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On One Language with Connection to Determinism 
and Bounded Deleting 

Martin Procházka 

Abstract: The separation of two properties of formal languages which are studied by means 
of deleting automata with restart operation (DR-automata) is presented. 

A DR-automaton is a device with a finite state control unit and a head with a lookahead 
window that moves from the left to the right along a finite list of items. The DR-automaton 
can change the state in its control unit after each move to the right and it can also delete 
the item scanned by its head moving the head to the right neighbour of the deleted item. 
The DR-automaton can also execute a restart operation that sets its control unit to the 
initial state and relocates its head with the lookahead to the beginning of the list. 

DR-automata were used to study hierarchies of various classes of languages and for their 
separations. Separation of determinism and nondeterminism is in great interest. In the 
separation theorems particular languages play important role. This article is focused on 
the language L — {am6 n | 0 < m < n < 2 • m}. Originaly, this language was considered as 
a candidate for the separation of classes recognized by deterministic and nondeterministic 
versions of DR-automata. In this article we show that determinism by itself does not disable 
recognition of L by DR-automaton. The second feature that characterizes subclasses of 
DR-automata that cannot recognize L is bounded deleting introduced in this article. 

Key Words: DR-automata, separation of classes of languages, determinism, bounded delet
ing. 

Mathematics Subject Classification: 68Q45 

1. Introduction 
This article is devoted to the separation of two properties of formal languages which 
are studied by means of deleting automata with restart operation (DR-automata). 
Motivation for DR- automat a comes from natural language analysis and they were 
introduced in [5]. 

A D .ft-automaton is a device with a finite state control unit and a head with a 
lookahead window that moves from the left to the right along a finite list of items. 
The Di?-automaton can change the state in its control unit after each move to the 
right and it can also delete the item scanned by its head moving the head to the 
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right neighbour of the deleted item. The DR-automaton can also execute a restart 
operation that sets its control unit to the initial state and relocates its head with 
the lookahead to the beginning of the list. 

DR- automat a were used to study hierarchies of various classes of languages 
and for their separations. In the separation theorems particular languages play 
important role. The choice of proper separation language can expose the essence 
of these separations. 

In roots of formal language theory concrete languages and their features were 
in a focus of study. It is evident when reading separation theorems contained in 
[1] and [2]. Such a language often formalizes some properties of natural languages 
(like English) and the result that this language does not belong to some class can 
easily be translated back into natural languages. Natural language analysis was, 
in fact, the main motivation for formal language theory and, as we have already 
mentioned, it remains an important motivation for DI?-automata, too. 

The style of this article resembles the style of separation theorems in articles 
from the beginnings of formal language theory. Results of this article are presented 
in the form L G L or L 0 L' (where £, C are certain subclasses of languages 
recognized by DIt-automata) instead of the contemporary form L \ L1 / 0. 

This style emphasizes the language we are focused on: 

L=^ {amhn | 0 < m < n < 2 - r a } . 

Originaly, this language was considered as a candidate for the separation of classes 
recognized by deterministic and nondeterministic versions of DI2~automata. In this 
article we show that determinism by itself does not disable recognition of L by DR-
automaton. The second feature that characterizes subclasses of DR-automata that 
cannot recognize L is bounded deleting introduced in this article. 

Let us give a short preview of this article: 
DIt-automata, their deterministic version, and Di?-automata with bounded 

deleting are defined in section 2. 
Section 3 illustrates a relation of L to CFLand one subclass of DjR-languages. 

Observations gathered in this section serves as a motivation for finding better sep
aration line between automata that can and that cannot recognize the language 
L. 

Main results of this article are stated in section 4. There it is proved that any 
D It-automaton both deterministic and with bounded deleting cannot recognize the 
language L. But if we give up one of these properties L becomes recognizable. 

2. Definitions and basic facts 

Deleting automata with restart operation (DR-automata) serve as a tool for study 
of subclasses of context-sensitive languages. They were introduced in [5]. 

We present definitions informally in the same way as in [5]; the formal technical 
details could be added in a standard way of automata theory. 

A deleting automaton with a restart operation, a DR-automaton for short, is a 
device defined as a tuple M = (Q, E, k, I, go, QA)- It has a finite state control unit 
(with the state set Q) and one head moving on a finite linear (doubly linked) list 
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of items. The first item always contains a special symbol <f, the last one another 
special symbol $, and each other item contains a symbol from a finite alphabet E 
(not containing <f, $). 

