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Abstract: For an abelian field, a subgroup of the unit group, isomorphic as a Galois module 
to the augmentation ideal, is explicitly constructed and its index is computed. 
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1. Introduction 
By an abelian field k we have in mind a finite abelian extension of the rational 
numbers Q. It is well-known that the group E of units of k is difficult to compute 
but that it contains the explicitly described subgroup of circular units C. But the 
structure of C as a Z[G]-module (where G is the Galois group Gal(k/Q)) is easy 
to describe only in some very special cases (like for the maximal real subfield of a 
prime-power cyclotomic field, when it becames isomorphic as a Z[G]-module to the 
augmentation ideal of Z[G]). Even the known formula (see [5, Theorem 4.1]) for the 
index [E : C], which is related to the class number, is explicit only in some easiest 
cases (for example for a cyclotomic field, for a cyclic field, or for a compositum of 
several quadratic fields, see [2, Theorem 1]). 

Therefore it is natural to search for an explicit submodule of C which would be 
isomorphic as a Z[G]-module to the augmentation ideal. The first important con­
struction of such a submodule is due to Ramachandra in [4], who did this job for 
the maximal real subfield of a cyclotomic field. This construction was generalized 
by Washington (see [6, §8.2]) to any real abelian field. The disadvantage of their 
construction is the huge obtained index which usually involves quite large and un­
predictable prime factors. The first successful attempt to produce such a subgroup 
with a smaller index is due to Levesque (see [3]). His construction for real subfields 
of cyclotomic fields can produce a group of smaller index than Ramachandra's one 
but still his index can have huge prime factors. Recently a dramatic improvement 
was obtained by Greither in [1] who constructed for real subfields of cyclotomic 
fields a subgroup of circular units which is again isomorphic as a Z[G]-module to 
the augmentation ideal but now its index is the class number multiplied by a factor 
divisible only by primes dividing the degree of the field. 
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The aim of this paper is a generalization of Greither's construction to any abelian 
field. 

2. Notation 

We shall introduce the following notation: 
k an abelian field (we suppose k to be a subfield of complex numbers C); 
G = Gal(k/Q) its Galois group; 
R = Z[G] the integral group ring; 
*(X) = Eaex ° € R for any I C G ; 
m the conductor of k\ 
m0 = Flpim-9 ^ e maximal square-free divisor of m. 

For a prime p dividing m: 
Tp C G the inertia group for p in k; 
Ap G G a fixed Frobenius automorphism for p (well defined modulo Tp); 

Dp C G the decomposition group for p in k, so Dp = (AP)TP; 

£p = |TP | the ramification index of p in fc; 

fp = ^i j^ the residue class degree of p in k\ 

gP = T/ĵ j the number of primes in k dividing p; 

ep = ~-s(Tp) e Q[G] the idempotent corresponding to Tp; 

"P = E & i ^ 6 R. 
For a divisor r of m 0 : 

IV = n p | r T P £ G, so Tx = {1}, Tm o = G; 
Dr = ripir-Dp C G, so Dx = {1}, omo = G; 
t/r = l l p | r I / p e / ? ; 
<?r = T5vT H p | - ^p ('* ' s e a s v t o s e e *^ a t 9 r i s a P o s i t i v e integer). 

3. Use of Greither's construction for Sinnott's module U 

Sinnott's module U is the i?-module generated in the rational group ring OJG] by 

{s(Tr) J\(l~-\-lep);r\m0}. 

P I = * 

The module U is a free Z-module of Z-rank \G\ (see [5, Proposition 2.3]). Using 
Greither's method we shall construct an /^-cyclic submodule of U of the same Z-
rank \G\. 

It is easy to see that vps(Tp) = s(Dp) for any prime p, so 

qrurs(Tr) = vr J ] 5(TP) = U s(Dp) 
p\r p\r 
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does not depend on the choice of Xp for any r\m0. We put 

g = _ qrvr(s(Tr) n (1 - A.T'ep)) = _ (]JSW) U i1 " V e p ) 
r | m 0 P | ^ r l m 0 Pl r P l ^ 

= _ («(-5P)+1 - A - ^ P ) e U. 
p |m 0 

If x is a multiplicative character of G, we denote by x also the associated prim­
itive Dirichlet character. Let X be the group of all Dirichlet characters associated 
to the characters of G, let X+ mean the subgroup of all even characters. For any 
Y G l w e consider the ring homomorphism px : Q(G] ~> C induced by X- Then we 
have 

Px(9) = I I (Px(^Dp)) + 1 - x ( A p r V x ( e P ) ) . 
P|m0 

But 

J 1 i f T p C k e r x , , , m \\ f 
PX(6P) = 1 n ^ a n d M ^ P ) ) = 1 

t 0 otherwise, i 

1 i f T p C k e r x , __, W J n u _ ( i p / p if L>p C kerx, 

otherwise. 

