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Complete solution of parametrized Thue equations 

C. Heuherger 

A. Pethó 

R. F. Tichy 

Abstract: We give a survey on recent results concerning parametrized Thue equations. 
Moreover, we solve completely the family 

X(X - Y)(X - aY)(X - (a + l)Y) ~ Y4 = ±1 . 
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1. Introduction 
Let F G Z[X, Y] be a homogeneous, irreducible polynomial of degree n > 3 and m 

be an integer. Then the diophantine equation 

F(x,y)=m (1) 

is called a Thue equation in honour of A. T H U E , who proved in 1909 [31]: 

Theorem 1.1. (Thue) (1) has only finitely many solutions (x,y) G Z 2 . T H U E ' S 

proof is based on his approximation theorem: Let a be an algebraic number of 

degree n > 2 and e > 0. Then there exists a constant c(a,s), such that for all 

p G Z and q G 

p\ c(a,є) 
— gn/2+l+є ' 

Since this approximation theorem is not effective,THUE's theorem is not. 

Studying linear forms in logarithms of algebraic numbers, A. B A K E R could give 

an effective upper bound for the solutions of such an equation in 1968 [1]: 

All three authors were supported by the Hungarian-Austrian governmental scientific and tech
nological cooperation. The first author was supported by FWF Grant 10223-MAT. The second 
author was supported partly by the Hungarian National Foundation for Scientific Research Grant 
No 16791/95. 
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Theorem 1.2. (Baker) Let K > n + 1 and (x,y) E Z 2 be a solution of (1). Then 

ma^{ |x | , | t / | }<C7e I o ^ m , 

where C = C(n, re, F) is an effectively computable number. 
Since that time, these bounds have been improved; BUGEAUD and G Y O R Y [6] 

recently gave the following bound: 

Theorem 1.3. (Bugeaud-Gyory) Let B > max{ | ra | , e} , a be a root of F(X, 1), 
K := Q(a) , R := regx the regulator of K and r the unit rank of K. Let H > 3 be 
an upper bound for the absolute values of the coefficients of F. 

Then all solutions (x,y) E Z 2 of (1) satisfy 

max{|x| , | i / |} < e x p ( d • R • max{logIt, 1} • (It + \og(HB))\ 

and 

max{|x | , \y\) < exp(C2 • H2n~2 • log2""1 H • l o g B ) , 

With CX = 3 r + 2 7 ( r + !)7r+19n2n+6r+14 and ^ _ 33(n+9)n18(n+l)# 

BOMBIERI and SCHMIDT [5] proved that the number of solutions of (1) with 
ra = ± 1 is 0(n): 

Theorem 1.4. (Bombieri-Schmidt) There is an absolute constant Co such that for 
all n > CQ the diophantine equation F(K , Y) = ±1 has at most 431 • n solutions. 

Up to maybe the constant 431, this is best possible, since the equation 

Xn + (X - Y)(2X -Y)... (nX - Y) = ± 1 

has at least the 2n + 2 solutions ± { ( 1 , 1 ) , . . . , ( l , n ) , (0, ±1)} . 
However, the bounds obtained by BAKER'S method are rather large, thus the 

solutions practically cannot be found by simple enumeration. B A K E R and DAVEN
PORT [2] proposed for a similar problem a method to reduce drastically the bound 
by using continued fraction reduction. PETHO and SCHULENBERG [26] replaced the 
continued fraction reduction by the LLL-algorithm and gave a general method to 
solve (1) in the totally real case for ra = 1 and arbitrary n. TZANAKIS and DE 
WEGER [32] describe the general case. Finally, BlLU and HANROT [4] observed 
that Thue equations imply not only one, but r — 1 independent linear forms in 
logarithms of algebraic numbers in the same very small size. They were able to 
replace the LLL-algorithm by the much faster continued fraction method and solve 
Thue equations up to degree 1000. 

In 1990, T H O M A S investigated for the first time a parametrized family of Thue 
equations. Since then, the following families have been studied: 

1. X3 - (a - 1)X2Y - (a + 2 ) X y 2 - Y3 = 1. 
THOMAS [29] and MiGNOTTE [21] proved that for a > 4, the only solutions are 

( 0 , - 1 ) , (1,0) and ( —1,+1), while in the cases 0 < a < 4 there exist some 
nontrivial solutions, too, which are given explicitely in [29], 
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2. [X3 - (a - 1)X2Y - (a + 2)XY2 - Y3\ < 2a + 1. 
All solutions of this Thue inequality have been found by M I G N O T T E , P E T H O , and 

LEMMERMEYER [23]. 

3. X3 - (a + 1)X2Y + aXY2 - Y3 = 1. 
L E E [15] and independently M I G N O T T E and TZANAKIS [24] proved that for a > 

3.33-1023, only trivial solutions exist. Very recently, MIGNOTTE [20] could solve 
this equation completely. 

4. X(X - naY)(X - nbY) ± Y3 = 1. 

This family was investigated by T H O M A S [30]. He proved that for 0 < a < h 

and n > (2 - 106 • (a + 26)) ' nontrivial solutions cannot exist. He also 
investigated this family with na and nb replaced by polynomials in n of degrees 
a and 6, respectively. 

5. X4 - aX3Y - X2Y2 + aXY3 + Y4 = ± 1 . 
This quartic family was solved by P E T H O [25] for large values of a; MIGNOTTE, 

PETHO, and R O T H [22] solved it completely. 