The head has a lookahead 'window' of fixed length k (k > 0); it means that 
besides the current item, M also scans the next k right neighbor items (or simply 
the end of the word when the distance to $is less than k). 

A configuration of M is written as a tuple (u,q,v) where u G {A} U <j:E* (A 
denoting the empty word) is the contents of the working list from the left sentinel 
till (but not including) the position of the head, q G Q is the current state and 
v G (<fE*$ U E*$) is the contents of the working list from the scanned item until 
the right sentinel. The initial configuration with the word w G E* is of the form 
(A,qo5^$) where go is a fixed initial state (and the head scans the left sentinel <f 
with its k right neighbors). 

A computation of M is controlled by a finite collection I of instructions. An 
instruction is of the type 

(q,au)-+(q',MVR) or (q,au) -> (q',DEL) or (q,au) -> RST. 

Such an instruction is applicable when the control unit is in the state q G Q, the 
head is attached to an item with a G E U {<£,$} and scans also the lookahead u G 
G (EU{$})*, |u| < k (where |u| denotes the length of u); its meaning is in the case 
of: 

MVR - to change the current state to the prescribed state q' and to move the head 
to the right neighbor item, 

DEL - to change the current state to the prescribed state q' and to delete the 
scanned item while placing the head to the right neighbor of the deleted item 
(here a ^ { t , $ } ) ; 

RST - to restart, i.e. to switch to the initial state q0 and to place the head on the 
most left item (containing <£). 

We suppose that each state q G Q is either nonhalting - for any (possible) a, u 
there is at least one instruction with the left-hand side (g, au) - or halting - there 
is no instruction with q in the left-hand side. The set of halting states is composed 
from the set QA of accepting states and the set of rejecting states. According to the 
state, we also classify configurations as nonhalting or halting (accepting, rejecting). 

Definition 2.1. (Deterministic F>I?-automaton) A DR-automaton is deterministic 
(det-DR-automaton for short) if there are no different instructions with the same 
left-hand side. 

In the usual way, we define the (derivation) relations h ^ , h *̂  on the set of 
configurations of M. A word w G E* is accepted by M if there is a computation 
which starts in the initial configuration with w and finishes in an accepting con
figuration, i.e. if (A,go 5 ^$) ^ *M('WI^QIW2) where q G QA- L(M) C E* denotes 
the language consisting of all words accepted by M; we say that M recognizes the 
language L(M). 

Note that when starting with an initial configuration (A,ao,<tw$), the configu
ration following a restart (RST) is again an initial configuration (\,qo,$w'%). We 
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will suppose that the (new) word w' is always strictly shorter than w (something 
was deleted out of w) - this can be easily ensured at any M by 'remembering' the 
performing of a DFL-operation. 

Under the mentioned condition, any computation of a DR-automaton is finite 
and proceeds in certain cycles: by a cycle we mean the (part of a) computation 
starting in an initial configuration and finishing in another initial configuration or 
in a halting configuration while not entering an initial configuration in between. 
The cycle finishing in a halting configuration is a halting (accepting or rejecting) 
cycle. 

We write u => MV to denote the fact that there exists a cycle of M starting in 
the initial configuration with the word u and finishing in the initial configuration 
with the word v\ the relation => *M is then the reflexive and transitive closure of 
=> M (u => *Mv means (\,q0,$u$) h *M(\,qo,$v$)). 

The next two obvious claims express the basic properties of the relation => *M. 

Claim 2.2. (The error preserving property (for all D.R-automata)) Let M be a 

DR-automaton, and u => *Mv for some words u, v. If u $. L(M), then v $ L(M). 

Claim 2.3. (The correctness preserving property (for dei-LJjR-automata)) Let M 
be a deterministic DR-automaton and u => *Mv for some words u, v. If u G L(M), 
then v G L(M). 

Definition 2.4. (DIt-automaton with bounded deleting) A DR-automaton M is 
a DR-automaton with bounded deleting ( DCR -automaton) if there is a constant c 
such that at most c items of the working list are deleted in any cycle of M. 

In the proofs it is often useful to assume a L)I?-automaton M in the weak cyclic 
form - i.e. any word of L(M) longer than k is not accepted by a one-cycle compu
tation (there is one restart at least). The assumption is justified by the following 
claim (for proof see [4]). 

