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p-adic variant of the convergence Khintchine theorem 
for curves over Zp 

E. I. Kovaievskaya 

Abstract. A p-adic analogue of the convergence part of Khintchine's theorem 
for the linear Diophantine approximations to the points on the space curves 
with non-zero torsion given by normal functions is proved. 

1. Introduction 
In this paper we will consider Diophantine approximation of p-adic integers and 
generalize the convergence part of the metric theorem of Khintchine [1]. Similar 
problems were first investigated for Z p by K. Mahler [2]. 

Let p > 2 be a prime number, Qp be the field of p-adic numbers with the 
Haar measure p , Z p be the ring of p-adic integers, | • |p be the p-adic valuation. 
Throughout $(h) : E —> R+ is a monotonically decreasing function such tha t 

oo 

(l.i) zL^W <0°-
h=l 

Now we recall the definition of a normal function (by Mahler [2], see also [3]). 

Definition. The function / : Z p —> Z p is called a normal function if and only if 

f(x) = Yl bn(x — b)n where |6|p < 1, |6„|p < 1 for all n and limn_*oo|&n|p = 0. 
n=U 

The class of normal functions is quite wide: given any analytic function g(z) 
we can find integers r,s such tha t prg(psz) is a normal function. Also if f(x) is 
normal so are f^(x) (k = 1 ,2 , . . . ) . Besides any normal function is expanded as 
Taylor's series. It is not t rue for an arbitrary p-adic function [4, p. 223]. 
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Let fi : lip —• Z p (i = 1,2,3) be normal functions and 

(i.2) wZ(X)=&^m^-\ *o 

almost everywhere in Z p . Let ax G Z (i = 0 ,1 ,2 ,3 ) , |a»| be the absolute value of 
a* and let h = max ja t | # 0. Let 5 * ( / i , L 2 , h ) be the set of x e Z p such that the 

0<i<3 
inequality 

\a0 + aifi(x) + a2f2(x) + a3/3(-c)|p < 9(h) 

holds for infinitely many integer vectors (ao, 01,02,03)-

Theorem The set 5 * ( / i , / 2 , / s ) nas zero Haar measure. 

The theorem is about the linear Diophantine approximation to the points on 
the curves in Zp\ The condition on W%(x) is equivalent to the condition tha t the 
torsion of the curve (fi(x), / 2 ( z ) , fs(x)) is non-zero almost everywhere on Z p . 

In order to prove Theorem we use the effective version of Sprindzuk's method of 
essential and inessential domains. This version was eleborated in [5] where the con
vergence and the divergence parts of Khintchine's theorem for the curves (x,f(x)) 
on Z p was proved. See also [8]. 

We notice tha t the problem under consideration belongs to the metric theory 
of Diophantine approximations of dependent values. It originates from Mahler's 
paper (1932) about the measure of 5-numbers in the field E and C. Then it was 
developed very intensively in the case of E by V.G. Sprindzuk, W.M. Schmidt, 
V.I. Bernik, M.M. Dodson and others [6]. But there are only a few results in the 
field <Q>P [5 - 9]. Recently Khintchine's theorem for the case of C was proved in 
[10]. We remark also tha t the proofs of the aforementioned results have their own 
specialities depending on the fields. 

2. Lemmas 

According to the assumption of Theorem we have |W3(.^)|p ¥" 0 almost everywhere 
in Z p . Now we remove a set of arbitrary small measure 8 from Z p in such a way 
that the inequality 

(2.1) |W 3 (x) | p > Ci 

takes place in the complementary part Zp(8) of Z p , where 0 < C\ = C\(9) < 1/2. 
We can represent the set Zp(#) as a countable sum of discs Kj having the Haar 
measure fiK3 < C\/2. The following investigation can be applied to any Kj, 
therefore we will write K0 instead Kj. Without loss of generality we can assume 
that the radius of K0 is equal r0 and r0 < Ci/p3. 

