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Arithmetic progressions formed by pseudoprimes 

Andrzej Rotkiewicz 

Abstract: A composite number n is called a pseudoprime if 2n~~1 = 1 mod n. This pa­
per presents all that is known about arithmetic progressions formed by pseudoprimes or 
their generalizations. We include the proof of a new result on the existence of arithmetic 
progressions formed by Lehmer pseudoprimes. 

Key Words: Pseudoprime, Super pseudoprime, Prime pretender, Carmichael number, Fi­
bonacci pseudoprime, Lucas pseudoprime, Lehmer pseudoprime, Fibonacci sequence, Lucas 
number, Lehmer number 

Mathematics Subject Classification: primary 11A07; secondary 11B39. 

1. Historical remarks 

A composite number n is called a pseudoprime if 2 n ~ 1 = 1 mod n. Leibniz in 
September 1680 and December 1681 gave incorrect proof that the number 2n — 2 
is not divisible by n unless n is a prime [9], Vol. I, p. 23. 

I was informed by Prof. A. Schinzel that the first proof that there exist infinitely 
many pseudoprimes was given by J.H. Jeans in 1898 (see [16]). 

In his paper Jeans wrote: 
"The problem is to find n, not a prime, so that 

2n~l - 1 = 0 mod n. 

Writing f(p) for 22P + 1, n =- f(p) is clearly a solution if p is any integer such 
that f(p) is not prime; and 

n = f(p) • f(q) 

is another solution if / (p) , f(q) are both prime, and p<q< 2P: For 2f^~l - 1 = 0 
mod f(q) and 2^^~l - 1 = 0 mod /(p).» 

In the same paper Jeans wrote that Chinese mathematicians claimed 25 centuries 
ago that composite numbers such that 2 n ~ 1 - 1 = 0 mod n do not exist. 

This information is wrong (see Ribenboim [26] and Sierpiriski [46] Addendum 
and corrigendum insert in July, 1987). 
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Needham (see [24]) wrote that this arose from misunderstanding by Jeans what 
was only a statement of the fact that even numbers can be divided by 2 and that 
odd ones cannot. 

Let un denote the n-th term of the Fibonacci sequence 

1,1,2,0,5,8,1.3, . . . 

Let Uk (k > 0) be the first term of the Fibonacci sequence divisible by p. Then p 
is called a primitive prime factor of Uk and k = i9(p) is called the rank of apparition 
of p. By Carmichael theorem [4] every u n , n ^ 1, 2, 6,12, has at least one primitive 
prime factor p. 

A composite n is called a Fibonacci pseudoprime if un_/_\ — 0 mod n, where 

( - ) is the Jacobi symbol. 
The theorem that if p is any prime greater than 5, then the number u2p is 

Fibonacci pseudoprime is usually attributed to Duparc (1955) [10] or E. Lehrner 
(1964) [20]. 

We note here that in 1911 Niewiadomski [25] claimed that Fibonacci pseudo-
primes do not exist. 

In 1921 Kernbaum [17] proved that this is not true since 17 • 19, 13 • 29, 89 • 199, 
233 • 521, 53 • 109, 139 • 461 are Fibonacci pseudoprimes. 

He proved also that the number N = Ylni) where n; are different primes and 
i 

rank of apparition -d(ni) is k or 2k, where k is odd, is a Fibonacci pseudoprime. 
^Frorn the above it follows that U2P, where p is a prime > 5, is a Fibonacci 

pseudoprime. 
Indeed, if N = U2P = n ni t n e n f° r every i, d(ni) = p or 2p and by the theorem 

i 

of Kernbaum n2 p is a Fibonacci pseudoprime. 
Also if n = (2k + 1)10, where k > 1, then by a theorem of A. Schinzel [43], un 

has at least two primitive prime factors ni and n2. Then d(n\) = d(n2) — n = 2k, 
where k = (2k + 1)5 is odd and by the theorem of Kernbaum nin2 is a Fibonacci 
pseudoprime. 

In 1904, M. Cipolla [6] proved the following theorem: 
The number Fm • Fn • • • Fs, where Fi = 22 ' + 1 , m < n < . . . < s is a pseudoprime 

if and only if 2 m > s. It follows at once from this theorem that every number F m • 
• Fm+i, m = 2 , 3 , . . . is a pseudoprime. Cipolla's results remained long unnoticed 
by later writers on the subject. 

