, using the vector analogue of condition (g\) in the first 
instance here. Investigations using the remaining three conditions are being 
considered separately and will appear shortly 

Accordingly, X G l n , i and C are constant real n x n nonsingular matrices, 
and G : [0, T] x E n -> E n and P : [0, T] -» Rn are n-vectors, which are T-periodic 
in £. We shall assume further that G satisfies the Caratheodory conditions, that 
is, G(-,X') is measurable for every X' G En ; G(t,-) is continuous for a.e. t G 
[0,T], and for each r > 0, there exists an integrable function j r G £*([(), T],E) 
such that \\G(t,X')\\ < 7 r ( t ) , for | |K ' | | < r and a.e. * G [0,T]. 

As in the cited paper above, our main results are built around the unbounded 
nonlinear perturbations of an associated linear differential operator. However, 
the transition from the scalar to the vector field has invariably introduced as
pects of linear algebra, multi-variable calculus and analysis which cannot be 
ignored. These new additions inevitably neccessitate the need to redefine, mod
ify and re-present some of the results obtained for the scalar case. Moreover, 
an abstract framework suitable for the application of Mawhin's coincidence de
gree [10] is provided in line with the approach given in Afuwape, Omari and 
Zanolin [2], to guarantee the solvability of our stated problem in an appropriate 
functional setting. 

Let X be a point of the Euclidean space E n equipped with the usual norm 
||K | | . For any pair A, Y G E n , we shall write (X, Y) for the usual scalar product 
of X and Y so that in particular, (A", A") = \\X\\ . 

It is standard result that if D is a real n x n symmetric matrix, then for any 
X G E n , 

5d\\Xf<(DX,X)<&d\\Xf, (1.6) 

where Sd and Ad are respectively the least and greatest eigenvalues of D. In 
general, X{(D) shall denote the eigenvalues of any matrix F>, and ||-D||2 its 
spectral norm. 

The following Banach spaces will also be frequently refered to: 

(i) the classical spaces of k times continuously differentiable functions 
C f c([0,T],En), k > 0 an integer, where C° = C and C°° = Dk>0C

k 

with norms ||K"||cfc and ||K||oo respectively; 
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(ii) the space of T-periodic functions C£([0 ,T] , ! n ) defined by 

C£ = {X : [0,T] -> Rn : X G Ck and X is T-periodic} 

with the norm on Ck; 

(iii) Z,P([0,T],Rn), 1 < p < +00, the usual Lebesgue spaces 
with the norms ||X||Lp and ||X||oo for p — +00; 

(iv) the Sobolev space W^ j l([0,T],Rn) defined by 

W^1 = {X : J -> Rn : X, X',..., X<*--> are absolutely 
continuous on [0,T], XW G CT(0,T) and 
* « (0) - I W (T) = 0, i = 0 ,1 ,2 , . , . , k - 1, k e N} 

with corresponding norm 11X11^,1. 
T 

2 Preliminary analysis and the abstract setting 

We shall define the linear differential operator C : domC C L°° -» F1 by 

CX := - X ' " - AX" - BXf - CX (2.1) 

where 

domC = { X G L°° : X G C2 , with X" absolutely continuous on [0,T] 
and satisfying (1.5)} 

In the Hilbert space F2, we shall fix the orthonormal basis {4>k,i^k,i} with 

to,«(0 = (!)*> ^o,i(0 = o 

2 1 2 i 
0M(O = (y)2 cos(fccjt), ^Ar.t(*) = ( y ) 2 sin(fcort), 

for i = l , . . . , n , where ^ N , w = Y , t G l . 
Thus, if X G domC C F2, its Fourier series expansion is given by 

n 00 

X ~ ]C y^Xak,j(t>k4 + h,i*l>k,i) 
i=zl k = o 

with b0,i = 0, a; = Y 1 , fe G N, i = 1 , . . . ,n. 
It follows that £ X would have the expansion 

/

7~~ n 00 

— 2 j X^ ~ (^ c j ) 3 [aM sin(fcttJ )̂ + OA;,« cos(ko;6)] 
i=l k=l 

/
"7~~ ?i 0 0 

- ] P Yl(kuj)2 t a ^ c°s(ku)t) + 6jk,i sm(kurt)] 
i = l k=l 
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+ B J — ^ ] P ku [ak4 sm(ku)t) - bkyi cos(kcüt)} 

