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On Lucas pseudoprimes of the form ax2 -f hxy 4- cy2 in 
arithmetic progression AX 4- B with a prescribed value 
of the Jacobi symbol 

A. Rotkiewicz 

Abstract. For an integer n ^ 0 , let n denote the square-free kernel of n. Let 
ax2 + bxy -r cy2 be an integral quadrat ic primitive indefinite form with odd 
fundamental discriminant d = b2 — 4ac and belonging to the principal genus. 

Let all prime factors of d > 0 be of the form 4k + 1. Let be given integers 
P,Q with D = P 2 - 4 Q , <P ,Q) -_ <1,1), (D , d ) = 1 and let 2 \ a~0 = Q. 

If e = ± 1 , every ari thmetic progression AX + B, where (A,B) — 1, 4 D | A, 
(A,dap) = 1 which contains an odd integer no with (D/no) = e, contains 
infinitely many Lucas pseudoprimes n with parameters P and Q of the form 
ax2 4- bxy + cy2 such that ( D / n ) = e. 

Odd composite numbers n for which a n _ 1 _E l ( m o d n ) are called pseudoprimes 

to base a. 

In the present paper I combine the arguments of [14] and [16] to prove a result 

on pseudoprimes, which does not follow from the theorems of either paper. 

Let P, Q be rational integers D = P 2 — AQ and 

U0 = 0, Ui = 1, Un = Pc!-n_i - QUn-2 (for n > 2), 

V0 = 2, V! = P, Vn = P V n _ ! - Q F n _ 2 (for n > 2). 

A composite number n is called a Lucas pseudoprime with parameters P and 

Q if (n, 2QD ) = 1 and 

(1) Un-{D/n) = 0 ( m o d n ) , 

where (D/n) is the Jacobi symbol. 
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A composite number n is called a strong Lucas pseudoprime with parameters 
P and Q if (n,2QD) = 1, n - (D/n) = 2 s r , r o d d and 

(2) either Ur = O(modn) or V2<r = 0 ( m o d n ) 

for some t, 0 < !; < s. 
Efficient primality tests are very important from point of view of cryptography, 

hence results on pseudoprimes are interesting not only from theoretical but also 
from practical point of view. 

Several previous theorems assert the existence of infinitely many Lucas pseu
doprimes [2], [7], 

Most of the Lucas pseudoprimes exhibited in proofs of their existence have 
Jacobi symbol equal to + 1 [7]. 

My construction of Lucas pseudoprimes of the form ax2 + bxy + cy2 [14] provides 
pseudoprimes with the Jacobi symbol equal to 1. 

In a letter to the present writer C. Pomerance asked whether there are infinitely 
many Lucas pseudoprimes to any trinomial x2 — Px + Q, where D = P2 — 4Q is 
not a square with Jacobi symbol equal to - 1 (see also Crandall and Pomerance [4], 
p. 138). 

In [14] we give an affirmative answer to this question with the theorem: 
Given integers P, Q with D = P2 - AQ -4 0, - Q , -2Q, -3Q and e = ± 1 , 

every arithmetic progression ax + b, where (a, b) = 1 which contains an odd integer 
no with (D/n0) = e contains infinitely many strong Lucas pseudoprimes n with 
parameters P and Q such t h a t (D/n) = e. The number N(X) of such strong 
pseudoprimes not exceeding X satisfies 

l o g x 
Ar(.Y) > c(P,Q,a,b,e)-

a, b,e) is a 
We have 

log log X ' 

where c(P, Q,a,b,e) is a positive constant depending on P, ( 

an - вn 

U(a,ß;n) = 
•0 ' 

where a. and p are distinct roots of the trinomial f(z) = z2 - Pz + Q. 

For an integer n / 0, let n denote the square-free kernel of n tha t is n divided 
by its greatest square factor. 

Here we shall prove the following 

Theorem . Let ax2 + bxy + cy2 be an integral quadratic primitive indefinite form with 
odd fundamental discriminant d = b2 — 4ac and belonging to the principal genus. 

Let all prime factors of d > 0 be of the form 4k + 1. 
Let be given integers_P,Q with D = P2 - 4Q, (P,Q) = 1, (P,Q) ^ (1,1) , 

(D,d) = 1. Let2\ap = Q. 

If £ = ± 1 , every arithmetic progression AX + B, where (A,B) = 1, 4D J A, 
(A,da(3) = 1 which contains an odd integer UQ with (D/UQ) = e, contains infinitely 
many Lucas pseudoprimes n with parameters P and Q of the form ax2 + bxy + cy2 

such that (D/n) = e. 
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For each positive n we denote by (f)(a,/3;n) the n th cyclotomic polynomial 

n ("-ĉ nv-̂ )"'""'. 
(m,n) = l d\n 

where (n is a primitive n th root of unity and the product is over ip(n) integers m 
with 1 < m < n and (m,n) = 1, \x and <p are the Mobius and Euler functions, 
respectively. 