A composite n is called a pseudoprime to base a if a n _ 1 = 1 mod n. 
In 1965 K. Szymiczek [48] generalized Cipolla's theorem and proved the following 

theorem: 
Let a > 1, 2a | |a, a > 0, nx < n2 < . . . < ns then (a2"1 + l)(a2 n 2 +1) • • • (a2** +1) 

is a pseudoprime to base a if and only if a 2 n i > ns. 
A composite n is called a pseudoprime to the pair (a, b) if an~~l — bn~1 = 0 

mod n. The above definition was proposed by A. Makowski. 
K. Szymiczek [48] proved also the following theorem. 
Let 2a | |a, a > 0, 2A+1 | |b2 - 1, m < n2 < . . . < n s , A + nx / a - 2 n * . 



Arithmetic progression formed by pseudoprimes 63 

The number (oJ2ni + b2ni) _ , (a2
n* + b*n*) is pseudoprime to pair the (a, b) if and 

only if 
n8 < min(A + n i , a - 2 n i ) . 

If b = 1, we have A = oo and the condition is 

a - 2 n i >n8. 

In 1964 I proved [27] the following theorem. 
I fm < n 2 < . . . , n s , 2 n i >n8 then the number (2 F"i - l)(2F-2 - 1 ) . . . ( 2 F - - 1 ) 

is a pseudoprime. 
In 1947 W. Sierpihski [45] proved that there exist infinitely many pseudoprimes 

which are at the same time Mersenne numbers. The same result was published 
later by R. Steuerwald [47]. 

Any composite number q such that bq = b mod q is called a prime pretender to 
base 6 [7], [40]. 

Every pseudoprime to base b is a prime pretender to base b but not conversely. 
In the paper [40] I proved that for every b > 1 these exist infinitely many prime 

pretenders to base b which are not pseudoprimes to base b. 
Until 1950 only odd prime pretenders to base 2 were known. 
D.H. Lehmer (see Erdos [13]) found the first even prime pretender: 161038 = 2 • 

• 73 • 1103 to base 2. In 1951 Beeger [3] showed the existence of infinitely many even 
prime pretenders to base 2. 

In my book [30] I put forward the following problems: 
Does there exist a prime pretender to base 2 of the form 2 n — 2? (problem #22) 

and: Do there exist infinitely many even prime pretenders which are the products 
of three primes? (problem #51) . 

In 1989 McDaniel [22] gave an example of an even prime pretender which is itself 
of the form 2n — 2 = 2(2P9 — 1) by showing that 2n — 2 is a prime pretender to 
base 2 if n = 465794 = 2 • 74 • 97, p = 37, and q = 12589. He believed, but has not 
shown, that n = 465794 is the smallest integer such that 2 n — 2 is an even prime 
pretender to base 2. 

In the paper [37] we found 24 even prime pretenders to base 2 with 3,4,5,6,7 
and 8 prime factors. 

The problem: Do there exist infinitely many, or at least one, arithmetic progres­
sions formed by three even prime pretenders to base 2? 
is still open. 

It is easy to see that if [1 ,2 , . . . , k] \ a - 1 where [1 ,2 , . . . , k] denotes the least 
common multiple of the integers 1,2,. . . , k then the numbers 2 • a, 3 • a , . . . , k • a 
form an arithmetic progression formed by (k — 1) prime pretenders to base a but 
we do not know whether there exist infinitely many such progressions. 

In 1963 W. Sierpihski raised the question whether there exist infinitely many 
arithmetic progressions consisting of three pseudoprimes. 

It is known that there exist infinitely many arithmetic progressions consisting of 
three prime numbers. This was proved by Van der Corput in 1939 [50] and again 
by Chowla [5] in 1944. The proof of this fact however, is difficult and we do not 
know whether there exist infinitely many arithmetic progressions consisting of four 
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prime numbers. To date the best result was obtained by Heath-Brown [15], who 
showed in 1981 that there exist infinitely many arithmetic progressions consisting 
of four numbers, of which three are primes and the other is a prime, or the product 
of two, not necessarily distinct, prime factors. 