?;=i k=i 
n oo 

CJ — ] P Yl -aM cos(kujt) + bk,t sin(fco;í)] 
i= l k=0 

n oo 

! ~ ~ . [ ( С " ^ 2 ^ ) а М + М # - *2ь;2/)Ь*,.] С05(Ш) 
i=\ k=0 

n oo 

+ J - J2 Y, iku}(B - k2u2I)ak,t - {C - k2LJ2A)bkA] sin{kL0t) 
І=\ k = \ 

5 Z X^ [~~(ЛМаМ + /^к,гЬк,1)Фк4 + (Vk,iAk,i - Xk,ibk,i)^k,i] (2-2) 
= 1 fc=0 

where 

Ao,» = l, lio,i = 0, A M = C - k2u2A, iik^=:ku)(B-k2uj2I), 

for each i = 1,. . . ,n and fc G N. Therefore, K G fcer£ if and only if for each 
i = 1 , . . . , n and fc G N 

^k,i&k,i + V>k,ibk,i = 0 = fJ>k,iO>k,i - ^k,ibk,i-

This occurs if and only if for each z = 1 , . . . ,n and fc G N, either 

&/M = 0 = bk,i, 

or 
2 , ,2 ] \ k l =C- k2u2A = 0 = fco;(H - kWl) = /i/fciť 

(2.3) 

(2.4) 

Let 
IY := {fc G N : fc'V2A - C = 0 = ku{k2u2I - I?)} 

Then, IY is finite since A,H,C are ? i x n (finite) symmetric matrices. Thus 

n 

kerC = {K G JOra£ : X = ] P ^ (ak,i4>k,i + &*,i^*,t)} 
i= l fcGK 

It follows that fcerLC fits the unique continuation property. 
Moreover, since kerC — kerC*, where £* is the adjoint of £, 

Ira£ = {Z G L1 : / £ ^ M = 0 = / Zi^kii}, 

for each fc G IY, i = 1 , , . . ,n, where (j)k,i,^k,i G £*, so that fcer£ and Ira£ are 
orthogonal. 

We choose the projection Q : L1 -» F1 given by 

QZ = ^ X^ ^ / Z*^M + ^>* / Zi^k> 
i = l fcGK •• 
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and let V = Q\Lo° : L°° -> L°°. Setting, for each k e K, i = 1 , . . . , n, 

a/M = / £i</>M, O/b,i = / Xt^ib.i, X G L°° , 

we observe that ImV = kerC and kerQ = ImC, so that 

L°° = kerP 0 ker£ and L2 = ImCQd Im Q 

as topological direct sums. 
Note that for every X G F = L2, we write X = K + K, where X = 7>X = 

\ J0
T X(t) oft and X = X -X. Observe that FK = 0. 

Thus, E = E + E, where £ = I>(F) = ImV and £ = kerV = {X e E : 
VX = 0}. 

Hence, kerC is finite dimensional, ImC is closed in L1 and d imker£ = 
codirn ImC = 2n, so that £ is a Fredholm mapping of index zero. 

The right inverse of £, denoted by /C, and defined by /C : dOmrC C L1 —> 
domC fi kerP C L°°, such that dojnJC = ImC and Im/C = kerV, is associated 
to the pair (I>, Q) by £/\:(I - Q)Z = Z, for each zT G L1 , and /C£K = K, for 
each K G domC D kerV, so that /C is a compact linear operator. 

Thus, by virtue of the Caratheodory assumptions on G, the Nemytskii op
erator defined by G : L°° -+ L1. GX'(-) = G(-K '(-)) is £-compact on every 
bounded subset of L°°, since /C is compact. 

Finally, we take E = I (the identity map) and F = —V(-) G L1. 
Under the above conditions, the T-periodic solutions of (1.4)—(1.5) are the 

solutions X G dom C of the operator equation 

CX = EGX + F, FelmC (2.5) 

The reader who is interested in the solvability of the abstract equation (2.5) 
may refer to Afuwape et al [2] and Omari and Zanolin [12] for further details. 
Our approach will look more closely at the conditions (2.3) and (2.4) and ex
amine some of the several options opened up as a result of them. These two 
conditions represent the resonance and nonresonance situations respectively 

3 Solvability of X"' + AX" + G(t, X') + CX = P(t) 

Sequel to condition (2.4) of section 2, we recall that the linear homogeneous 
system 

X'" + AX" + BX' + CX = 0 (3.1) 

has no nontrivial T-periodic solution if and only if either 

Xi(A~lC) ^ k2u2, with ki = 0 , 1 , 2 , . . . , (3.2) 

or 
C ^ 0, \i(B) 7- k2uj2, with k = 1,2, . . . , (3.3) 
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Consequently, by the Fredholm alternative, the PBVP 

X'" + AX" + BX' + CX = P(t) (3.4) 

together with (1.5) has exactly one solution (in the Caratheodory sense), for 
every P G L1 subject to either (3.2) or (3.3). 