6. X4 - aX3Y - 3X2Y2 + aXY3 + Y4 = + 1 has been solved for a > 9.9 • 1027 by 
P E T H O [25], 

7. X4 - a X 3 r - 6X2Y2 + a X r 3 + K4 € {±1 , ±4} . 
This equation has been solved by L E T T L and P E T H O [16]; C H E N and VOUTIER [7] 

solved it independently by using a hypergeometric method instead of B A K E R ' S 
method. 

8. X(X - Y)(X - aY)(X - hY) - Y4 = ± 1 . 
All solutions of this two-parametric family are known for 102 10 < a + 1 < b < 

a( l + (loga)~4), cf. PETHO and T I C H Y [27]. The case b = a + 1 will be considered 
in this paper. 

9. WAKABAYASHI [34] proved that if \x4 - a2x2y2 + y4\ < a2 - 2 and a > 8 then 

| y | < i . 
10. H A L T E R - K O C H , L E T T L , P E T H O , and T I C H Y [11] investigated for distinct integers 

ax = 0, a 2 , . . . , a n „ i and an integral parameter an •- a the equation 

n 

J\(X ~a{Y)±Yn = ±1. 
t = i 

11. X(X2 - Y2)(X2 - a2Y2) - F 5 = ± 1 . 
For a > 3.6 • 1019, all solutions have been found by H E U B E R G E R [12]. 

12. X6 - 2aX5Y - (5a + 1 5 ) K 4 r 2 - 2 0 K 3 r 3 + baX2Y4 + (2a + 6)XYb + Y6 € 
{+1,±27} was investigated by L E T T L , P E T H O , and VOUTIER, they found all 
solutions for a > 89 by hypergeometric methods [18]. For a < 89 they used 
BAKER'S method [17]. 

2. General approach and Linear Forms in Logarithms of algebraic 
numbers 
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2.1. Thue equations 
In this section, we give a short survey on the general approach to solve a single 
Thue equation (cf. G A A L [10]). In order to keep notation simple, we only consider 
the equation 

F ( X , r ) = ± i , (2) 

where 

/ ( X ) : = F ( X , 1 ) = = £ > * ' 
i = 0 

is a monic polynomial with real zeros a ( 1 ) , . . . , a ( n ) . 
Let (re, y) € Z 2 be a solution of (2). We define j € { 1 , . . . , n} by 

- rv (Я 

У 
= min 

i€{l, . . ,n} 
- - a ( i ) 

У 

Then we have |T/| | a ( i ) - a ( j ) | < \x - a ( i ) y | + |x - a^y\ < 2 |x - a ( i ) t/ | and 

1 2 n ~ 1 

x — aKJ)y\ = < 
Cl 

n * , i* - «(ť)!/| - I-VÍ"-1 n i # i |o(o - a«) | - \y\ П-ì 

(3) 

(4) 

where c i , . . . denote positive effectively computable constants depending o n K : - -
Q(a ( 1 ) ) . For 2/ > (2c 1 ) 1 / ( n ~ 2 ) , x/y is a convergent of a ^ by LAGRANGE'S theorem. 
This yields 

Cl y{aU) _ a « ) ) _ ^ . < - _ a(i)y < ÿ ( в ü ) _ Q«)) + _ ^ . 

ІS/I І2/I 

We have 

F(X, Y) = Y"/ (y) =Y"f[(y- QW] = f[(X-a«Y) = N^X-a^Y) . 
^ ' i=l ^ ' i=l 

Set /3 ( i ) := x - a ( i ) t/ for i = 1, . . . ,n, then /3 ( 1 ) is a unit in O := Z [ a ( 1 ) ] . Thus by 
D I R I C H L E T ' S theorem, we obtain 

^=±6? ...«*-, ui , . . . ,u r ez, (6) 

where £ ( 1 ) , . . . , e ( r ) are fundamental units of D. Considering (6) for all conjugates 
and taking logarithms, we get the following system of linear equations in the u^. 

log J/3(i) I = ui log 1*1° I + ••• + ur log |e ( i ) I i 7- j . (7) 

Using (5), we derive the estimate 

U:= max \u{\ < c2 max llog | / 3 ( i ) | | < c 3 l o g | y | . (8) 
l< i< r i^j I ' 'I 
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For k T£ I e {1 , . . . ,n} \ { j} , together with (4) and (5) SlEGEL's identity 

y(І) ,(k) 

v(j) cr (0 
x — a(0y 

x — a^y 

v(0 y ( * ) 
a 0 ) y 

v(0 v(І) x — a( fc)y 

yields 
Q ( i) _ a(*0 /?(') 

aU) - aЏ) ß(k) 

»(') »(*) 

»(<) v(І) 

/3(i) 

/?(*) 
__L 
l » | n ' 

(9) 

(10) 

Using a lower bound for linear forms in logarithms of algebraic numbers (see 
section 11), (6), (10), (4), (5) and finally (8) we have 

exp(-c 5 logU) < log 
Jfì ,(«) 

+ щ log 

< 2 1 -

Q Ü ) - a(0 

ö ( i ) __«(*) /}(!) 

.(0 

.(*) 
-f u г log 

ғ ( 0 

c ( * ) 
_r 

a ü ) - a(0 ßW ( П ) 
2c4 < n í i - = exp(c6 - nlog|y | ) < exp(c6 - c7U). 
\y\ 

This estimate can only hold for U < cs yielding an upper bound for \y\ by (7) and 
(5). 