Therefore 

M J / ) = ( n *P/P)( n (i-x(AP)-i))^o. 
\ p | m 0 / \ p |m 0 / 

DpCkerx TpCkerx 
D p _ k e r x 

Let j £ G mean the restriction of complex conjugation, e + = —-*, e~ = - ^ 
By means of [5, Lemma 1.2(b)] we obtain 

(R:gR)= J[ px(g) = Y[tp>f2
p°> 

X€X pjm0 

(e+R : ge+R) = J{ px(g) = R t«> f^> J[ t»>f*»2-* ]J tp>'2f°» 
X€X+ p | m 0 p |m 0 p |m 0 

J€TP jeDp\Tp j$Dp 

(e-R:ge~R)= [ px(g) = [ 2°>][t»>'2f» F9P 
Jp 

X€X\X+ p\m0 p |m 0 

jeDp\Tp j$Dp 

Because (R : U)\(R : gR)t (e+R : e+U)|(e+It : ge+H), and (e~H : e~U)\(e"R : 
ge~~R), the previous formulae give upper bounds for the indices of Sinnott's module. 

4. Circular units 

Now we can transfer the above described construction from U to the group of 
circular units C. At first, let us briefly recall some definitions following Sinnott. 
For any positive integer n we put Cn = e

2 r r i /n ? a n d l e t Kn d e n o t e t n e cyclotomic 
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field Q(Cn), and kn = k D Kn. Let D be the subgroup generated in kx by - 1 and 
all norms NKn/kn (1 — Cn)> where an integer a is not divisible by n. Then we define 

The logarithmic mapping £ : kx -> R[G] is defined by 

^ ) = -™IE1°6ia°ricr""1 

<7GG 

for any a £ kx. This mapping induces the isomorphism 

c/iV ~£(C) = rn( i -ei)T 

(see [5, Lemma 4.1, Lemma 4.2 and Proposition 4.1]), where W is the group of roots 
of unity in k, ei = r^j5(G), and T = 1(D). Due to [5, Corollary to Proposition 4.2] 
we have (1 - e\)T = u>'U for a suitable u/ € K[G], which satisfies 

(1 - ei)e(NKn/kn(1 - C„)) = w'*(Gal(fc/*n)) YJ(1 - V ' e p ) 
pin 

for any n |m (see [5, Proposition 4.2]). 
For any r|mo let r' be the maximal divisor of m which is divisible only by primes 

dividing r, i.e. r | r ' , r ' |m, (r, f) = 1, (r', ^ ) = 1. Then Ga l ( fc /M = T m o / r and 
it is not difficult to find out that the previous identity implies u'g = (1 — 61)^(77), 
where 

l ^ r | m 0 

It is easy to see that r/E D i s not a unit, but for any a G G we have r/1"0" £ C. Let 
C mean the subgroup of C generated by 

WU{7]l~°;aeG}. 

We could obtain the index [E : C] using the mentioned results of Sinnott, but we 
shall compute it directly because this way looks easier and more explicit. 

^From now on we shall suppose that k is a real abelian field; for an imaginary 
field the computations would almost be the same. Due to [6, Lemma 4.15 and 
Lemma 5.26] we have 

[E:C')=^l = l - \ n £ x ( - ) l o g | r n | 

= TH n E x w E wriog|!v,/fcr,(i-cr<rm°''||. 
IŽXZX oeG l ^ r | m 0 

Let us fix any r\m0, r ^ 1, and \ € X, x ?- 1- We put /? = !V/fr,/fcr, (1 - C-0 and 
s = 22a for a brevity. Since /? 6 fcr. and Gal(jb/Jtr-) = T„ we have" 

V y(a)a \oi\B"" 1 = 1 ° lfTsg k 6 r X ' 
^ l i : - e G ^ , / Q ) | r . l x W 9 . 1 o g | i 9 < " " | i fT.Ckerx-
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It is easy to see that 
gq»^s\Ta\ „ nqav9s{T9) 

and 

9.MT.) = Y[s(DP) = pfPUo.)-
p|» 