We say that a prime p is a primitive prime factor of the number U(a,j3;n) if 
p divides U(a, /?; n) but does not divide U(a, /?; 1 ) . . . U(a, {3; n - 1). 

In the proof of our theorem we shall use the following Lemmas. 

Lemma 1. 

a) (Lehmer [8]) Let n ^ 29, 3 • 29. Denote by r = r(n) the largest prime factor 
of n. If r \ (f)(a,0;n) then every prime p dividing (f>(a,/3;n) is a primitive 
prime divisor of U(a,/3;n). 

Every primitive prime divisor p of U(a,/3;n) is = ( D / n ) ( m o d n ) . If 
n ^ rl, 2rl, r \ (f>(a,P;n) and rl\\n (which is to say rl \ n but rl+l \ n), r is 
a primitive prime divisor of U (a,/3; ^f) and r\\(f>(a,0;n). 

b) (Durst [6], Ward [20]) The number U(a,/3;n) for n > 12, D > 0 has a 
primitive divisor and (f>(a,{3;n) > n for n > 12. 

c) (Schinzel [18], Stewart [19]) If D < 0, (P,Q) = 1, (P,Q) # (1,1) , then 
U(a,/3;n) has a primitive prime divisor for n > no and \<f>(a,/3;n)\ > n for 
n > n 0 . 

Remark. Very recently Bilu, Hanrot and Voutier [3] proved the same statement 
with the possible no = 30. 

Lemma 2 (Schinzel [17]). Let n > 1 be square-free and let m be divisor of n such 
that ^ is odd. Then there exist symmetric polynomials Rn>m(a,(3) and Sn,m{a,P) 
with integral coefficients such that 

(3) 4>(a,(3;n) = Rn,m(a,/3) - ( ~ ) ma/3Slm(a,/3)(m odd) 

(4) <f>(a,P; 2n) = <f>(a, -0;n) = Rn>T7>, -0) + ( ~ ) m a / 5 5 n , m ( a , -0)(m odd) 

Lemma 3 (Theorem of Meyer [9], see Dickson [5], p. 418, Narkiewicz [10], p. 72, 
Bachmann [1], pp. 272-307). Among the primes represented by the irreducible prim
itive, positive or indefinite quadratic form ax2 + bxy + cy2, infinitely many are rep-
resentable by any given linear form Mn + N with M, N relatively prime, provided 
a, b, c, M, N are such that the linear and quadratic form can represent the same 
number. 
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Lemma 4 (Rotkiewicz [11], Lemma 5). Lel; tp(a) = 2a2 n p i a (T 2 - 1)» where p runs 

over the prime factors of the positive integer a. If q is a prime such that q2\\n and 

a is a natural number with vj(a) | q — 1, then 

4>(a,/3;n) = l ( m o d a ) , 

where a, (3 are roots of the trinomial x2 - Px + Q and (P, Q) = 1. 

Lemma 5 ([14]). Let for a given discriminant d, X be the set of all generic charac
ters. If for some integer c and some primitive quadratic form f with discriminant 
d we have xif) — x(e) for a^ X £ X, then for every m prime to c the congruence 

f{x,y) — e (modm) , 

where f(x,y) = ax2 + bxy + cy2, is solvable. 

Proof of Theorem. By the assumptions of our Theorem we have AD \ A, B is odd 
and (D,d) = 1. 

Since arithmetic progression AX + B, where (A, B) = 1 contains an odd integer 
n 0 with (D/nQ) = e, thus arithmetic progression AX + B, where (A, B) = 1, 
contains a prime number p such that 

(5) p = no(mod4L)) and (D/n0) = e. 

Let 
2A||L? - (D/B) = B~ (D/nQ) = B - e, A > 1. 

Now let Pi,I>2,P3,P4,P5 be odd primes such that (P1P2P3P4P5, Aafid) = 1 and q be 
a prime number such that 

(6) ^(2A +MpiP2P3P4P5) I 9 - 1 . 

By the Chinese Remainder Theorem there exists a natural number m such that 

m = ( D / n 0 ) + PiP2p3p4P5q2a0d (mod p\p2
2plp\plq2a~0d) 

rn ~ B mod (2X+1 A) , 

where B = n 0 (mod4L ) ) . 

Now we shall consider the congruence 

(8) ax2 + bxy + cy2 = m (mod 2 A + 1 Ap\plp2
3plplq3a~pd) . 

Since m = (D/n0) +p\p2p3pAPhq2ci(3d + l • p\p\p\p\p\q3afid and every prime factor 
pi of d is of the form Ak + 1 thus (=) = (|J- J = 1. 

Since quadratic form ax2+bxy+cy2 belongs to the principal genus, by Lemma 5 
the congruence (8) has a solution in integers x and y. 