2.2. Parametrized families of Thue equations 
Given a parametrized family of Thue equations, one has to perform the same steps 
as in the case of one single Thue equation using asymptotic bounds for the quantities 
involved. 

The main extra tool are estimates of the form 

U >Ca9 log a 

for some positive constant C and some g € N. T H O M A S [30] calls this fact 'stable 
growth'. The lower bounds for U usually contradict the upper bound for U from 
the'linear form estimates. 

Stable growth can be seen considering asymptotic expansions of the U{ resulting 
from (7), but at the time of this writing, we cannot give any condition on the familiy 
which guaranties stable growth for n > 4; for the case n = 3 see T H O M A S [30]. 

2.3. Linear forms in logarithms 
We give a brief survey on some lower bounds for linear forms in logarithms of 
algebraic numbers which are currently used for solving diophantine equations. 

For an algebraic number 7 with minimal polynomial Yli~o ai^i and conjugates 
7 =_ y 1 ) , . . . ,7(d), the absolute logarithmic Weil height of 7 is defined by 

Л(7) := ^log ӣd TT max (i,И) 
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In general situations, one can use the following estimate of B A K E R and W U S T -

HOLZ [3]: 

Theorem 2.1. (Baker-Wiistholz) Let 7 1 , . . . , 7 n be algebraic numbers, not 0 or 1. 
K = Q ( 7 i , . . . , 7 n ) and d the degree [K : Q]. For i = 1 , . . . , n let 

Һ ^m^íh(^\ lІ0g(7«)l lN\ 
ҺІ > m a x l Ң-yi), , - I . 

Let 6 1 , . . . , bn € Z, A = 61 log7i + • • • + bn log7n 7- 0 and B > max \bj\. Then 
we have 

log IA| > -C{n, d)hi" - / i n log B, (12) 

where 
C{n,d) = 18(n+ l ) !n n + 1 (32d) n + 2 log(2nd) . 

In many concrete families, it is possible to reduce the number of logarithms in 
the linear form and to use estimates for linear forms in few logarithms. V O U T I E R 
[33] considers three logarithms: 

Theorem 2.2. (Voutier) Let 71, 72 and 73 be positive algebraic numbers and put 
D := [0(71,72,73) : Q]- Let b\, b2 and 63 be integers with b3 ^ 0 and let h\, h2, 
h3, B and E > 1 be real numbers which satisfy 

Aj>max(!^,M7i),£!!2pr) K K J , 

B i M {^ / - . !^ (M + M)(&l + fel)} 

and E < 4.6D . I/ log 71, log 72, and log 73 are linearly independent over Q, £/ien 

2.4 • 106 • JD5 log2 B 
log|b i log7i +6 2 log72 + 63 log 731 > -~ r—4-= hx h2 - h3. 

log £ 

LAURENT, M I G N O T T E and N E S T E R E N K O [14] settle the case of two logarithms: 

Theorem 2.3. (Laurent-Mignotte-Nesterenko) Let 71 and 72 be multiplicatively 
independent and positive algebraic numbers, b\ and b2 € Z and 

A = 62 log72 - b i l o g 7 i . 

L e i D : = [ Q ( 7 l , 7 2 ) : Q ] , / o r i = 1,2 let 

^>max{M70,^^} 
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and 
h b2 ь'> т H - + 

Dh2 Dhi 

If |A| 7-̂ 0, then we have 

log|A| > -24.34 D4 fmax j logb ' + ° - ^ S > J f ) h ^ -

The following very deep conjecture is due to LANG and WALDSCHMIDT (cf. L A N G 

[13]): 

Conjecture 2.4. Let K be an algebraic number field of degree m, f3\,..., fik £ K 
and bi,..., bk € Z . Let B\,..., _?*, B € 1R be real numbers such that 

logBi > h(0i), i = l , . . . , fc and B > m a x { | b i | , . . . , |b*| , e } . 

Then there exists a constant c(k,m) > 0 such that 

log|bi log/3i + • • • + bk log f3k\ > -c(k ,m)( log J5i + • • • + log£?fc) log!?, 

provided that b\ log/3i + • • • + 6* log/3fc 7- 0. 

Assuming this conjecture, H A L T E R - K O C H , L E T T L , F E T H O and T I C H Y [11] could 
prove: 

Theorem 2.5. Let n > 3, ai = 0,02- • • • , a n _ i be distinct integers and an = a an 
integral parameter. Let a = a(a) be a zero of P(x) = n i L i (x"" a*)"~ ^ u,f'*'* d = ± 1 
and suppose that the index I of (a — a i , . . . , a — a n _i ) zn D x , £be ^ratxp 0/ unite a/ 
D := Z[a], is bounded by a constant J = J(ai,... , a n _ i , n ) for every a from some 
subset n € Z. Assume further that the Lang-Waldschmidt conjecture is true. Then 
for all but finitely many values a € ft the diophantine equation 

n 

H(x - aiV) - dyn = ± 1 
i = l 

has only trivial solutions, except when n = 3 and \a2\ = 1, or when n = 4 and 
(02,03) G {(1, —1), ( ± 1 , ± 2 ) } , in which cases it has exactly one more solution for 
every value of a. 