Condition (3.2) has been used exclusively in a preceding article [3] to evolve 
various nonresonance results for systems of the type 

X'" + AX" + BX' + sH(t, X) = P(t) (3.5) 

subject to (1.5). 
The problem of obtaining analogous existence results for systems such as 

(1.4) subject to nonresonant conditions based on (3.3) is our main focus in this 
paper. Indeed, (3.3) implies that for the associated eigenvalue problem 

X'" + AX" + CX = -XX' (3.6) 

together with (1.5), we easily deduce that 

(i) any A / k2uj2, for each k = 1, 2 , . . . , is not an eigenvalue; and 

(ii) A = k2uo2, for some k = 1,2,..., is an eigenvalue if and only if C = k2u2A, 
A nonsingular. 

We observe that (i) implies in particular that any A < UJ2 is not an eigenvalue, 
and also by (ii), the first possible eigenvalue is A = u2. 

Each of the statements (i) or (ii) has an important bearing on the solvability 
of the PBVP for the non-autonomous system 

X'" + AX" + XX' + CX = P(t) (3.7) 

with PEL1. 
It is clear for instance, from (i) and the Fredholm alternative, that a solution 

for (1.4) can be expected if the ratio (G(£,X ' ) ,X ' ) / | |K ' | |2 i s s u c n t n a t 

k2u2<(G(t,X')X') < v 

IIN'II2 

for HX'II sufficiently large, and a.e. t G [0,T], provided that some control is put 
on the closeness of the ratio to k2u2 and (k + 1)2CJ2. 

The main role of statement (ii) is to provide an adequate background against 
which the sharpness of our conditions on G can be tested. 

Our existence result is based on the following proposition for the Leray-
Schauder alternative: 

Propos i t ion 3.1 Let B be a suitable nonsingular constant matrix such that the 
homogeneous linear system 

X'" + AX" + BX' + CX = 0 
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has no nontrivial T-periodic solution. 
If all the T-periodic solutions of the X-dependent family of equations 

X'" + AX" + (1 - X)BX' + CX + AG(-, X') = AP(t) 

are uniformly a-priori hounded independently of X £ (0,1), that is, there exists 
an open bounded set ft G WT such that 0 £ Q, and for any X G (0,1) each 
solution X\ G IV^'1 Of the X-dependent system ultimately satisfies X\ £ dVt. 

Then the equation (l.J^)~(1.5) has at least one T-periodic solution. 

Proof Let us define the following operators 

L : domL = WT
A c L ° ° - ) L \ X \—> LX := X'" + AX" + CX 

т 
L 

' T 
N : n C W^'1 -4 L1, I M AtX := P(í) - G(-,X') 

A : dom.4 C PV '̂1 -> L1, X »—> AN := - J3X 

The above homotopy therefore translates into the equivalent functional equation 

LX - (1 - A)AX - ANN = 0 where (X, A) G (riOmL n Q) x (0,1) 

with 

LX - (1 - A)AX - AjNN ^ 0 for every (X, A) G (domL n 5(1) x (0,1) 

and ker(L ~ A) = {0}. 
Clearly L is a linear Fredholm mapping of index zero. Moreover, IV and A 

are L-completely continuous and thus N is L-compact on ft (see Rachunkova 
[13]). The assertion of the Proposition now follows from Mawhin [10] (Theorem 
IV.5). ' ' D 

Let v and /? be constants defined by 

v = ~(kV + (fc + 1)V), 0 = i((fc + 1)V - kV). 

