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Abstract 
The purpose of the present paper to study a projective Randers change 

and *P-Finsler spaces, which are special Finsler spaces. The main result: 
Let Fn = (Mn,L(x,y)) and Fn = (Mn,L(x,y)) be a *P-Finsler spaces. 
If there exists a projective Randers change between Fn and F , then Fn 

is C-reducible if and only if F C-reducible, too. 
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1 Introduction 

Let Fn = (Mn,L(x,y)) be an n-dimensional Finsler space, where Mn is a 
connected differentiable manifold of dimension n and L(x,y), where yl = xl 

is the fundamental function defined on the manifold TM\0 of nonzero tangent 
vectors. 

Definition 1 [6] A change of Finsler metric 

F n = (Mn,L(x,y)) -> Fn = (Mn,L(x,y)) 

is called Randers change, if L(x, y) = L(x, y) + p(x, y), where p(x, y) = pi(x)yl 

is a differential one-form on Mn. 

* Supported by OTKA 32058. 
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The notion of a Randers change has been proposed by M. Matsumoto, named 
by Hashiguchi-Ichijyo [l] and studied in detail Shibata [8]. 

The change is projective if and only if Pi(x) is locally a gradient vector field. 

Definition 2 [2] If a Finsler space satisfies the condition Pijk — XCijk = 0 the 
space is called a *P-Finsler space. Scalar function X(x, y) is given by PrC

r/CrC
r, 

where Pr = Pr
s
s, Cr = Cr

s
s, Cr = Csg

sr, Pijk = Cijk\0, 2Cijk = dgij/dyk. 

2 The transformation of the tensor P^k under a projective 
Randers change 

Now we restrict our consideration to special Randers changes, called projective 
changes, which preserve all the geodesic curves. According to Hashiguchi-Ichjyo 
[1], a Randers change is projective, if and only if p^j — pj^ -= 0, that is pi(x) is 
locally a gradient vector field and symbols "|" mean the covariant derivatives 
in Fn with respect to Berwald connection. 

The transformation of (it)liU-torsion tensor Pijk = C^^o has been studied 
by H. Matsumoto [6]. He considered: The (v)hv-toTsion tensor P^k = C^^o 
of Fn is transformed to P^k = C^^o of the form (1) by projective Randers 
change Fn —> F . 

Cijk\o = tCijk\0 + ^T^jk + 2 L ( ^ ' ^ + hJkqi + hHqj), (1) 

where 
2Cijk = dgij/dyk, htj = gi;j - l{lj, U = dL/dy\ 

qk=rok-T~^ + {pk + (1 + t)lk}, Vij = ~(djpi + diPj) - prF
r-, t = - . 

We assume that 

Cijk\0 = Pijk = X(x,y)Cijk 

and 

Cijk\o = Pijk = A(x, y)Cijk, 

that is Fn and Fn are *P-Finsler spaces. 
Then we have 

X(x, y)Cijk = (tX(x, y) + ^)Cijk + ~^(Kjqk + hjkq% + hkiqj). (2) 

For a projective Randers change the hij tensor is transformed as 

i^ij r^ij 

L 

which implies Lh = Lhlj, [1], 
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Using the Matsumoto paper [6] after transvecting by Lhli from right and 

L hlJ from left we obtain 

qk JL[(x(x,y)LCk-L(tX(x,y)+r^-)ck) (3) 
n + 1 

Substituting (3) into (2) it follows that it follows that 

\(x,y) = Cijk[t\(x,y) + ^f-jCijk 

+ 

2L 
1 

\(x,y)L(Ckhij + Cihjk + Cjhki) -

(4) 

L(n + 1) 

- L(t\(x,y) + g ) (Ckhij + dhjk + C,/ifci) 

Secondly we deal with j^hij = hiji 

—7-7- [(n + l)Cijk - (Ckhij + Cihjk + Cjti/ci)] = 

= -~^\{tX(x^y) + ^ ) [(n + l)Cijk ~ (Ckhtj + Cih^ + Cj/ifci)]• (5) 

From (5) we get the following 

Theorem 1 Let Fn = (Mn,L(x,y)) andFn = (Mn,L(x,y)) be *P-Finsler 
spaces. If there exists a projective Randers change between Fn and F , then 
Fn is C-reducible if and only if F C-reducible, too. 

3 Some remarks for projective Randers change of special 
Finsler spaces 

Now we put that 

Cijk\o = Pijk — \(x, y)Cijk 

then we get 

Pijk = t\(x, y)Cijk + lyfCijk + ~zj(hijqk + hjkqihkiqj). (6) 

Using the Matsumoto paper [5] after transvecting by L.V-7' from left we obtain 

LPk = Ck (LX(x, y) + r-f) + ^~qk 

so we have 

qk iLPk-—ÁLX^ + rf)Ck w n + 1 n + 
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Substituting (7) into (6) it follows that 

•* ijk = ~~T "Y\ k ti ' Fihjk + Pjhki) 

+ ^ T l ( a ( x , ? / ) + ^ ) { ( n + 1 ) C ^ f c ~ (Ckhij + dhjk + Cjhki)}. (8) 

Applying h%j = L-jr the above yields 

Pijk —(Pkhij + Pihjk + Pjhki) = 

-^(t\(x,y) + !~){(n + l)Cijk - (Ckhij+dhjkCjhki)}. (9) 

(7) leads to 

Theorem 2 Let Fn *P-Finsler space and F an arbitrary Finsler space. If 
there exists a projective Randers change L(x,y) = L(x,y) + p(x,y), then we 
have a (9) for tensors Pijk and Cijk. 

By virtue of Theorem 2 the above yields two corollaries: 

• If Fn is a C-reducible space, then F is a P-reducible space. 

• If F is a P reducible space, then Fn is a C-reducible space. 

Next we are concerned with an assumption F is a *P-Finsler space, that is 
Cijk\o = \(x,y)Cijk. Consequently (1) gives 

\(x, y)Cijk = tPijk + lyFCijk + wr(hijqk + hjkqi + hkiqj) (10) 

Since Z7V7 = Lh** holds 

qk = —-r (A(x, y)LCk - LPk - -f-CkJ 

Substitution in (10) leads to 

\(x,y)Cijk = ~^Tj{(n + l)pijk - (Pkhj + Pihjk + Pjhki)} 

- 7J7— i ) L { ( n + 1 ) ^ " f c ~ (Ckhij + Cihjk + Cjhki)} 

+ , + 1)L{\(x,y)L(Ckhij + Cihjk + Cjhki)}. (11) 
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Therefore hij — L-ji-, then (11) is written in the form 

— j ~ r { ( n + l)Cijk - (Ckhij + Cthjk + Cjhkl)} = 

-{(n + l)Pijk - (Pkhij + Pihjk + Pjhki)} 
n + 

П)0 
{(n + І)Cijк - (Cкhij + Cгhjк + Cjhkг)} (12) 

2(n + l)L 

From (12) we obtain following 

Proposit ion 1 Let F be a *P-Finsler space and Fn an arbitrary Finsler 

space. If there exists a projective Randers change L(x,y) = L(x,y) + p(x,y). 

then we get the relation (12) for tensors Cijk, P%jk &nd C^k-

From this Proposition 1 follows that Fn is C-reducible, then F is C-redu-

cible, too. 

4 Example 

It is well-known, that a Finsler space induced by a Funk metric is a *P-Finsler 

space, where: Pijk = —KLCijk (K G R + ) [7]. If exists a projective Randers 

change between a *P-Finsler space induced by Funk metric, and an arbitrary 

Finsler space, then this space necessarily is a P-reducible Finsler space. 
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