If Q^a) is primitive over Q — especially if n is prime — then there exists a 
bound J = J(ai,... , a n _ i , n ) for the index I by lower bounds for the regulator of 
D (cf. P O H S T and ZASSENHAUS [28], chapter 5.6, (6.22)). Applying the theory of 
Hilbertian fields and results on thin sets, primitivity is proved for almost all choices 
(in the sense of density) of the parameters, cf. [11]. 
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3. A quartic Family of Thue equations 

In [27], PETHO and T I C H Y considered the two parametric family of Thue equations 

Fa,6(X, Y) := X(X - Y)(X - aY)(X - bY) - Y4 = ± 1 . (13) 

They proved the following theorem: 

Theorem 3.1. Assume that 

102 1°2 8 < a + 1 < b < a {1 + - L - ) 
log 

Then (13) has only the trivial solutions 

F a , 6 (± l ,0 ) = l, 

Fa ,6(0, ±1) = F a , 6 ( ± l , ±1) = Fatb(±a, ±1) = F a ,6(±6, ±1) = - 1 . 

The case b = a + 1 was not covered by that paper, because its Galois group is 
different from the general case. In the remainder of this paper, we will investigate 
this case and we find all solutions for all integers a. We will prove: 

Theorem 3.2. Let a be an integer. Then the diophantine equation 

Fa(X, Y) := X(X - Y)(X - aY)(X - (a + l ) y ) - Y4 = ±1 (14) 

only has the trivial solutions 

F a ( ± l , 0 ) = l, 

F a ( 0 , ± l ) = F a ( ± l , ± l ) = F a ( ± a , ± l ) = F a ( ± ( a + 1),±1) = ~ 1 . 

Let a < 0 be an integer and put A = —a. Then A > 0 and we have 

Fa(X, Y) = X(X - Y)(X + AY)(X + (A - 1)Y) - Y4 

= Z(Z - Y)(Z - AY)(Z ~(A + 1)Y) - Y4 = FA(Z, Y), 

with Z = X + -4F. Hence it is enough to solve (14) for non-negative values of the 
parameter. 

In [27] it was proved that all solutions (x,y) G Z 2 of (14) with \y\ < 1 are exactly 
the solutions listed in Theorem 3.2. 
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3.1. Properties of the quartic number field 
We put 

fa(X) := Fa(X, 1) = X(X - l)(X - a)(X - (a + 1)) - 1 

and we will investigate some properties of the number field Q(a), where a is a root 
of/a. 

It is easy to observe that fa is irreducible for a ^ 0, the case a = 0 yields precisely 
the solutions of Theorem 3.2 and will not be considered below. 

If a > 3, all conjugates of a are real, we need sharper approximations for the 
roots of / a than those established in [27], Lemma 2.1. 

Lemma 3.3. Let a > 7 and a := a ( 1 ) < a ( 2 ; < a ( 3 ) < a ( 4^ be the zeros of fa. 
Then the following estimates hold: 

1 1 1 6 m 1 1 1 4 

a
2
 a

3
 a

5
 a

6
 a

2
 a

3
 a

5
 a

6 

1 1 1 4
 m

 , 1 1 1 6 

a
z
 a

J
 a

5
 a

b
 a

2
 a

3
 a

&
 a

0 

1 1 1 6 ,<n 1 1 1 4 
a ~ " T - - т ~ ~ т - - г < <*

(3)
 < a 

a
z
 a

3
 a

5
 a

6
 a

2
 a

3
 a

5
 a

6 

1 1 1 4
 m

 , 1 1 1 6 
a + l + — - — - — + - r < a ( 4 ) < a + l + - r - - T - - r + -1r 

a 2 a*3 a& a° a"1 a J aD a° 

Proof. These inequalities can easily be verified by considering the sign of fa at the 
given bounds. rj 

Sometimes, approximations of higher order will be needed; they can be obtained 
performing two or three symbolic Newton steps starting at 0,1, a, a + 1 respectively, 
calculating an asymptotic expansion by Maple and verifying as in the proof above. 

By [27], Theorem 2.1, we know that the Galois group of fa is isomorphic to the 
dihedral group F>8. Indeed, we have a ( 4^ = - a ( 1 ) + a + 1 and a ( 3^ = - a ( 2 ) + a + 1, 
s i n c e / ( - X + a + 1 ) = f(X). Therefore we have Gal(E/Q) = ((14), (1243)), where E 
is the splitting field of / a . Moreover, we have K := Q ( a ( 1 ) ) = Q ( a ( 1 ) , a ( 4 ) ) , hence 
Gal(E/K) = ((23)). Thus there exists exactly one quadratic subfield of i\~, say 
Q(e), and this subfield is invariant under ((14), (23)). This leads to e = - a ( 1 ) a ( 4 ) . 

In the sequel, we will work in the order D := Z[a\. First we investigate the 
structure of its unit group D x . The corresponding part of [27] cannot be used, 
because it depends on the fact that Q(a) is primitive over Q in that situation. 
However, the structure is the same: 

Theorem 3.4. Let a ^ 0 be an integer, a be a root of fa — X(X — 1)(X — a)(X — 
a — 1) — 1 and D := Z[a\. If \a\ > 3, we have 

Ox = ( - l , a , a - l , a - a ) , 

for the remaining values of a, we have 

|a | = l : D x = ( - l , a , a - l ) 

|a | = 2 : O x = ( - l , a ) N A * ( a - a ) ) . 
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Proof. We will first discuss the case a > 49. To prove that a, a — 1 and a — a are 
independent units, consider the regulator 

Ra := 

l o g l a ^ l l o g l a ^ - l l l o g | a ( 1 » - a | 

log \aW | log ja<2> - 1 j log ja<2> - a\ 

ìog |a(3> j log ja<3) - 11 log ja<3> - a\ 

By Lemma 3.3, we obtain for a > 25 

3 1 
- 4 l o g 3 a < Ra < - 4 l o g 3 a + - . 

a a 

Thus jRa / 0 and the units are independent. 
We will use the following result of M A H L E R [19]: 

Proposition 3.5. (Mahler) Let 7 be an algebraic integer of degree d > 2 with 
conjugates 7 = 7 ( 1 ) , . . . , 7 ( d ) and 

k=i 

Then 

M ( 7 ) : = П m a x { l , | 7

( / г ) | } . 
k=i 

| d ł 8 c r z w | < ( f . M ( 7 ) 3 ( l ' - 1 ) . 

