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Abstract 
This article deals with Hall planar ternary ring (M, t) such that the 

ordering on M is given by a suitable way. Especially, the compatibility 
of the ordering on the carrier set M with the addition and multiplication 
induced on M by the ternary operation t (in the usual sense) is shown. 
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The starting point is the notion of Hall planar ternary ring.x According to 
[1] let us define 

Definition 1 An ordered pair (M,t) where ca rdM > 2 and M s a ternary 
operation on M fulfilling the following axioms 

(1) \/x,m,y € M 3\b e M : y = t(x,m,b), 
(2) Vm, b, u,veM., m^u, 3\x 6 M : t(x,m,b) =t(x,u,v), 
(3) \/x,y,x,y, x ^ x, 3\(m,b,) £ M 2 : t(x,m,b) = y A t(x,m,b) = y, 
(4) 3 ! 0 e M V a , b e M : t(0,a,b) = bA t(a,0,b) = b, 
(5) 3\e e M \/a e M : t(e,a,0) = a = t(a,e,0), 

is called Hall planar ternary ring (abb. HPTR).2 

Supported by the grant of the Palacky University 1999 "Rozvoj algebraickych metod 
v geometrii a uspofadanych mnozinach" 

^̂ This algebraic structure was introduced by M. Hall in [1] to coordinatize projective planes. 
The special types of Hall planar ternary rings are introduced and investigated e.g. in [2]-[4]. 

2The notion Hall planar ternary field is used in the equivalent meaning. 

19 



20 Mareic JUKL 

It is well known that it may be proved that the unicity of the couple (m, b) 
in (3) as well as the unicity of elements 0 and e in (4), (5) follows from the 
conditions above. 

Notat ion 2 Let (M, t) be a HPTR. 
2.1 For every (u,v,u) G M 3 , u ^ u, we will denote by $[u, v, u] the trans­

formation on M defined for every £ G M by 

$[u, v,u](£) = x ^ t(x,u,v) = t(x, u,£). 

2.2 For every [u, v] G M 2 we will denote by tp[u, v] the transformation on M 
defined for every v G M by 

<p[u, v](x) = t(u, v, x). 

Now, let us consider the case when the set M is ordered by certain suitable 
way.3 

Definition 3 Let (M,t) be a HPTR with ca rdM > 3 and let (M, <) be a 
linearly ordered set. Then the HPTR (M, t) is said admissible (abb. APTR) if 

(1) Vu, v, u G M , u j^ u : $[u, v, u] is a monotone mapping, 
(2) \/u, v G M : cp[u, v] is a monotone mapping, 
(3) 0 < e . 

The admissible HPTR will be denote by (M,t, <). 

Remark 4 It follows from the Definition 1 and from 2 that the transforma­
tions $[w,v,u] and tp[u,v], are permutations on M. Therefore 3 implies that 
corresponding inverse mappings are monotone too. 

Notat ion 5 On HPTR (M, t ) two binary operation may be defined by the 
following usual way 

(1) V a , b G M : a + b = t(a,e,b), 
(2) V a , b G M : a . b = t(a,b,0). 

It is well known that (M — {0},.), resp. (M, -f-), forms a loop with the 
neutral element e, resp. 0. 

There exists a natural question—are binary operations 4- and . compatible 
with ordering on M? 

Let us investigate this by the properties of the ternary operation t. 

Proposit ion 6 The transformation a[u,v] OfM defined by 

a[u,v](x) = t(x,u,v) 

is monotone for every u, v G M . u^-O. 
3The demanded properties of ordering on M and of transformations <£[...] and <p[...] seem 

to be natural with respect to the geometric interpretation of mentioned transformations in 
the projective plane which is coordinated by the considered HPTR. 
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Proof With respect to definitions above we may for u ^ 0 write 

a[u, v](x) = y <£-> y = t(x, u, v) <£> t(x, u, v) = t(x, 0, y) <& x = $[u, v, 0](y) 

which means that a[u, v] is the inverse of $[u, v, 0]. Now the propositions follows 
from the Remark 4. D 

Using the previous proposition and (2) of Definition 3 we have: 

Corollary 7 The following mappings are monotone: 

(1) V a G M : X H x + a, 
(2) V o e M , o / O : i H ^ . a , 
(3) V a e M : i ^ a + x. 