In 1964 [28] I proved that there exist infinitely many arithmetic progressions 
formed of three pseudoprimes. One of such progressions is the progression 

Another is given by 
226 -I- 1 2^ 

5 ' 15 ' 3 

There exist 690 arithmetic progressions below 108 consisting of three different odd 
pseudoprimes. 

The arithmetic progression which is formed from the least three odd pseudo-
primes is the progression 

561 = 3 • 11 • 17, 2645 = 5-17-29 , 4369 = 17 • 257. 

Later [30], [32] I proved that there exist infinitely many arithmetic progressions 
formed of four pseudoprimes. 

One of such progression is given by 

2i09 _ 1 ; (2i09 _ ^ _ _ _ _ _ ; (2i09 _ j) ( H l ! _ l l ) and (2109 - l ) (273 - l) . 

Below 108 there exist 23 arithmetic progressions consisting of four pseudoprimes 
[22]. The arithmetic progression which is formed from the least four pseudoprimes 
is the progression: 

1729, 63973, 126217, 188461. 

In [32] the third number was given with a misprint, as noticed by A. M§,kowski. 
There exist only two arithmetic progressions below 108 consisting of five odd 

pseudoprimes. These are 

1) 172081, 28554V 399001, 512461, 625921, 

2) 172081, 512461, 852841, 1193221, 1533601. 

The problem #28 of my book [30]: 
Does there exist an infinity of arithmetic progressions consisting of five pseudo-

primes? 
is still open. 

A composite number n is called super pseudoprime if each divisor d of n satisfies 
the congruence 2d~~1 = 1 mod d. An example for super pseudoprime n is 2047. 
Szymiczek proved that the number F n F n + i , where F n = 22n + 1, n > 1 is super-
pseudoprime (Szymiczek [49]). It is not known if there exist infinitely many super 
pseudoprimes of the form F n F n + i F n + 2 (Szymiczek [49]). It is easy to prove that 
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If p > 3 and 2p — 1 are primes and the numbers 

2 2 p - x ± 1 2 2 ? ~ 1 2 p _! 
3 ' 3 ' 

are composite then these numbers form an arithmetic progression of three super 
pseudoprimes. 

The problem of K. Szymiczek (problem 31 [30]): 
Do there exist infinitely many arithmetic progressions formed by three super 

pseudoprime numbers? 
is still open. 

2. Arithmetic progressions formed by three pseudoprimes to base a 

There exist infinitely many arithmetic progressions consisting of three diffrent pseu­
doprimes to base 3 [30]. 

A prime factor of an - bn is called primitive if p \ an - bn and p \ ax - bx for 
0 < x < n. If a > b > 1, (a, b) = 1, n > 6 then every number an - bn by theorem 
of Zsigmondy [52] has a primitive prime factor. I proved [30] pp. 118-121 that if 
Mp = 2P - 1 \ a - 1, 2 | a, M p is a prime number, 2n > n -F p, q is a primitive 
prime factor of the number aMP2n+P - 1 then the numbers 

aMp2n +_1 a2n+P - 1 a M ^ n - 1 

are pseudoprimes for base a and form an arithmetic progression. 
^From this theorem it follows that for every even a < 2 6 9 7 2 5 9 3 - 1 there exist 

infinitely many arithmetic progressions consisting of three different pseudoprimes 
for the base a. The number 26 9 7 2 5 9 3 - 1 is the 3 8 t h Mersenne prime and has more 
than two million digits. 

An odd composite n is called Euler pseudoprime to base a [2], [19], [21], if 

• ( ; ) 
mod n 

where (~) is the Jacobi symbol. 
In 1980 [33] I proved the following theorem 
For every odd a > 3 the numbers 

q«2 ( 2 a ) n + 1 q ^ ( 2 Q ) n ^ ( 2 a ) n - l q°2 ( 2 Q ) n - 1 

o«(2fl)n + 1 ' a2«{2a)n - 1 ' a«{2a)n - 1 

for n = 1,2,.. . are Euler pseudoprimes to the base a and form an arithmetic 
progression. 
Problem: Does there exist for every even a an infinity of arithmetic progressions 
consisting of three pseudoprimes to the base a? 
is still open. 
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3. Arithmetic progressions formed by Carmichael numbers 

A composite n is called a Carmichael number if an = a mod n for every integer 
a > 1. The smallest Carmichael number is 561 = 3 • 11 • 17. By Korselt's criterion 
[18], n is a Carmichael number if and only if n is squarefree and p — 1 divides n — 1 
for all primes dividing n. 