Since 
discr/a = a 8 + 6a 6 - 15a4 - 152a2 - 240 > a 8 

and discr/a < discr7, M A H L E R ' S result implies 

a 4/ 3 

M ( 7 ) > w (15) 

for all 7 G D. 
To prove that the units are independent, we will first consider another system of 

independent units. We will prove that these units generate D x using [28], chapter 
5, Theorem 7.1. 

First, we prove that 771 := a(a - a) > 0 can be extended to a system of funda
mental units. To prove this, we have to show that there is no 7 € D x and no n > 2 
such that 771 = 7 n . By (15) and Lemma 3.3 we have 

^ < M W = M( , 1 )""<(^)""</1« . , (16) 

which is a contradiction for a > 16. 
Next, let 772 := a(a — 1) > 0. We prove that 771,772 can be extended to a system 

of fundamental units of O. We have to prove that 7 n = 77̂ 772 has no solution with 
7 6 D x , n > 2 and |k | < n / 2 . For n > 44, we can argue as in (16) and we get 
a contradiction for a > 48, since M(rjkr)2) < M(rji)kM(n2). For 4 < n < 43, we 
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explicitely bound M(r\kri2) for all possible choices of k by Lemma 3.3 and we find 
a contradiction for a > 24. For n = 2 and k = 0, we find that 

M + <fjn + Af^*AfjA) \A ±y/r£> ± y/rf> ± V - + V ^ 
is no integer for all choices of the signs, which is impossible since 772 is an algebraic 
integer; the case k = 1 can be excluded since nj < 0. If n = 3, we find 

k = 0 d\ - 4d2 = - 8 4- i?i ^ T T 1J1 £ [7/18,8/18] 

fc = 1 - 2 d i - 3acii + 3d2 = - 3 a 2 - 4a + 1 - #2-573 #2 £ [-341/54, -11 /3 ] 

fc = - l 3a<1i - 2 d i 4 - 3 d 2 = - 3 a 2 4- 4a + 1 - tf 3-^73 #3 £ [ -11 /3 , -55 /27 ] , 

where d* are the symmetric functions in 7W, i. e. d\ := Ylt=i 7 ^ a n (^ ^2 •'= 
-Ci<i<;<4 7 ^ 7 ( j \ hence dj £ Z, which is a contradiction for a > 16. 

To finish the proof of the case a > 49, we use an idea of L E T T L and P E T H O 

[16]. Assume that -1,771,772 and some 77 £ O x generate Qx. Consider J\f : D x -> 
(e ) ;7 >-> | N K / Q ( e ) ( 7 ) | = |7 ( 1 ) 7 ( 4 ) | - We see that M(Ox) C (e) by PETHO [25], 
Lemma 3.2. 771 and 772 were chosen such that N(r}\) = Nfa) = 1. Put a = 
z-z7?i7?2r?m» ^ e n w e s e e 

N(r?)m = N(»7^m) = N(±«) = e, 

hence m = ± 1 and we have 

D x = (—1,77!, 772,77) = ( - l , n i , 772, a) = ( - 1 , a, a - 1, a - a ) . 

Next, we consider 3 < a < 48. We used Pari (cf. COHEN [8]) to compute the 
regulator R of K for every a, we calculated the regulator Ra explicitely and got 

J : = [ D * : ( - l , a , a - l , a - a ) ] = | ^ < ^ = M, 

where M = 1 for all a except 

a 4 11 14 29 36 
M 3 5 3 7 3 

In these cases we explicitely solved 

>yn = akl(a-l)k2(a-a)k3 

for all |A?i|, |k2 | >1&31 < ft/2 and 2 < n < M. We did not find any solution 7 £ D 
with gcd(n,fci, A^,^) = 1. Hence, I = 1 in these cases. The last step took about 
6 minutes on a Pentium 200 running Linux. 

The case a < — 3 follows from the positive case considering f-a(ot — a) = 0. 
The remaining cases \a\ £ {1,2} can be proved using Kant [9]. Q 
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3.2. Approximation properties of the solutions 
Let (x,y) e Z 2 be a solution of (14), y > 2. As in (3), we define the type j of (x,y) 
such that 

v(i) min v(*) _ 
У 

Л < k < 4 

By Fa(~X + (a + 1)1",F) = Fa(X,Y) and Lemma 3.3 we see that if (x,y) is a 
solution of (14) of type 3 or 4, then (~-x + (a + \)y,y) is a solution of type 2 or 
1, respectively. Thus in order to prove Theorem 3.2, we have to show that there 
exists no solution (x,y) of type 1 or 2 with y > 2. 

Since we have 
Fa(x,y) = N Q ( a ) / Q ( . r - ay) = 1, 

Theorem 3.4 yields 

where 771 = a, n 2 = a — 1 and 773 = a — a. 