Notat ion 8 Let (M, t, <) be an APTR. Let us define a mapping f[u) : M -> M 
for every u € M, u ^ 0, by 

f[u)(x) = Z&t(x,u,Z)=0. 

Since u ^ 0 the f[u] is a permutation on M. Using f[u] = ($[0,0, w])"1 and 
the Remark 4 we have: 

Proposit ion 9 The transformation f[u) is monotone for every u G M, u ^ 0. 

Lemma 10 Let c be no maximal and at the same time no minimal element of 
M . Then the transformation (p[c, v) is increasing for every v G M . 

Proof If v = 0 or c = 0 then (p[c, v](x) = x and the lemma is evident. 
Let y ^ O A c / 0 , now. 
I. Let f[v] be increasing. 
Let us suppose c > 0 and let b be an arbitrary element with 0 < c < b. It 

implies that 0 = f[v](0) < f[v)(c) < f[v](b). 
Using the Proposition 6 and the unequality 0 < c < b we have moreover: 

t(0,v,f[v}(b))<t(c,v,f[v}(b))<t(b,v,f[v}(b)) 

or 
t(0,v,f[v)(b))>t(c,v,f[v)(b)) >t(b,v,f[v](b)) 

which means that 

f[v](b) < t(c,v,f[v](b))< 0 or f[v)(b) > t(c,v,f[v](b)) > 0. 

Since f[v](b) > 0 we obtain that t(c, v, f[v](b)) > 0. 
Further we may write 

(p[c,v](f[v](c)) = t(c,v,f[v](c)) = 0,<p[c,v](f[v](b)) = t(c,v,f[v](b)) > 0. 

With respect to the fact (p[u, v] is monotone the last relations imply that ip[u, v] 
is increasing. 

The case c < 0 may be solved analogously. 

II. Let f[v] be decreasing. The proof will be analogical to the previous part. 
D 
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Lemma 11 The APTR (M, t, <) has no maximal element. 

Proof Let c be the maximal element in (M,t) . Since 0 < e we have 0 < c. 
Let us consider the monotone transformation <p[c, e). If it is increasing the 

we obtain the following implications 

0 < c => <p[c, e] (0) < <p[c, e) (c) ---> t(c, e, 0) < t(c, e,c) =$> c < c + c, 

which contradics to the maximality of c. 

Now, we have <p[c, e] is decreasing, which means 

0 < c => (p[c, e](0) > (p[c, e](c) 

or equivalently 
0 < c = > c > c + c. 

Let us suppose that there exists y G M with y < c+c. Then we have exactly 
one p G M s.t. c + p = y, which means <p[c, e](p) = y. 

We may write (p[c, e](p) = y < c + c = <p[c, e](c) and with the respect to the 
fact (p[c, e] is decreasing we give from this p > c which is not possible. 

It follows from this that c + c is the minimal element of M . 
By the analogical way we may derive that c-\- (c-\- c) is a maximal element 

of M, which yields c-\- (c-\- c) = c and c + c = 0, consequently. 
We have proved that 0 is the minimal element of M . 
In M there exists at least one element b s.t. 0 ^ b ^ c, which implies 

0 < b < c. It follows from the Lemma 10 that <p[b, e] is increasing. 
Let (p[b, e](c) < c. There exists y G M s.t. b + y = c or <p[b, e](y) = c, 

equivalently. 
Respecting this fact we get 

(p[b,e](c) < <p[b,e](y) => c<y, 

which is a contradiction—therefore the maximality of c gives (p[b, e](c) = c. 
It may be expressed by t(b, e, c) = t(b, 0, c). Considering the evident relation 

£(0, e, c) = t(0,0, c), we (by (2) of 1.) have b = 0—a contradiction. 
Therefore c is not the maximal element of M . • 

Lemma 12 The APTR (M, t, <) has no minimal element. 