The following preliminary result will be required in the construction of the 
a-priori estimate ft of Proposition 3.1: 

L e m m a 3.2 Let X = X(t) be any twice continuously differentiable function of 
t and A be any constant matrix. Then, there exists a constant 5 > 0 such that 

ß 
т 

2 [ \\X'\fdt< í \\X'" + vX'\fdt 
Jo jo 

s(í ||X"||2díV < í \\X ! 
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Proof From the Fourier expansion of X(t) given componentwise as 

CO 

%i(t) ~ a0,i 4- y^jak.i cos(kut) 4- bk,i sin(fcart)), (3.8) 
fc=i 

i = 1, . . . , n , k £ N, CJ = -^ , we have 

x^(í) ~ V^ кùj(~aкìi sin(кcüt) + bк,i cos(кut)) (3.9) 
fc=i 

oo 

z'/ 'rø ~ Xľ к3uj3(aк%i sïn(кüüt) - ò м cos(кuüt)) (З.Ю) 
fc=i 

Thus, 

pí rp iь w 

/ ||X'" + 1/X'Ц2 Л = -̂ E E ^ 2 ( ^ 2 - ")2(a*,ia + h/) 
^ 0 î = l fc=l 

лy-, П OO 

>ć2f £ £ ^ W + ьм2) 
7 - l fc—1 

э 2 
= r / nK ii dt (3.ii) 

Jo 

by the definition of/? given above, and the first inequality follows. Furthermore, 
setting A — LLI, we have 

HT T n oo 

f \\X'"+iiX"\\dt = f £ £ A ; V [ ( f c w a M - M & M ) s m ( A ; w t ) 
i o 'l0 .=i*=i 

— (kubk,i + ncik,i) cos(faji)] d< 
„7 1 ?i co 

- / £ £ f c _ 2 w ~ 2 ( f c u ; + M)_1(aM + 6*,i)_1 * 
•l0 i=l/fe=l 

?1 OO 

t=i fc=i 

n oo 

xEE^Kf + ̂ T 1 

i = l fc=l 

-. n oo 

> ( ^ E E ( ^ + "T')4 

2 = 1 fc = l 

x(yEEfcV(f lM+6U)5 (3-12) 
•2 

t=i fc=i 

by the Holder inequality, so that the second inequality of the lemma also holds, 

wi th^ = n \ / 2 T ( ^ ~ 1 ( f c 2 w 2 + M 2 ) ~ 1 ) _ 5 . Q 
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We shall now prove an existence result for (1.4)-(1.5) which represents vector 
analogue of Theorem 1 of Ezeilo and Omari [8]. 

T h e o r e m 3.3 Let C be a nonsingular matrix and assume that G satisfies 

(&) fcV + a-(| |X'| |) < ^ , ; ; „ r ' <(k + 1 ) V - a+(\\X 
llA II 

uniformly in X" G E n with \\X'\\ > r > 0, and a.e. [0,T], where k G N, UJ = =f, 
and a ± : E n —> E are £wO functions which are such that 

(Q2) lim I IK 'Ha id lX ' ID^+oo 
||X'||->+oo 

Tlie/i system (1.4)-(1.5) has at least one solution, for every P G L1([0,T],En) 
and all arbitrary matrix A. 

Proof We shall consider (1.4) in the equivalent form 

X'" + AX" + vX' + CX = z/X' - G(t, X') + P(t) (3.13) 

Then for each P G ^([OjT] , E n ) , there exists exactly one function W = JCP e 
PV^x([0,T],En), satisfying (1.5) and 

W" + AW" + vW + CW = P(-), (314) 

by the Fredholm alternative, where /C : domlC C L 1 - ) IVT' 
Making the change of variable Z — X - IV, (3.13) becomes 

Z'" + AZ" + i/Z' + CZ = i/Z' + i /W - G(Z' + IV') 

= vZ'~7C,Z') (3.15) 

where we set j(t,X') = G(£,K ' + IV'(l)) - vW(t), X' G E n , t G [0,T]. Then, 
7 is continuous and moreover by hypothesis (Q\) and (G-i), 

| |7(t, X') - vX'\\ = \\G(t, X' + W'(t)) - v(X' + W'(t))\\ 

' (G(t,X'),X') 
(II IM l|i'"li • | |x, | |2 

< (||A"|| + | | W | | J ( / 3 - a + ( | | X ' | | ) ) 

< 0 p : ' | | - k i , (3.16) 

uniformly in X " € E n and a.e. [0,T] with | |X'| | > r i ; for every fcj > 0 and 
ri > 0 depending on fci and 1|TW||00. 

This implies that for a suitable constant fe > 0, 

\\j(t,X') - isX'\\2 < P2\\X'\\2 - 2pki\\X'\\ + fca, (3.17) 

for all X ' 6 K" and t e [0,T]. 
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Next, we define the Nemytskii operator 

TV : C1([0,T],Kn) -> C([0,T],Kn) by NZ = vZ' - 7(- ,Z') . 