(17) 

3.3. Upper bounds for a linear form in logarithms 
We shall now derive upper bounds for the linear form 

hpqj : = Щ b g vï 
(p) 

Vì 
(«?) 

+ u2 log •ЪW 

•4ł) + Щ log 
„(p) 

49ì + log 
v(j) v(P) 

(18) 

where p and a will be chosen according to the type j of the solution (x,y). Fur
thermore, we will investigate relations between the ui. 

Lemma 3.6. Let a > 100 and (x,y) be a solution of (14) with y > 2 of type j . 
The following estimates hold, according to the value of j : 
j = 1: Let U := u\ and V := U3 — u2 . Then we have ~a loga | — U + 3Vj < U and 

U - 1 > 3a2 log a. Putting p = 2 and a = 3, we have 

log|3A2 3 i | < - - U l o g a + l o g ( 4 . 5 a 1 4 ! 3 ) . (19) 

j = 2: Let U := u2 - IA3. TTien me aane |m| < U, ^a loga |U + 3tIi| < U and 
U - 1 > 3a2 log a. Putting p = 1 and a = 4 in £/ns ca^e, me ^e^ 

o 20 U 
log |3Au2| < ~\U loga + j - + log(4.5a14!3). (20) 

Proof. 

j = 1: By Lemma 3.3, we see [ a ^ J = —1 and -~y == 1, thus the continued 

fraction expansion of a^ ) starts with —1, l , a2 where 

a2 -¥a< aí1] < a2 + 1.1a. 
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Since x/y is a principal convergent of Q ( L ) by (4), we have 

У>a2 

Then (4) yields — as in [27], (4.8) 

в(D _ aм /?(") 
< Q ( 1> - Q("> + 

дo-
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(21) 

(22) 

Taking logarithms of the conjugates of (17), we obtain the following system 
of linear equations in the U{\ 

log |/3(4> | = ui log |т?|4) | + u 2 log |rj<4) | + uз Ь g \r)з 

ß(2) 

(4) 

log 

log 

ßw 
ß{г) 

ßW 

= Щ log 

= Щ log 

(2) 

m (4) 

m 
m 

(3) 

(4) 

m 

+ u 2 log 

+ u 2 log 

vì2) 

lì3) 

V^ 

+ u3 log 

+ uъ log 

^ 

nŕ 
^ 

vì4) 

By (22) and Lemma 3.3, we have good estimates for log |/3(")//3(4>| in terms 
of a. Solving this system by Cramer's rule, we obtain 

Rui = U log2 a + 0 U ^ i £ j l o g |/3(4> | + 4 log3 a + 0 i 2 -

i?u2 = ( -21og 2 a + 0 2 1 ^ ) log |/i(4>| + 2 ^ + i 9 2 2 ^ 

H u 3 = - 2 ^ + l 9 3 i ^ l 0 g | / 3 ( 4 > | + 4 ^ + ^ 2 ^ . 
\ a cr / I 1 a6 aq 

where R is the determinant of the system matrix, 

fi = 4 1 o g 3 a + 5 ^ - 2 ^ + ^ 4 , 
a1 a1 a1 

and the d lie in the following intervals: 

(23) 

00 011 012 021 02 2 Øзi 0 32 

[-0.1,0.01] [-5,-3] [-2,0] [-2,-1] [2,3] [2,3] [ - 6 , 1 ] ' 

By (21) and (22) we have log|/3(4>| > 3 log a. 
We have 

R(Ul - 1) > 51og 2alog|/3 ( 4>| - 10------ > 0 

R(Ul - 1 + 3u 2 - 5u 3 ) > ( 2 ^ - ± ) log|/3(4>| - 4 ^ > 0 

R(Ul - 1 - 3 a 2 l o g a ( u ! - 1 + 3u 2 - 5u 3 )) > l l logalog |/3 ( 4 >| > 0, 
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hence u\ — 1 > 3a 2 loga(ui — 1 + 3^2 — bu^) > 3a2 log a. 
By (23) we have 

ui • 4 log3 a < Rui < 6 log2 a log |/3 ( 4 ) I + 4 log3 a, 

hence 

log | /3 ( 4 ) I > - log o(ui - 1) > 2a2 log2 a. (24) 

We hаve 

R{-U + 3V) > 3 ^ log |/? ( 4 ) I - 5 log3 a > 0 
a ! I 

R (u - ^ a l o g a ( - U + W)) > 5 ^ ^ log | /? ( 4 ) | > 0, 

which implies that U > | a l o g a \-U + 3V |. 
Finally, using (17), SlEGEL's identity, Lemma 3.3 and (22), we get 

Л 2зi = Ь g 
a ( l ) _ a ( 3 ) ß(2) 

a ( l ) _ a (2 ) ß(3) 
< 1.1a ßw 

/?(-> /?(3) l/?<4>l 

Together with (24), we obtain the requested bound for A231. 

j = 2: The continued fraction expansion of a ( 2 ) starts with 1, a[ ) where a2-a 

a\'<a2— 0.9a, which yields 

У > 0.9a2. (25) 

This leads to 

в(-> _ ai») _ i ± < 
nLU 

ßi») 
< Q(2) _ a И + 

1_4_ 
TÃõ- (26) 

Taking logarithms of the conjugates of (17), we obtain the following system 
of linear equations in the uf. 

log \0{4) = lij, log b i + ^2 log m + ^3 log t& (4) ,("> 

log 

log 

ß(D 
ßW 

ß(3) 

/?(4> 

= Щ log 

= *_ lOg 

m 
( i ) 