Proof Let c be the minimal element in (M, t). Therefore either c < 0 or c = 0. 

I. c < 0 
In the case <p[c, e] is increasing we may write 

(p[c, e](c) < (p[c, e](0) => t(c, e, c) < t(c, e, 0) => c-\- c < c, 

which contradics to the minimality of c—i.e. (p[c, e] is decreasing. 
Let us suppose the existence of y G M with y > c+c. There exists (just one) 

z G M s.t. c + z = y. Using the expressions c-\- c = (p[c, e)(c) and y = (p[c, e)(z) 
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and respecting <p[c, e] is decreasing we obtain z < c—a contradiction to the 
minimality of c This implies that c + c is the maximal element. 

By an analogical way we may show the minimality of c + (c + c). It follows 
from this that c + c = 0 which means that 0 is the maximal element of M. The 
maximality of 0 contradics to the (3) of 3. 

Therefore c is not the minimal element of M. 

II. c = 0 
Let us choose some b > 0. Denoting by x the solution4 of the equation 

t(x,e,b) — 0 and respecting the fact 6 / 0 we get 0 = <p[x,e](b), x 7- 0. 
Since c is not maximal the transformation <p[x, e] is increasing (according to 

Lemma 10) which means <p[x, e](0) < <p[x, e](b). The last relation gives x < 0—a 
contradiction. D 

Using Lemmas 10, 11 and 12 we have the two following propositions. 

Theorem 13 The APTR (M, t, <) has no maximal and no minimal element. 

Proposit ion 14 The transformation p[u,v] is increasing for every u, v G M . 

Now the compatibility of addition with the ordering on M may be shown. 

Theorem 15 Va,£, H G M : x<y=>a + x<a + yf\x + a<y + a. 

Proof The Proposition 14 says 

Vu, a, x, H G M : x < y => t(u, a, x) < t(u, a, y), 

which implies for u = e especially 

x<y=>a + x<a + y. (*) 

The transformation x 1—> x + a is monotone for every a G M (see 7). 
Considering a G M , 0 < a, and using (*) we have a + 0 < a + a. Since 

a + 0 = 0 + a w e get that 0 + a < a + a from this. It implies that the considered 
transformation is increasing for every a < 0. 

The cases a > 0, a = 0 gives the same result. 
Thus we have Va, x, y G M : x < y =-=> x + a <~y + a. D 

Notat ion 16 Let k, I, m G M . In what follows we will by the symbol [x denote 
the ternary relation on M defined by 

(k,l,m) G Lt <̂> (k <l < m V k > I > m). 

Lemma 17 If u,v,u,v,a,b are elements O/M such that 

t(a, u, v) < t(a, u, v) A t(b, u, v) > t(b, u, v), 

then the following hold 

(1) u 7- u, 
(2) 3!c G M : (a, c, b) G \x A t(c, u, v) = t(c, u, v). 

4See the axiom (2) of Definition 1. 
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Proof Using the fact ip[a, u) is increasing for every a, u E M and the definition 
of mappings <p[a, u] we have that u = u gives the following implication 

t(a, u,v,) < t(a,u, v) => <p[a,u)(v) < <p[a, u](v) => v < v. 

It follows from this that <p[b,u](v) < <p[b, u](v), analogously. It yields 

t(b,u,v) < t(b,u,v), 

a contradiction. 
Thus u 7-- u and there exists exactly one c G M with t(c, u,v,) = t(c, u, v), 

consequently (see Definition 1). 
Let x, y be elements of M such that 

t(a, u, v) = t(a, u, x) A t(b, u, v) = t(b, u, y) 

the existence of which is guarantied by the definition of HPTR . 
Therefore we may write <p[a, u](x) = t(a, u,x) < t(a, u, v) = <p[a, u](v) which 

implies that x < v. By the same way we will obtain that v < y. It means that 
x < v < y, summa summarum. Simultaneously, we have the following relations 

a = $>[u,v,u](x), c = $>[u, v,u](v), b = 3>[u, v,u](y), 

which (according to 3.(1)) yield that (a,c,b) G fi. • 

Lemma 18 If u,v,u,v,a,b are elements O/M such that 

(1) t(a,u,v,) < t(a,u,v), 
(2) u + u, 
(3) 3c e M : (a, c, b) e /u A t(c, u, v) = t(c, u, v), 

then t(b, u, v) > t(b, u, v). 