Claim 2.5. For any DR-automaton M, with lookahead k, there exists a DR-
automaton M', with some lookahead n, n > k, such that M' is in the weak cyclic 
form and L(M) = L(M'). 

We want to recall a definition of restarting automata as a special case of DR-
automata. For this aim, it is technically convenient to consider the following inno
cent generalization of the basic definition: the form of instructions is generalized 
to 

(q,au) —> (qf,uj) or (q,au) —>> UJ,RST 

where a; is a sequence of at most \aw\ (occurrences of) operation symbols MVR 
and DEL. Besides the state change it prescribes a sequence of moving right and 
deleting to be performed (and finished by restarting in the second case). 

This can be easily simulated by the original Di?-automaton. Nevertheless it en
ables the following definition of the restarting automaton, R -automaton for short, 
which was introduced in [3]: just put the restriction that u does not contain DEL 
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in the instructions (q,au) -> (q1,to), and it does contain DEL in the instructions 
(q,au) —> UJ, RST. 

The weak cyclic form claim (2.5) holds for R -automata as well (cf. [4]). In
specting the proof of this claim we can see that its construction preserves both 
determinism and bounded deleting. 

For brevity, we introduce the following notation. DR denotes the class of all 
(nondeterministic) deleting automata with a restart operation. DCR denotes the 
class of all .DJR-automat a with bounded deleting. Prefix det~ denotes the determin
istic version. For any class A of automata, C(A) denotes the class of languages 
recognizable by automata from A, and an A-language is a language from C(A). 
CFL denotes the class of context-free languages, DCFL the class of deterministic 
context-free languages. 

3. L, CFL and £(R) 
In this section we illustrate a relation of L to CFLand one subclass of DR-
languages, namely C(R). Context-free grammars have a property that could by 
considered as a complement to bounded deleting. This property could be called 
'bounded inserting1 or 'bounded pumping1 and it has a close connection to pumping 
lemma. Therefore, the relation of L to context-free languages is discussed, too. 

Most of up to date studied subclasses of DR- automat a feature bounded deleting. 
There are nondeteriministic automata from these subclasses that recognize L in 
contrast to their deterministic versions. This is also a reason why determinism was 
viewed as a key feature that disables recognition of L. In section 4 we will see that 
this is not the case. We have to add some other restriction to determinism, namely 
bounded deleting. 

In this section we prove the statements bellow. 

Le CFL 

LeC(R) 

Assertions that L $ C(det — mon — R) = DCFL, L G C(mon — R) are direct 
consequences of statements above or could be proved in the same way. For definition 
of monotonicity (abbreviation mon) and its basic properties see [4]. 

3.1. L e CFL 
It is easy to see that L G CFL. Let us consider a grammar with the following rules: 

S -> aSb | aSbb | A 

Let the rule S —> aSb is applied just m-times and the rule S -* aSbb just n-times 
in the derivation of a word w. Then w = a

m + n b m + 2 n
 a n c l w G L. 

On the other hand, any word a m b m + n , where 0 < n < m can be derived from S 
using the rule S -> aSb (m — n)-times and the rule S —> aSbb n-times. 
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3.2. L e £(R) 
A nondeterministic It -automaton M that recognizes L is based on the same idea 
as a context-free grammar generating L. Such an automaton accepts words A, 
ab, abb, and aabb in one cycle. All other words of length less then 5 are rejected 
immediately. At least one cycle is executed on all words with a prefix from aa+bbb. 
The automaton moves along the prefix of symbols a until aabbb is scanned and 
reduces aabbb nondeterministically into either abb or ab. All other words of length 
at least 5 are rejected in one cycle. 

It remains to check that M recognizes L. It is easy to see that all the words 
accepted in one cycle (A, ab, abb, and aabb) are just ail the words from L of the 
length less than 5. Any word a m b m , where m > 2 can be reduced by M to the 
word am~lbm~l which is from L. Any word ambm _ f n , where m > 2 and 1 < n < m 
can be reduced by M to a

m~lbm~l'¥n~'1 which is from L, too. 
The word w = ambn can be reduced into either am~lbn~l or am~lbn~2. If w $ L 

(i.e. m > n or 2 • m < n) then none of the shorter words is in L. Moreover, any 
word from aa+bbb+a{a, b}* contains a subword ba after any reduction executed by 
M so that it remains out of L. 