In 1994 Alford, Granville and Pomerance [1] proved that there exist infinitely 
many Carmichael numbers and that there are more than x2!7 Carmichael numbers 
up to x, for sufficiently large x. 

It is easy to see [30] that if n = 1 mod 12 and the numbers 6n + 1, 12n + 
+ 1, 18n + 1, 36n + 1, 72n + 1, 108n + 1, 144?i + 1 are prime then the numbers 
a i = N = (6n + l)(12n + l)(18n + 1), a2 = N(36n + 1), a3 = N(72n + 1), a4 = 
= N(108n + 1), a5 = jY(144n + 1) form an arithmetic progression consisting of 5 
Carmichael numbers. 

For n = 1 mod 6 the first four numbers form an arithmetic progression consist­
ing of four Carmichael numbers. 

For n = 1 we get the following arithmetic progression a\ = 7 • 13 • 19 = 1729, 
a2 = 7-13-19-37= 63973, a3 = 7 1 3 1 9 - 7 3 = 126217, a4 = 7 1 3 1 9 1 0 9 = 188461. 

Below 108 there exist only 17 arithmetic progressions consisting of three Carmi­
chael numbers. 

4. Arithmetic progressions formed by Fibonacci pseudoprimes 

Let un = an
aZf , where a = (1 + \ /5)/2 and /? = (1 - \ /5) /2 , denote the n t h 

Fibonacci number. 
A composite n is called a Fibonacci pseudoprime if 

^n_tA( = 0 m ° d n, 

where (~) is the Jacobi symbol. 
The smallest Fibonacci pseudoprimes are 323 = 17 • 19 and 377 = 13 • 29; indeed 

(323) ~ (377) ~ "~ * anc* ^ m a y ^ e calculated that U324 = 0 mod 323 and u37s = 0 
mod 377. 

In 1994 [36] I found the following three Fibonacci pseudoprimes which form an 
arithmetic progression 

a73 - B73 

u73 = -=£-— = 9375829 • 86020717, 
N/5 

a7 4 - /J74 

u74 = T±— = 73 • 149 • 2221 • 54018521, 
\ /5 

v73 = a 7 3 + (373 = 151549 • 11899937029. 
The difference of the above progression is the Fibonacci number u72. 

In the paper [38] I proved that there exist infinitely many arithmetic progressions 
formed by three distinct Fibonacci pseudoprimes. 
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5. Arithmetic progressions formed by Lucas pseudoprimes 

Let D, P, Q be integers such that D = P2 - AQ 7- 0, z2 - Pz + Q = (z - a)(z - /?), 
I j - _____ 
Un a-0 ' 

A composite number n is a Lucas pseudoprime with parameters P and Q if 

Un__/__\ = 0 mod n 

where (~) denotes the Jacobi symbol. 
Let k denote the square-free kernel of k, that is k divided by its greatest square 

factor. 
The following theorem holds [39]: 
If D = P 2 _ - 4Q > 0, D = 1 mod 4, (P, Q) = 1, p > 3 and 2p - 1 are primes 

of the form Dtp(D)x + 1, (p(2p - 1),PQD) = 1, ip is the Euler function, then 
there exist infinitely many arithmetic progressions formed by three different Lucas 
pseudoprimes with parametrs P and Q which are given by the formula 

a(2p-l)pm
 + p(2p-l)pm

 a 2 p m + 1 _ /J2pm + 1
 a ( 2 p ~ l ) p m _ j3(2p-l)pm 

ap
m 4. /^J>m ' a 2 p - _ £ 2 p " ' a p - _ pp~ 

for m — 1,2,.. . ,. 
;.From the above theorem we get the following corollary: 
Let a and b be natural numbers, (a, b) = 1, a > b. If p > 3 and (2p — 1) are 

primes (p(2p — 1), (a2 — b2)ab) = 1 then the numbers 

a ( 2 p - l ) p m
 + & ( 2 p - l ) p m

 a 2 p m + 1 _ b2pm 

apm + ftpm J a 2 p - _ fc2p~ ' a p - _ fcp~ 

are pseudoprimes for the pair (a, b) and form an arithmetic progression. 
For b = 1 I proved the above Corollary in my book [30]. 