Then, the Hammerstein operator JCN : (^([O.T],!71) -> ^( [O,? 1 ]^ 7 1 ) is com
pletely continuous and its (possible) fixed points in Cl are the solutions in C3 

of (3.15) which, by the transformation Z — X — IV, determine the solutions in 
IV3'1 of (1.4). 

For solving the fixed point problem 

Z = KNZ, 

in C1, we use the Leray-Schauder continuation method given by Proposition 3.1. 
Accordingly, we consider the problems depending on a parameter A G [0,1], 

Z = \JCNZ. (3.18) 

It is sufficient to find a constant R > 0 such that ||Z|| < R for every Z satisfying 

(3.18) for A G (0,1), or equivalently, 

Z"' + AZ" + 7A(t, Z') + CZ = 0, (3.19) 

where we set 7\(t,X') = (1 - A)z/X' + A7( t ,X') , X' G Kn. 

Therefore, let Z G C3 be a solution to (3.19) for some A G (0,1). Multiplying 
(3.19) scalarly by Z"'(t)+vZ'(t) and integrating over [0, T] using (1.5), observing 
that 

/ (AZ" + CZ, Z'" + vZ') dt = 0, 
Jo 

we obtain 

/ (Z'" + 7 A ( t , Z ' ) , Z"' + vZ')dt = Q (3.20) 
Jo 

That is 

/ {{Z'", Z'") + (Z'", vZ') + (7A(r, Z'), Z'") + (lx(t, Z'),vZ')) dt = 0 (3.21) 
JO 

Noting that (Z,Z) rr | |Z| |2 , it is easily verified that (3.21) can be written as 

/ \\Z'" + vZ'\fdt+ f \\Z'" + lx(t,Z')\?dt- I \\lx(t,Z')-vZ'\fdt = 0 
Jo Jo Jo 

(3.22) 
so that, on dropping the second integral, 

/ \\Z'" + vZ'\\2dt< f \\lx(t,Z')-vZ'\\2dt = X2 f W^Z^-vZ'fdt 
Jo Jo Jo 

(3.23) 
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which, by (3.17), yields 

/ \\Z"' + vZ'fdt<02 f \\Z'\\2dt-2(3k1 I \\Z'\\dt + k2T (3.24) 
Jo Jo Jo 

On the other hand, by Lemma 3.2, we know that for every Z £ C3 satisfying 
(1.5), we have 

/32 / \\Z'\\2dt< f \\Z'" + vZ'\\2dt, 
Jo Jo 

so that from (3.24), we derive 

I7'll — \£ | |L2 - / \\Z'\\dt<(2f3kl)-
1k2T — c1 (3.25) 

Jo 

Next, we observe that by (3.16), 7 satisfies, for some constants £3, k4 > 0, the 
condition 

h(t,X')\\ < ||7(j,X') - vX'\\ + v\\X'\\ < k3\\X'\\ + k4 

Hence, integrating (3.19) over [0,T], we obtain 

II [ Z(t)dt\\ < [ \\c-l
lx(t,z')\\dt<\\c-l\\2[ \h(t,Z')\\dt 

JO JO JO 

< WC-'UhWZ'W^ + k4T) < 5;l(k3Cl + k4T) 

:= c2 (3.26) 

Thus, combining (3.25) and (3.26) yields 

l l z l L ^ T " 1 ! ! f Z(t)dt\\ + \\Z'\\L1 < T~lc2 + Cl 
Jo 

:= c3 (3.27) 

Also, observing from (3.19) that 

\\Z'" + AZ"\\L1 < (1 - X)u [ \\Z'\\ dt + xf ||7(i, Z')\\ dt + TUCIbllzlloo 
Jo JO 

< vci + (fc3ci + k4T) + Tc3Ac := c4, (3.28) 

we conclude by the second inequality of Lemma 3.2 that 

\\Z"\\L2 < S~2c4 := c5 (3.29) 

and then 
Halloo < VT\\Z"\\L2 = c5Vf := c6 (3.30) 

It follows from (3.27) and (3.30) that 

| |Z | | c i - ||Z||oo + ll^lloo < c3 + c6 := c7 (3.31) 

for every solution Z of (3.19), for arbitary A £ (0,1). Thus | |Z| |c- < 0, follows, 
for some ft > c7 > 0. 
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