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On the minimumdistance of ideals in group 
algebras 

UTE VELLBINGER 

Abstract. Ideals, which are generated by idempotent elements in a group algebra JFG, 
where F is a finite field and G is a finite group, are considered as a special kind of codes. 
For IF = IF2 we give an algorithm which only uses multiplication in the group G, that 
decides whether the minimumdistance of C is at least 3 or not. 

1991 Mathematics Subject Classification: 94B05, 94B60 

1 Introduction 

Let JF be a finite field, G a finite group with n elements and FG the corresponding 
group algebra. In generalization of cyclic codes which are ideals in group algebras 
corresponding to cyclic groups we want to look at ideals in any finite group algebra 
from the point of view of coding theory. If G = {g\,..., gn} than 

n 

FG -> Fn, Y, x*9i -» (*i, • • •, *n) 
t= i 

is a vectorspace-isomorphism, so the ideas of length, dimension and minimumdis­
tance stay the same. Thus the length n of an ideal C in iFG is exactly the order 
of G, the dimension of the subspace C and for the minimumdistance d of C we 
get as usual: 

<1 = min{wt (c ) | c eG\{0}} ; 

wt(c) = \{i 11 < i < n, Ci 7- 0}| for c = J2?=i c<9i € FG is called the weight of c. 

We will restrict our attention to those ideals which are principal ideals generated by 
an idempotent element e £ JFG, i. e. e * e = e, where * denotes the multiplication 
in iFG. 

In the case that the characteristic p of iF is prime to the order n of G this is no 
restriction at all, which follows from the theorem of Maschke [4]. 

We will use the extra structure of an ideal to get more information on the mini­
mumdistance and we will give a criterion on the coefficients of a generating idem-
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potent that helps to decide whether an ideal has minimumdistance at least 3 or 
not. 

2 Preliminary results 

2.1 L e m m a . Let 0 / C S FG be an (left-) ideal and let d denote the mini­

mumdistance of C. Then d > 2. 

P R O O F : Let us assume that C contains a word of weight 1. Then there exists an 
element g G G such that g G C. But g is a unit in JFG, so C = FG. O 

The following Lemma shows that the information about dimension and mini­
mumdistance is stored up in an idempotent generator. 

2.2 L e m m a . Let e G FG be an idempotent and let C = (e) be the (left-) ideal 
generated by e. For i = 1 , . . . , n consider gi * e as an element of Fn and define 
the matrix 

( 9\ *e \ 
92 * e 

M e : = e ғ 
\ 9n * e ) 

Then C is isomorphic to the image of Me, i. e. 

C = {(xu...,xn) -Me\{xu...,xn) GFn} 

and 
He:=(In-Mey EFnxn 

is a parity-check-matrix for the code C, i. e. 
C={{zl,...,zn)eFn\He(z1,..., znf = 0}. 

P R O O F : The first assumption follows immediately because C = {x * e | x G FG}. 
Using the fact that e is an idempotent yields: 

C = {z EFG\z*e = z} = 

= {zeFn\z-Me=z} = 

= { * G F n | ( I n - M e ) V = 0}. 

2.3 R e m a r k . It is a wellknown result that d i m C = rc-rank He and that the 
minimumdistance of C is d iff every d — 1 columns of He are linearly independent 
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and there are d columns of H which are linearly dependent. Although the spe­
cial structure of this parity-check-matrix gives some facilitation, this criterion is 
somewhat unhandy. 

2.4 R e m a r k s . 

a) For x = YA=I ^%9% € FG define x := Y!i=i X^X • 

The mapping : FG —> FG, x i-> ~x, is a (vectorspace-) isomorphism with 
~x = x and x * y = y * £ for all £> y G JFG. 

b) If e G FG is idempotent, then so are e, 1 — e, 1 — e. 

c) If e G FG is central, i.e. e * x = a: * e for all x G FG, then so are e, 1 — e, 
1 - e . 

In the following we are not interested in G itself but also in the annihilator 
Ann(G) := {x G FG \ x * c = 0 for all e G C} and the dual code C 1 = {x G 
F G | (x, c) = 0 for all e G G}, where (x, c) = (X^=i x^'.^'' zC?=i c%9i) '•= Z)?=i x^'^'-

2.5 Lemma. Lel e G 1FG e a central idempotent. For C — (e) we gel; 

Ann(G) = (1 - e) and C 1 = (1 - e). 

These are wellknown results, see for example [6] and [7]. 

3 Some estimations for the minimumdistance of 
ideals 

3.1 Definition. 

a) Let G C FG be a (left-) ideal. Then G is called dividing if 
K(C) := {g G G\ there is ag G F : e * g = a^c for all c G C} ^ {1}. 

b) Let e G FG. Then e is called dividing, if the corresponding principal (left-) 
ideal G = (e) is dividing. 
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3.2 R e m a r k s . 

i) If C C FG is dividing, then G defines an equivalence-relation on G 
(g ~ h <=> c * g — c * h for all c G C) that divides G into non-trivial 
equivalence-classes. 

ii) If e G FG is dividing and C = (e) then 

K(C) = {g G G | there is ag G F : e * g = a^e}. 

The subgroup 7i (G) is also called monomial kernel [2] and we have the following 
result: 

3.3 Theorem. (Damgard, Landrock) Let C C FG be an ideal, 0 ^ G ^ FG. 
Then the minimumdistance d of C is at least 3 if and only if K(Ann(C)) = {1}. 