6. Arithmetic progressions formed by Lehmer pseudoprimes 

The Lehmer numbers are defined as follows 

P(a 8- n) = I (Q" " Pn)/(a ~ /3) ^nisodd' 
{Ot,P, Tl) j ^ n _ 0ny^a2 _ 02) ifniseven 

where a and 0 are distinct roots of trinomial f(z) = z2 — \[Lz + M, its discriminant 
is K = L — AM, L > 0 and M are rational integers. 

We can assume without any essential loss of generality that (L, M) = 1 and 
M # 0 . 

A composite number n is called Lehmer pseudoprime with parameters L and M 
if 

p(a,0;(n-(KL/n)))=O mod n, 

where (KL/n) is the Jacobi symbol [31], [31], [35]. 
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By theorem T of my paper [35] the following theorem holds 
If a/(3 is not a root of unity (i.e. (L,M) / (1,1), (2,1), (3,1)) then every 

arithmetic progression ax -f b, where (a, b) = 1 contains an infinite number of 
Lehmer pseudoprimes with parameters L and M. 

For each positive n we denote by <fi(a,0;n) the nth homogeneous cyclotomic 
polynomial 

0(a,/3;n) = Y[(a - QP) = flV " PdT(n/a\ 

where ( n is a primitive nth root of unity and the product is over the <p(n) integers 
n with 1 < m < n and (m,n) = 1, ji is the Mobius function. 

A prime factor p of P(a,j3;n) is called a primitive prime factor of P(a,0;n) if 
p | P(a, 0; n) but p \ KLP(a, 0; 3 ) . . . P(a, 0; n - 1). 

The following results are well known. 

Lemma 1 (Lehmer [21]). Let n ^ 29, 3 • 29. Denote by r — r(n) the largest prime 
factor of n. If r \ 4>(a,0;n) then every prime p dividing <f>(a,0;n) is a primitive 
prime divisor of P(a, 0; n). 

Every primitive divisorp of P(a,/3;n) is = (KL/n) mod n. If r\(j)(a,0;n), n ^ 
^ rl, n ^ 2r*, r£\\n, e > 0. then r\\(j>(a,0;ne) and r is a primitive prime divisor 
of P(a,0;n/rE). If n = rl or n = 2rl then r\cj)(a,0;n) if and only if r\K or r\L 
respectively. If r | (p(a, 0;n) then r\\(p(a, 0;n). 

For n > 12 and K > 0 the number P(a,f3;n) has a primitive prime divisor 
fDurst [12], Ward [51]J. 

If K < 0 and (3/a is not a root of unity, then P(a, 0; n) has a primitive prime 
divisor for n > no(a,0). Here no(a,0) can be effectively computed fSchinzel [42]/ 
We have \<p(a,0;n)\ > 1 for n > no-

Lemma 2 (Rotkiewicz [31], Lemma 5). Let ip(a) = 2a2 Yl(p2 - 1), where p runs 
p\a 

over the prime factor of the positive integer a. If q is a prime such that q2\\n and 
a is a natural number with ip(a) \ q — 1, then 

<f)(a,0;n) = 1 mod a. 

In 1958 A. Schinzel [44] formulated the following Hypothesis H. Let k be a natural 
number and let fi(x),... , fk(x) be irreducible polynomial with integral coefficients 
and positive leading coefficient. 

Then if there is no natural number > 1 which is a divisor of the product 
fi(x)... fk(x) for every integer x, then there exist infinitely many natural values 
of x for which each of the numbers f\(x), $2(x),... ,fk(x) is prime. 

In 1904 Dickson [8] formulated the above conjecture for linear polynomials and 
this conjecture is called Dickson's conjecture D. 