Thus by Theorem of Meyer (Lemma 3) the quadratic form ax2 + bxy + cy2 

represents infinitely many primes p of the arithmetic progression 

2 A + 1 A ^ d g 3 p 1 p ^ p ^ + m 

and p EE B(mod A), (D/p) = (D/B) = (D/n0) = e. 

Now our consideration rest on the fact that for each p = A, A — 1 at most one of 

the numbers nii = <j>(a,p; P~2^J. J for ?' = 1,2,3,4,5 is divisible by p and at most 
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one is divisible by the highest prime factor r of p — (D /p) (for the proof see [12], 
[13]). 

Thus without loss of generality one can assume tha t neither rn\ = <fi (a, (3\ p~^ 'p) ) 

nor m 2 = 0 (a, 0\ p~^DJp}) nor m 3 =<f>(a,/3\ 2z^Jf1) is divisible by p or r. 

At least 2 of these numbers have the same sign. Thus without loss of generality 
one can assume tha t the numbers m\ and m2 have the same sign, hence mx •m2 > 0. 

By Lemma 1 we can assume tha t 

L f Q ^ ; ^ M ) | > l f o r z = i,2. 

Since Q2\\P~2MJP) and by (6), ip (2A+1AP1P2P3P4P5) | <z — 1, we have by Lemma 4 

that m\ • m2 = 1 (mod 4,4). Since tp(4D) | q - 1 and g211 Ezlg/EJ by Lemma 4 

we have m\ • m2 = l(mod4L7), hence (D/m\m2) = 1 and (D/pm,\m2) = (D/p) • 

(Djm\m2) =£-l = e. 
We have (see [14], p. 417) 

„ = ^(0, /J iE^).^(a>ftE^) |U(a, /, : j,_ ( l, /p ))| 

= t / ( a , / ? ; n - ( D / p ) ) 

and n is a Lucas pseudoprime with parameters P and Q of the form AX + B with 
(D / n ) = e. 

Now we shall prove that our Lucas pseudoprimes for suitable p are of the form 
ax2 + bxy + cy2. 

We shall prove tha t m\m2 = 4> (a,0\ P~2
{D

p{
p)) 4> (a, 0\ P~2

{DJp)) is of the form 

e2 - dg2 for a suitable value of p . Since d > 0 and d odd (d = l (mod 4)) it is enough 

to consider two cases. 

First case: \a/3\ = sign(a/?)(mod4). 

We have <f> (a, (3\ P~2\J
P) ) = <fi (au,/3U\ dqw), where dqw is square-free and 

a/? I dqw,2\u,2\dqw. 
By Schinzel's formula (3) (Lemma 2) we have 

0 {a'p' v - ^ r ) = *(Q"-"": d?u,) = **..«(a"-"") -
, « . p [ ) d | ^ ( a / J ) " s 2 — R I ( a"- / 3" )= e 2 -*'• 

since ( ^=m ) \aj3\ (off)" is a square. 

Since polynomials Rn,m(a,0) and Sn,m(&,0) are symmetric, the numbers 

«;u«(a"^"),5*M^i(a",/n 



are rationally expressible in terms of a " + 0U, {afi)u, hence they are rationally 

expressible by a + /? = P and af3 = Q and since they are algebraic integers and the 

numbers <f> ( a , l3; p ~ 2 f f i p ) ) , <f> ( a , 0; p~2{
DJ2

p}) are of the form e2 - dg2. 

^From the identity 

(ax2 + bxy + cy2) (z2 - dt2) — a(xz - bxt - 2cyt)2 + 

+ b(xz - bxt - 2cyt){2axt + byt + yz) + c(2axt + byt + yz)2 

we see that the number n = p<j> (a , /3 ; p ~ 2 \^ ( p ) ) 0 (a, /+, p~£PJp)) is a Lucas pseu-

doprime with parameters P and Q of the form air2 + bxy + cy2 and belongs to the 

arithmetic progression AX + B with Jacobi symbol (D/n) — e. 

Second case: |a/3 | = — sign(a/3)(mod4). 

By Schinzel's formula (4) (Lemma 2) we have 

* (" .^- i^ ) - * («". -~i -««' ) -^ t . .d |5si («"--")+ 

-rfff2, - - = - d U/?| ( a /3 ) u 5 2 .—„ ( a u , -/3U) = e2 

==i- j |a/3 | (a/3)u is a square. 

Similarly <j> f a,/j; ^ ^ x 1 ^ - ) = e - d e , and the number n = p0 (a , / ? ; P
2 ^ P i ) • 

(f)(a,/3; p~x-JP ) is a Lucas pseudoprime with parameters P and Q of the form 

ax2 + bxy + cy2 and belongs to the arithmetic progression AX + B with the Jacobi 

symbol (D/n) — e. 
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