P ROOF: See [2]. D 

3.4 Corollary. Let F = F2 and let e G F2G be a central idempotent, C = (e) 
with minimurndistance d. Then d > 3 if and only if 1 — e is not dividing, i. e. 
{ < 7 e G | ( l - e ) * < , = l - e } = { l} . 

3.5 Theorem. Let G be a group whose order is a prime number p > 2. Then 

eG : = X ^ F 2 G 
g£G 

is the only dividing element in F2G\ {0}. CQ is also idempotent and central. So 

f-every ideal 0 ^ CS.F2G, C / (1 + CQ), has minimumdistance at least 3. 

P R O O F : Let e G F2G be dividing and G = (e). Then K(C) ^ {1} is a subgroup 
of G hence K(C) = G, since the order of G is a prime. So for every g G G 

e = ]Cehh -e * 9~l = S e^/ ~̂1 = X̂  e^i 
/i€G /iGG jeo 

and therefore 

e! -= eg for all ^ G G and this yields e = 0 or e = CG-

That eG is dividing, idempotent and central follows immediately and the last 
assumption is a consequence of Corollary 3.4 and of the theorem of Maschke, since 
the order of G is an odd number. • 

3.6 Lemma. Let e — YljeGejJ ^ iF2G be idempotent and central and let 
supp(e) := {j G G | ej ^ 0} 6e the support of e. 
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First case: e\ = 1. Then we have for g £ G: 

(1 - e) * g — 1 - e <̂> g,g~l & supp(e) and 

{ ^ l i e s u p p ( e ) \ { l } } = s u p p ( e ) \ { l } 

Second case: e\ = 0. Then we have for g £ G: 

(1 - e) * g = 1 - e <̂> g,g~x ^ supp(e) and 

{J0 l i £ supp(e) \ {g~1}} = supp(e) \ {g} 

P R O O F : (1 - e) * g = 1 - e <^ (1 - e) * g"1 = I - e & eg\ - (1 - e i ) g _ 1 -

E j G G \ { l ^ - M eJgJ = (l - e 0 ] - eg-K9~l - E j e G \ { l ^ - i } f - j i - I f e l = ] t h i s i s 

equiva lent to eg = eg-i = 0 and e ^ = e? for ail ji £ G \ { l , g - 1 } . If e\ = 0 this is 
equivalent to eg = eg-\ = 1 and e j y = e?- for all j £ G \ {l, g"1}. • 

Lemma 3.6 gives rise to the following algori thms, which only uses the multiplication 
of the group G: 

3 .7 A l g o r i t h m I. Let e = YljeG ejJ ^ -7*2 G be idempotent and central with 
ei = 1. Let G := (e) and let d denote the minimumdistance of G. 

First s tep: 

G\ := G \ s u p p ( e ) . 

G 2 := {g GG\ \g~l £G\}. 

If G 2 = 0, then d> 3 END 

If G 2 ^ 0, then: 
Second step: supp(e) \ {1} = : {j\, . . . Jh} 

For g £ G 2 and (3 = 1 compute •;></. 
H jp9 i supp(e) \ {1}, then s ta r t second step for next g £ G 2 . 
If J># E supp(e) \ {!}, the compute jp+ig. 

G3 := {g £ G 2 | jpg £ supp(e) \ {1} for all f3 = 1, . . . , b} 

If G 3 = 0, then d> 3. 
If G 3 7- 0, then d < 2. END 

3 .8 A l g o r i t h m II. Let element e = YljeGej3 ^ - ^ G be idempotent and central 
with ei = 0. Let G := (e) and denote the minimumdis tance of G by d. 

First s tep: 

G\ := supp(e) . 

G2 := {g £ supp(e) \g~l £ GY 
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If G2 = 0, then d> 3. END 
If G2 ^ 0 , then: 
Second step: supp(e) \ {g~1} := {ju . . . Jb} 
For g E G2 and (3 = 1 compute jpg. 
^3(39 & s uPP( e) \ {g}> then start second step for next g E G2. 

If J># G supp(e) \ {g}, then compute jp+itf. 

G3 := {g E G2 | ^ g E supp(e) \ {g} for all 0 = 1 , . . . , 6}. 

If G3 = 0, then d> 3. 
If G3 ^ 0 , then d < 2. END 

3.9 Lemma. Lel e E 1F2G 6e an ideinpotent, central and dividing element. Then: 

i) The minimumdistance of C = (e) is al least 3. 

iij The minimumdistance of' C = (1 + e) is at most 2. 

Hi) The minimumdistance of Ann(G) = (1 + e) is al 7nOs£ 2. 

This is a consequence of 3.4 and the following Lemma: 

3.10 Lemma. Lel e E 1F2G be an idempotent, central element. Then 

a) e is dividing iff e is dividing. 

b) If e is dividing, then 1 + e is not dividmg. 

P R O O F : 

a) 

e dividing <=> e * g = e for some g E G \ {1} 

<=> e * g = e for some g E G \ {1} 

<r> e * g = e for s o m e </ E G \ {1} 

<=> e is dividing. 

b) Let e be dividing and assume that 1 — e is also dividing. Then there exists 
some g E G \ {1} with (1 — e) * g = 1 — e, so a — 1 = e * (a — 1) and that 
means g — 1 E (e) in contradiction to 3.4. 
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