Proof With respect to the definition of HPTR we get the elements x, y of M 
such that 

t(a, u, v) = t(a, u, x), (*) 

t(b,u,v) = t(b,u,y). (**) 

Using the supposition (1) of this Lemma, the relation (*) and the fact <p[a, u) 
is increasing we obtain the following implication 

(p[a,u](x) = t(a,u,x) < t(a,u,v) = <p[a,u](v) => x < v. 

By the same way as in the previous proof we have that -

a = $[fi, v, u)(x), c = $[u, v,u)(v), b = &[u,v,u](y). 

Respecting (a, c, b) e fi we obtain (x,v,y) G // from this. As x < v we get the 
following chain of implications (by (**)) 

(x, v, y) G LA => v < y => <p[b, u)(v) < <p\b, u)(y) => t(b, u, v) < t(b, u, y) = t(b, u, v). 

• 
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Notat ion 19 Let (M, t, <) be an APTR. Let us define a transformation g[a, v] 
of M for every a,v G M, a ^ 0 by 

g[a,v](u) =t(a,u,v). 

Remark 20 With respect to the fact 

g[a, v](u) = y 4-> t(a, u, v) = y <4> t(a, u, v) = y A £(0, u,v) = v 

and to the (3) of the definition of HPTR we have, that g[a, v] is for every a ^ 0 
a permutation of M. 

Proposit ion 21 Let v G M. If 3b G M ; b > 0. s.t. g[b,v] is increasing, then 

(1) a > 0 => g[a, v] is increasing, 
(2) a < 0 =$> g[a, v] is decreasing. 

Proof I. Let us suppose a > 0. 
Considering some elements x,y G M, x < y, with g[a,v](x) > g[a,v](y) 

we have that t(a,x,v) > t(a,y,v) and t(b,x,v) < t(b,y,v), simultaneously. 
According to the Lemma 17 there exists c G M s.t. (a,c,b) G /u A t(c, x,v) = 
t(c,y,v). Putting c = 0 we get the unique solution of the equation t(c,x,v) = 
t(c,y,v), evidently. But it means that (a,0,b) G fi, which contradics to the 
suposition of the positivity of elements a, b. 

II. Let us suppose a < 0. 
In this case (a, 0, b) G lx. Let again x, y be elements of M satisfying x < y. 

Therefore we have that t(b,x,v) > t(b,y,v) and t(0,x,v) = t(0,y,v), indeed. 
According to the Lemma 18 we obtain that t(a,x,v) < t(a,y,v) which means 
that g[a,v](x) > g[a,v](y). • 

Theorem 22 Let a G M . a ^ 0. Then 

(1) a > 0 =$> the transformation x i—> a . x is increasing, 
(2) a < 0 =$> the transformation x i—> a . x is decreasing. 

Proof Firstly, ax = t(a,x,0) = g[a,0](x). Using the clear fact g[e,0](x) = x 
for every x G M we get that the transformation g[e, 0] is increasing. Now, this 
theorem follows from 21. 

Now, let us prove the compatibility of multiplication with the ordering on 
M. • 

Theorem 23 Va, x, y G M : 

(1) 0 < a , x<y=$-x.a<y.aAa.x<a.y, 
(2) 0 > a , x<y^x.a>y.aAa.x>a.y. 
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Proof It follows from 22 that 

0 < a, x < y => ax < ay (*) 

0 > a, x < H => ax > ay (**) 

The transformation x H-> X . a is monotone (due to 7). 
If 0 < a then (*) gives a . 0 < a . a. Since a . 0 = 0 = 0 . a, we get that 

0 . a < a . a. It means that the considered transformation is increasing for 
a > 0 . 

Using the relation (**) we may the case a < 0 investigate analogously. • 
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