4. Determinism and bounded deleting 
We prove that L cannot be recognized by any deterministic I7I?-automaton with 
bounded deleting but if one of these features is omitted then there is an automaton 
that recognizes L: 

L є £(DCR) 

L & £(det-DcR) 

L Є £(det-DR) 

4.1 . L e £( DCR ) 
We know that L ~ £(R). Any It -automaton removes items from the working list 
within a single i?5Toperation in one cycle. Therefore a number of deleted items 
in each cycle is limited by k + 1, where k is a size of its lookahead. It implies that 
£(R) C £(DCR). 

4.2. L g £(det-DcR ) 
Before we start to prove the statement from the title of this section we will introduce 
three notions those will help us in the rest of this section. These notions are a loop, 
a deleting loop, and a full-scan form. A loop is a part of computation that starts 
and ends in the same state and with the same scanned symbols. A loop length is 
a number of operations executed in the course of a loop. A deleting loop is a loop 
during which at least one DEL operation is executed. A DR-automaton is in the 
full-scan form if it restarts only when the right sentinel is scanned by its head. 
For any DI?-automaton an equivalent DI?-automaton in the full-scan form can be 
constructed. The construction is the following: Add a special new state qRST and 
substitute the execution of RST operation with transition into this new state. In 
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this state an automaton is allowed only to move to the right and restart when the 
right sentinel is scanned by its head. 

Let us turn our attention to the proof of the statement L $ C(det-DCR). We will 
suppose that M is det-DcR -automaton recognizing the language L with s states 
and the lookahead size k and that M is in the full-scan as well as the weak cyclic 
form. We will show that this assumption leads to a contradiction. 

We study a behavior of M on words from I?, C a*b* such that M executes at least 
one loop on symbols a and one loop on symbols b during a cycle on any word from 
It. This is sufficient due to the fact that we can construct a det-DR-automaton 
equivalent to M which behaves exactly like M on words from It, accepts in one 
cycle all the words from L f\ R (which is a finite set), and rejects in one cycle 
all other words (they constitute a regular set). So, there is a det-DR-automaton 
accepting all the words from Lf) R and rejecting all the words from It \ L iff there 
is a de^-D.R-automaton recognizing L. 

On any word w with the number of both symbols a and b greater than s -f k -f 1 
the computation of M on w has the following course: 

• M starts on w and executes a loopless computation on a prefix of A\ symbols a. 
During this loopless computation there remain x\ symbols a in the working list. 

• The loopless computation on symbols a ends by entering the loop. (Otherwise, 
M is not in the full-scan form.) This loop is not a deleting one, because of the 
bounded deleting. The length of this loop is ta. 

• M leaves the loop when the first b is scanned. M cannot leave the loop earlier 
because of determinism. Depending on the state in the moment when the first 
b is scanned the first time (let's suppose that this state is qa) M makes two 
decisions: 

1. How many out of k scanned symbols a it will delete? 

2. How it will continue the computation on symbols b? 

The state qa can be derived from A2 - the number of steps executed by M 
between following two configurations: 

o the last configuration in which M is in the first state of the loop and only 
symbols a are in the lookahead and 

o the first configuration in which first b appears in the lookahead. 
Therefore, a number of symbols out of last k symbols a that remain in the 
working list is a function of A2. This number will be refered as x2(A2). 

• M continues by a loopless computation on symbols b of the length B\(A2) after 
which y\(A2) symbols b remains in the working list. 

• The loopless computation on symbols b ends by entering the loop. (Otherwise, 
M is not in the full-scan form.) This loop of length h(A2) deletes no b from the 
list. 

• M leaves the loop when the right sentinel is scanned. M cannot leave the loop 
earlier because of determinism. The number of steps executed in the course of 
the last unfinished loop is B2 and together with A2 it determines y2(A2,B2) -
the number of symbols that remain in the working list out of k last symbols b. 
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The cycle of M has the following form: 

aA1 + (£a-m+A2) + kbBl(A2) + (£b(A2).n+B2) + k _^ 

-^ axi + (£a-m+A2) + x2(A2)^yi(A2) + (£h(A2)-n+B2) + y2(A2>B2) 

where A2 £ {V . . . , * 0 } , B 2 € { 1 , . . . ,4 ( -4 2 )} . 