^From Dickson's conjecture it follows the following corollary. Let n > 1, let d 
be a multiple of all primes p < n. Then there exist infinitely many arithmetic 
progressions, with difference d, each consisting of n consecutive primes (Schinzel 
and Sierpiiiski [44]). 
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In 1969 I proved [29] that from Dickson's conjecture it follows that there exist in­
finitely many arbitrarily long arithmetic progressions whose terms are pseudoprime 
numbers and in 1964 I proved that the same is true for Lehmer's pseudoprimes. 

In 1972 I proposed [30] (problem #29) whether it follows from Hypothesis H of 
A. Schinzel that there exist arbitrarily long arithmetic progressions of Carmichael 
numbers. 

Granville [14] proved the following theorem: Dickson conjecture D implies that 
there are arbitrarily long arithmetic progressions of Carmichael numbers. 

In the joint paper [41] with A. Schinzel we proved the following theorem 
Given integers P,Q with D = P2 - 4Q ^ 0,-~2Q,-3Q and e = ± 1 , every 

arithmetic progression ax+b, where (a, b) = 1 which contains an odd integer no with 
(D/no) = € contains infinitely many strong Lucas pseudoprimes n with parameters 
P and Q such that (D/n) = e. The number N(x) of such strong pseudoprimes not 
exceeding x satisfies 

N(x)>c(P,Q,a,b,e)T^X~, 
log log X 

where c(P,Q,a,b,e) is a positive constant depending on P,Q,a,b,e. This theorem 
gives an affirmative answer to a question of C . Pomerance: Given integers P, Q 
with D = P2 — 4Q not a square, do there exist infinitely many, or at least one, 
Lucas pseudoprimes n with parameters P and Q satisfying (D/n) = — 1? 

Here we shall prove the following 

Theorem. If a,f3 defined above are different from zero and a/'/? is not a root of 
unity (i.e. (L,M) 7- (1,1), (2,1), (3,1)), e = ± 1 , then from Dickson's conjecture 
D it follows that every arithmetic progression ax -f b, where (a,b) = 1, which 
contains an odd integer no with (KL/no) = e, contains infinitely many arithmetic 
progressions formed by k different Lehmer pseudoprimes ni with parameters L, M 
such that (KL/ni) = e. 

Proof. Let a > 2 and let b, b-f a , . . . , b-f (k — l)a be k prime numbers in arithmetic 
progression, then by theorem of M. Cantor (1861) quoted in [8], Vol. I, p. 425 
either the difference a is divisible by every prime < k, or b = k and the difference 
a is divisible by every prime < k. So we can assume without any essential loss of 
generality that a is divisible by every prime < k. 

We may suppose without loss of generality that b is odd and 4KL \ a. 
Since arithmetic progression ax -f b, where (a, b) = 1 contains an odd integer no 

with (KL/no) = e, we can assume that 

b = n0 mod 4KL and (KL/no) — s. 

k 

Let c = [ ] ((* - ! ) a + 1) a n d .PijP2, • • • ,Pk+s be odd primes such that 
2 = 1 

(piP2"-Pk+$AacKL) = 1 

and a be a prime number such that 

i/j(ac2p1p2...pk^) \q~~l. 
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By the Chinese Remainder Theorem exists a natural number m such that 

m = e + cq mod c 2PiP 2 . . .p2
k+5q

3, 

m = h mod a. 

Since (OLC2P\P\ . . . p | + 5 g 3 , m ) = 1 by Dirichiet's theorem there exist infinitely 
many primes p of the form ac2p\p^ .. . p2

k+bq
3x + m. 

Let Ai = ((i - l )a + l)(p - e) + e. We have Az(x) = 6 mod a. 
Suppose that there exists a natural number d > 1 such that 

k k 

Kd\N(x) = J | Ai(x) = J I [((» - l)a + 1)(p - e) + e] • 
7 = 1 t = l 

WehaveIV(x) = f\ [ ( ( z - l ) a + l ) ( a c 2 p 2 p 2 . . .p 2
+ 5 g 3 x + m - £ ) + e ] = fl f ( ( t - l ) a + 

i=iL - »=i -

+ l)ac2p2p2 . ..p2
k+5q

3x + ((* - l)a + l ) (m - e) + e ] . 