Let L s be the maximal subfield of fc where each prime p\s splits completely. Then 
L s C fcr., Gal(fc/Ls) = D „ and /3S<D>> = 7Vfe/L.(/3) = NK,/L,(P)[k-K,] € L s , so 

£ x ( t f ) < 7 s l o g ! / r " ' | = 0 
<r€G 

if D s 2 kerx- Let us suppose Ds C kerx now. Then 

YJX(°)q,\og\P™>\= Y, [*V< : Ls}X(o)Up^P\k : fcr-]log|^r,/L.(^)|. 
aeG <r<EGal(La/Q) ' 5 ' 

B u t 

[krt :La][k:kr.] = [k:La] = \Ds\, 

hence 

V2x(a ) 9 s l og | / 3^ | = ( n ^ p l ) E X(ff)log|iVKr, /L.(l-Cr'Y | 
o-GG p|s <r€Gal(La/Q) 

= - r ( x ) L ( l , x ) ( n ( 1 - X ( p ) ) ) n i D p l ' 
p|r p\s 

where r (x) means the Gauss sum and L ( l , x ) means the value of the Dirichlet L-
series (see [6, proof of Theorem 8.3]). Therefore by means of the well-known formula 
hR = r i i ^ x € x | r ( x ) ^ ( l ) X ) with h being the class number of k (for example, see 
[6, Corollary 4.6 and the proof of Theorem 4.17]) we obtain 

[5:0=21*1-^.1 n £ (na-x(p)))(niA>oi 
- T * X € X s\m0 p | ^ i l p\s 

D . C k e r x 

It is easy to see that Ds C kerx implies X(P) = 1 for each prime p\s. Therefore for 
each X ^ A , X T - 1 the previous sum contains only one non-zero term, namely for 
s being the product of all primes p |m0 such that x(p) = V Hence 

[E.c]-.2"*i-*h.| n ( n a-x(p)))( n M l 
i ^xex p|m 

X(P)Ť-T 
l ^ x Є x p\m p\m 

X ( P ) ^ I X ( P ) = I 

p j m 
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For any integer n > 1 and any integer a relatively prime to n we have Cn € 
Ifn and 

#-->/-(! - Cn)(i - C)"1 etf„niR. 

Hence if fc„ is real then for the automorphism a € Ga\(Kn/Q) determined by 
«t(Cn) = Cn the unit 

lVK„An(l-Cn)1-'r=!VK„A„(C„1-a)/2)-!VK„nR/fcJCna-1)/2(l-Cn)(l-C„)"1)2 

is a square of a unit in kn (up to a root of unity). 
Since k is real, for any a G G there is an explicit unit ea £ k such that rj1~a — 

±e%. It is easy to see that the index of the group C" generated by { — 1} U {ea; a G 
G} i s 

[E : C") = [£ : C] • 21~lxl = h J J «Jp"1/pPp"1. 
p|m 

Of course, both Ii-modules C/{1,—1} and C " / { 1 , - 1 } are I?-isomorphic to the 
augmentation ideal of I?. 

Acknowledgments 

I am grateful to Claude Levesque for many remarks which improved this paper. 

References 

[1] C. Greither, Improving Ramachandra's and Levesque}s unit index, to appear 
in the Proceedings of the Fifth Conference of the Canadian Number Theory 
Association (1996), Ottawa. 

[2] R. Kucera, On the Stickelberger ideal and circular units of a compositum of 
quadratic fields, Number Theory 56 (1996), 139-166. 

[3] C. Levesque, On improving Ramachandra's unit index, Number Theory, 1st 
Conference of the Canadian Number Theory Association, 1990, pp. 325-338. 

[4] K. Ramachandra, On the units of cyclotomic fields, Acta Arith X I I , 1996, 
pp. 165-173. 

[5] W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, 
Inv. Math 62, 1980, pp. 181-234. 

[6] L. C. Washington, Introduction to cyclotomic fields (1982), Springer-Verlag, 
New York. 

Author's address: Department of Mathematics Faculty of Science Masaryk University 
Janackovo nam. 2a 662 95 Brno, Czech Republic 

E-mail: kuceraQmath.muni . cz 

Received: April 24, 1998 


		webmaster@dml.cz
	2013-10-22T10:53:32+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