The description of the cycle for words with enough symbols a and b can be fur
ther simplified using the least common multiple of loop-lengths £a,£b(l),-" ,h(£a)-
When we put 

£ =LCM(£aJb(l),... Jb(£a)) 

R = fc + m a x ( A i , B i ( l ) , . . . ,J5i(4)) 

the cycle can be describe in the following way: 

a£m+R+Afo£n+R+B _^ a£m+x(A)j)£n+y(A,B) 

where x(A) <R + A, y(A,B) < R + B and A,B € { 1 , . . . ,£}. Values of A2 and 
H2 can be easily reconstructed from values of A and B. 

Equivalence (1) below expresses both error and correctness preserving properties. 

£-m + R + A< £-n + R + B <2-(£-m + R + A) 

t (1) 
£ - m + x(A) <£-n + y(A, B) < 2 • (£ • m + x(A)) 

Let us consider a special case of a cycle of automaton M when 

R + A = £-z 

R + B = £. z 

x(A) =£.z-Aa 

y(A,B)=£.z-Ab 

for some z and A a , A& > 0. Because both A and B ranges between 1 and £ it is 
obvious that there are values of these variables such that R + A and R + B are 
both the same multiples of i. After substitution into (1) and several steps we get 
a condition (2) for our special case. 

m <n <2 . m + z 

# (2) 
A & - A a , A 6 - 2 - A Q 

\-m<n<2-m + z-\— 

This condition holds for all m,n > 1. The last step eliminates m and n from 
inequalities in (2). We get the error and correctness preserving properties for our 
special case in the form of equations (3). 
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Д ь - A a = 0 = 
Ax Дo 

The only possible choice for A a and A;, is 

A a = A6 = 0 

Therefore, M executes no DFLoperation on all words from the infinite set 

(3) 

{« ťm+R+Aфn+R+A m, n > 1 and 1 < A < i and (R + A) = 0 mod Є}. 

This is a contradiction with the weak cyclic form of M. So, there is no det-DcR 
-automaton such that it recognizes the language L. 

4.3. L G C(det-DR) 
We construct a det- DR-automaton M that recognizes the language L. M works in 

the following way: 

® M executes a cycle 

a2-m+xlb2-n+Уl ^ am+x2Ъn+y2 (4) 

for all m,n > 1, £1,2/1 G {0,1}. Values of x2 and 1/2 are determined from 
values of x\ and Hi as stated in the following table: 

X\ 0 0 1 1 

î/1 0 1 0 1 

Ж2 0 - 1 0 0 

02 0 - 1 - 1 0 

• M accepts in one cycle words A, ab and rejects in one cycle all the words con
taining a subword ba, and words from a + , aa+b, b+, and abbb+. 

Now, we will verify that cycle (4) preserves both errorness and correctness of 
the word the automaton M reduces. In the same way as in the previous subsection 
4.2 the condition (5) expressing error and correctness preserving properties for the 
cycle (4) will be simplified obtaining an equivalent condition (6). 

2 • m + xi < 2 • n + yi < 2 • (2 • m + xi) 

m + x2< n + y2 < 2 - ( m + x 2 ) 

Xl^yi+m<n<2-m+2x'-yí 

2 ~ ~ 2 

t 
x2-y2+m<n<2-m + 2-x2-y2 

(5) 

(6) 
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Resulting condition (6) is equivalent to the following conjunction of two equa
tions (7). 

xi - î / i 
= X2 - 2/2 and 

2 • Xi - yl 

2-X2-У2 (7) 

Table 1 shows that M satisfies condition (7). Therefore, M fulfills correctness and 
error preserving properties on words from {ambn \ m,n > 2}. 

Xi 0 0 1 1 

2/1 0 1 0 1 

X2 0 - 1 0 0 

У2 0 - 1 - 1 0 

r^i 0 0 1 0 

X2 - У2 0 0 1 0 

\±*±pĽL\ 0 - 1 1 0 
2-X2-У2 0 - 1 1 0 

Table 1: Verification of correctness and error preserving properties. 

5. Conclusion 

We presented the separation of two properties of formal languages which are studied 
by means D R- automat a. In this separation the language L = {ambn | 0 < m < n < 
< 2 m} was used. Originaly, this language was considered as a candidate for the 
separation of classes recognized by deterministic and nondeterministic versions of 
D R- automat a. In this article we showed that L is recognized by det-jOI^-automaton 
but cannot be recognized by der-L>I?-automaton with bounded deleting that is 
introduced in this article. 
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