We have (((t - l)a + l)ac2p2p^ .. .p^+ 5g 3 , ((t - l )a + l ) (m - e) + e) = 1. Then 

there exists also p > 2 such that IV(x) = o mod p. Since Yl P I a^ (Pi7
a) = 1 . 

(Pt,c) = 1, (pi,g) = 1 we have p > k. 
Thus IV(x) is a polynomial of degree k with the leading coefficient not divisible 

by p. 
By Lagrange's theorem the congruence 

N(x) = 0 mod p 

has at most k roots. Since p > k there exists a natural number x such that IV(x) ^ 0 
mod p. Thus the polynomials Aj(x) satisfy the conditions of Dickson's conjecture 
D and there exist infinitely many integers x for which each of the number Ai(x) 
is a prime number. Let x be one of these numbers and put Ai(x) = Ai for i = 
= 1,2,. . . ,k. We have Ai(x) = p. 

Now our considerations rest on the fact that by Lemma 1 at most one of the 

numbers m; = 0 (a, /?; E:z£) (i = 1,2,. . . , k + 5) is divisible by p and at most one 

of them is divisible by the highest prime factor of p - e (for the proof see [34], [35]). 
Also by Lemma 1 at most one of the numbers m^ is divisible by Aj. Thus 

without loss of generality one can assume that neither mi = (j) la, /?; ^ ^ J nor m2 = 

= (j) (a,f3; ^ M nor m 3 = 0 fa,/3; ^ J is divisible by p or r or Ai(i = 1,2,.. . ,k). 
Thus without loss of generality one can assume that the numbers mi and m2 

have the same sign, hence mim 2 > 0. By Lemma 1 we can assume that 

a,ß; — > 1 for i = 1,2. 



Arithmetic progressions formed by pseudoprimes 71 

Now we shall prove that the numbers 

n\=A\<i>(a,0;?^\cp(a,0;P 

Pl / V Ў2 

a,ß;^—^]ф(a,ß;P 

P\ J \ P2 

nk = Ak<j> (a J; ^—- ) <t> (a J; V—^ 
\ P\ J \ P2 

form an arithmetic progression of Lehmer pseudoprimes with parameters L and M, 

when each of the numbers n, = Ai0 fa,/?; -~~ J 0 (a,/3; ^ J (i = 1,2, . . . ,ifc) is 

= b mod a with (KL/ui) = e. 

Since m\m2 > 0 we have 

mim 2 = (KL/m\m2) mod (p - e)/p\p2. 

Certainly q2\\(p — z)/p\P2 and ?/>(a) | q — 1. By Lemma 2 we have m; = 1 mod a 
for i — 1,2, hence 

m\m2 = 1 mod a. 

Since 4KL | a, we obtain m\m2 = 1 mod 4I&TL, hence (KL/m\m2) = 1 and 

mim 2 E 1 mod (p - e)/p\p2. 

Since ip(p\P2) | g — 1, q2||(p - e)/p\p2, by Lemma 2 we have m* = 1 mod piP2-
But P1P2IIP ~ £> hence 

m\m2 = 1 mod (p — e). 

The requirement on g that t/j(c2) | g — 1 by Lemma 2 implies m\m2 = 1 mod c2. 
Since p - e = cq mod c2 we have ^ ^ = g mod c. Thus m\m2 = 1 mod (p - <s)c, 
hence 

mim 2 = 1 mod ((i - l )a + l)(p - e). 

But Ai = e mod ( ( i - l ) a + l ) ( p - e ) . Since (AU4> ( ^ ) 0 ( ^ ) ) = 1 we have 

ni = Aim\m2 | P (a, /?; (p - e)((i - l )a + l ) jp (a , /3 ;n i - (KL/m)) , 

where (KL/m) = (KL/Aim\m2) = (KL/Ai)(KL/m\m2) = e • 1 = e. 
Since Aj = b mod a, mim 2 E 1 mod a we have m = b mod a. So each number 

Aim\m2 is a Lehmer pseudoprime with parameters L, Af and the numbers Aim\m2 

form an arithmetic progression with the common difference (Ai+\ - Ai)m\m2 = 
= a(p — e)m\m2. 

This completes the proof of our Theorem. 
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