»?ì 
(4) 

»_ 
(3) 

m 
(4) 

+ -2 ІQg 

+ " 2 ІQg 

»_ 

ví3) 

ví4) 

+ wз log 

+ u 3 log 

ч_1} 

ч_4 ) 

43) 

(4) 
Чз 
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Solving this system by Cramer's rule, we obtain 

Ral = (21og 2 a + u 1 1 I ) l o g | / 3 ( 4 > | - 2 i 2 l l _ + l 9 1 2 } 2 4 -
\ a J I I a z a 3 

Ru2 = ( - 6 log2 a + 1J21 ~^j log \p(A) | - 4 log3 a + 0 2 2 i 

where 

J i _ - 4 1 o g 3 a - 5 ^ + 2 ^ + 0 o 4 , 
a 2 a"5 a1 

and the $ lie in the following intervals: 

00 •(? 12 1? 21 đ 22 đ $ 32 

[0,0.1] [-1,1] [1,2] [-3,-1] [-1,2] [2,3] [ - 6 , 1 ] ' 

Consider 

RU < - 5log2 alog | / 3 ( 4 ) | - 31og3 a < 0 

R(U + 3ui) < - 4 ^ p log |/3 ( 4 ) | < 0 

i?(5U - 7aloga(U + 3ui)) < ( - 2 log2 a + 4 2 - - - - - ^ log \/3(A) | 

- 19 log3 a + 28 log4 a < 0, 

and we get 7a log a |U + 3ui | < 5U, hence U > (7/5)aloga. 
We have 

R(U-l)> f-61og 2a-5^V°gk ( 4 ) | . 
hence (27) implies 

5 1 
log /3(4> > - l o g a - - - ( _ - ! ) > = a l o g 2 a . 

9 a 

We derive 

log a . log2 a 

107 

(27) 

(28) 

iî(2u3 + 3u. + U - 1) < - - - - £ log /3(4> + 5 ^ _ _ < o 

i ? ( U - l - 3 a 2 l o g a ( 2 u 3 + u 1 + U - 1)) < -121ogalog | /3 ( 4 ) | < 0, 

which implies that U - 1 > 3a2 log a |2u3 + 3ui + U - 1| > 3a2 log a. 
Finally, using (17), SlEGEL's identity, Lemma 3.3 and (26), we get 

| Q ( 2 ) _ a ( 4 ) 0(1) 
4 4 2 log 

a<-> - a(1> /3(4> 
< 1.2a 

0(4) 

/?(!) 

10(4) 

0(3) 
\ß(Л 

|4* 

Together with (28), we obtain the requested bound for A142. 
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3.4. Lower bounds for a linear form in logarithms 

Lemma 3.7. Let a > 100, {x,y) a solution of (14) of type j with y > 2. Then 
the following estimates hold according to j : 
j = l: 

log |ЗЛ 2 3 1 | > -lг(a) Í З + 

l o g | З Л 2 3 1 | > -l[(a) log2 

2U 

Зa log a 

0.18 

a log3 a 
U' 

where 

j = 2: 

( 303 \ 
íoo a 8 ) l o s a 

l[(a) := 1.7-1011log(1.01a)log2a. 

log|3A1 4 2 | > -l2(a) ( 3 + 7 - r — 
V Faloga 

l o g | З Л 1 4 2 | > - í 2 ( a ) log 2 U2 

a log aj 

where 

l2(a) := 199 393.3( loga- 1.5)2log ( ^ j j U ) loga 

l'2(a) := 8.413 • 109 log f ^ a ) log2 a. 

Proof 
j — 1: We rewrite Л231 in the following wаy: 

Л2зi = Щ log 
(2) (2) 

m v2 
(3) (3) 

m m 

+ ( u 2 --щ)\og чř° 4 2 ) 

чí3) ^ 
+ (^з - u 2 -Fui)log чíа) 

4 3 ) 
+ log 

Q ( D _ Q 0 ) 
+ (^з - u 2 -Fui)log чíа) 

4 3 ) 
+ log 

a (1) - Q ( 2 ) 

(29) 

(30) 

(31) 

(32) 

Since 773 = (—oft) + o + l ) - a = —r/2 and % ' = -772 , the second term 
vanishes and we are left with 

3A 2 3 1 - Ulog|7i| + (-U + ZV)logI72I + 3 l o g | 7 3 | 

= Ulog|71|+log|73
372-

t/+3í'|, 

(33) 

(34) 
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where 

CVíCV -̂T 
nì3)J W 3 ) 72 : 

._ чś2) 

% 
(3) 73 := 

g ( 1 ) - a ( 3 ) 

Q ( D - Q ( 2 ) ' 71 : 

We have 

1 /303 \ 
Kii) < J l o S ( YoQa*J ' h ^ - l o g a ' h ^ - l o g a ' 

3 
log |7i I < - , log |721 < 3 log a, log (731 < log a. 

Applying Theorem 2.3 with 

. 1. /303 , 
/ l i : = 4 l o g l í 0 0 a h2 := log a ( 3 + w 

Ъa log a 
Ь' : = ±«, 

we get (29). Putting 

1, /303 8 \ 
ftl : = 4 l o g i 100 J ' 2 : = 3 : = g a ' :== 

and applying Theorem 2.2, we obtain (30). 
j = 2: We rewrite A142 in the following way: 

Л142 = Щ log W 
чíV 

+ (u. - £/) log ч í 1 } 

+ (t-2 - г i i ) l o g 

(2) _ л ( 4 ) 

ч í 1 } ч í 1 } 

^ 4 Ҹ 4 ) 

(4) 
+ log av ' — av 

Q ( 2 ) _ Q ( D 

Since r/3 = (-Q ( 1 ) + a + 1) - a = - % a n c * V2 = "V3l\ the second term 
vanishes and we are left with 

ЗЛi4 2 = І0g 
Q (2) _ a ( 4 ) 

Q ( 2 ) _ Q ( 1 ) 

ү(") ( O + I ) 
Зu,+U 

\aM-(a + l) 

-[/log 

Proceeding as above, we get the estimates. 

/ a ( 1 ) - a \ 3 / a ( 4 ) - ( q + l ) \ 

\aM-a) U ( 1 ) - ( a + l ) j 

D 
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3.5. 'Large' solutions 
We compare the upper and lower bounds for the linear forms given in Lemma 3.6 
and in Lemma 3.7: If j = 1, we get from (19) and (29) 

* W + toK4WV)2ir(|h,.-*feL). 

If a > 11 313 890, the right hand side is positive, so we can insert the lower bound 
for U from Lemma 3.6, which yields 

3h(a) + log(4.5a14!3) > 3a2 log a ( | l o g a - - f j ^ ) • 

This is a contradiction for a > 11 313 892. So there exists no solution (xyy) of type 
j = 1 and y > 2 for a greater than this bound. 

For j = 2, we get in exactly the same way a contradiction for a > 6 700 703. 

3.6. 'Small' solutions 
To find all solutions with 100 < a < 11313891, we proceed as in MlGNOTTE, 
P E T H O and R O T H [22]. 

First we establish an explicit upper bound for U in both cases: 

Lemma 3.8. Let (x,y) be a solution of (14) of type j with y > 2. 
j = 1: Let 100 < a < 11313 891. Then we have U < 5 • 1016. 
j = 2: Let 100 < a < 6 700 702. Then we have U < 2.5 • 1015. 
Proof. If j = 1, we obtain from (30) and (19) 

| U l o g a < (l[(a) + l ) log2 f - ^ - ^ 2 ) * (35> 
3 \a log a / 

Since U > 3a2 log a, we can use logx < \f[h)x and we get U < 7 • 1053. Inserting 
that on the right hand side of (35), we get U < 9 • 1017 and repeating this process, 
we get the estimate of the lemma. 

The case j = 2 can be treated in the same way. rj 

Lemma 3.9. Let (5i,($2,M G 1R, A and B integers and 

\A + BS2+6X\ <M. (36) 

Furthermore, let Q e N, S\,S2 £ Q with \S{ - SA < Q 2 for i = 1,2 and p/q a 

principal convergent of 62 with q < Q. Then we have 

q\\qS\\ < Q 2 M + l + 2 £ , (37) 

where || • || denotes the distance to the nearest integer. 



1 

П 

t 0 bg |7зl 
дi := à . ., 

log І7i 1 

c _ l°gІ72І 
02'" EřЫ' 

Q = 1030 

Q = 2- 1015 

Q = 10" 
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Proof. Multiplying (36) by a, we have 

\qSx + q(Sx -6i) + qA-B(p- qS2) + Bp - Hg(<52 - <J2)| < QM, 

hence 

q||^i|| < Q 2 M + <1 2 k -<5i| + £ + -9O2|<52 -<52 | 

and the assertion follows. 
Let j = 1. By (33) and (19) we have (36) with 

A : = U , £ : = - U + 3V, M = 10- 9 0 0 , 

We choose Q depending on the value of a: 

100 < a < 60 000 

60 0 0 0 < a < 100 000 

100 000 < a <11313 891 

For each a, we compute rational approximations S{ of S{ and convergents p/q of <S2 

with q < Q. For most values of a, we find such a convergent with 

7- 10 1 6 

9||9«i \\>2 + L™, 
11 " a log a 

and this is a contradiction to (37) by Lemma 3.6 and Lemma 3.8. For the remaining 
values of a, we repeat this argument with Q = 1030 and get the corresponding 
contradiction. 

The case j = 2 is treated in exactly the same way, we only give the values of Q 
that we have used: 

100 <a< 60000 Q = 1030 

60 000 < a <6 700 703 Q = 1015. 

Hence there are no nontrivial solutions if a > 100. For the case 1 < a < 99, we 
used a program of H A N R O T solving Thue equations following the algorithm of BiLU 
and H A N R O T [4], where the fundamental units — which are known by Theorem 3.4 
— can be explicitly given. This took 50 seconds on a Pentium 200 and only gave 
the trivial solutions known from Theorem 3.2. Thus Theorem 3.2 is proved. 

The computations were performed on a DEC Alpha workstation and on a Pen
tium 200 running Linux of TU Graz. We have used MAPLE V in the formal 
computations, Pari's library mode for the exclusion of the existence of 'small' solu
tions. We have done this part of the calculations twice, first we only used rational 
numbers in the continued fraction procedure (this took 21 days for j = 1 and 8 
days for j = 2 on the DEC Alpha), then we used high precision real numbers (18 
hours for j = 1 and 7 hours for j = 2 on the Pentium). 

Remark (Added in proof): In the numerical calculations we have used a result of 
Voutier on linear forms in three logarithms, which is not published yet. Applying 
the general theorem of Baker-Wustholz [3] instead of Voutier [33], the numerical 
computations can be performed, however, computation time increases significantly. 
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