Lemma 1 . Let gi(x) (i = 1,2, . . . , n ) be normal functions. Suppose G(x) = 
9i(x) + r2g2(x) + . . . + rngn(x) where ( r 2 , . . . ,rn) 6 Q " - 1 and 

(dj
9i(x)\ 

V dxi ) ^ . . ^ n 
Vn(x) = det 
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Let 0 < 6 < 1 and let |V„(x)|p > 6/A > 0, when x G K0. Then max F ^ - > 

6/A at every x G K0 w/iere A = max max |Aj(x) | p and A,(x) is a cofactor of 
l<i<nxEK0 

The proof is similar to the proof of Lemma 4 in [11]. 
Suppose tha t the set T contains all non-zero linear forms F(x) = ao + a i / i (x) + 

^2/2(2) + 03/3(2) where (00,01,02,03) G Z 4 and n F = max |o»|. Clearly tha t every 

function F G T is normal. It follows from (2) that the functions 1, f\ (x), f2(x),f3(x) 
are linearly independent over Q. Lemma 1 and (3) imply that 

(2.2) min max( |F ' ( x ) | p , | F " ( x ) | p , |F ' " (x ) | p ) > d . 
xeK0 

The followong lemma is the important part of the proof of Theorem. 

Lemma 2 . Suppose F € T, 0 < a,0\,02i0z < 1 be real numbers. Let aQ , / j(F) be 
the set of points x £ K0 satisfying 

\F(x)\p < a, fa < | F ' ( x ) | p , 02 < \F"(x)\p, 03 < \F'"(x)\p. 

Then ca^(F) is covered by at most three discs of radius 

r = m i n ( ^ r 1 , ( « / 3 2 - 1 ) 1 / 2 , ( « / 3 3 - 1 ) 1 / 3 ) . 

Proof. The proof is similar to the proof of Lemma 1 in [5] but it needs some 
additional investigation. Suppose tha t cay/3(F) contains at least two points. As Z p 

is compact, there exist the points xi,X2 G ca^(F) such tha t |xi — X2|p > |x — y\p for 
any x,y G ca^(F). It follows from (4) tha t there exist three cases be considered. 

I. There exists a point x i F G ca^(F) such that 

(2.3) min m a x ( | F ' ( x ) | p , | F " ( x ) | p , | F ' " (x ) | p ) = | F ' ( x 1 F ) | p > Cx. 

Let x G <7a,/3(F). We consider Taylor's series for F (x ) in the disc E(xiF,r0) = K0 

with the centre at x 1 F and of radius ro < C-i,/p3 

00 

(2.4) F(x) - F(x1F) = (x - x1F)(F'(x1F) + ^ ( " ! ) _ 1 F ( n ) ( x 1 F ) ( x - x ^ ) ^ 1 ) . 
n=2 

As F (x ) is normal and Taylor's series is unique, we obtain | ( n ! ) _ 1 F ( n ) ( i i F ) | p < 1 
for n > 1. Since r 0 < Cx /p

3, it follows that 

(2.5) | F ' ( x 1 F ) | p > | ( n ! ) - 1 F ( n ) ( x 1 F ) ( x - x ^ ) " - 1 ^ for n > 2. 

According to (5), (7) and properties of the non-archimedean valuations, the p-
adic valuation of the right-hand side of (6) equals | F ' ( x 1 F ) | p | x - x 1 F j p . Hence, 
|F (x) - F ( x l F ) | P = | F ' ( x 1 F ) | p | x - x 1 F | p > | F " ( x 1 F ) | p | x - x1F\2

p and \F(X) -
F(X\F)\P > \F"'(XIF)\P\X - # 1 F | P - So the assumptions of Lemma yield 

\x~x1F\p < mm(a0-\(a^l)^2,.(a^l)l/z) = r. 

Thus the set aa,p(F) i s covered by the disc K(x1F,r). 
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II. The set ora,p(F) has no points satisfying (5) but there exists a point xF £ 
aa,p(F) such that 

(2.6) min max( |F ' ( . r ) | p , |F" ( . r ) | p , |F" ' ( .r) | p) = | F " ( . r F ) | p > C,. 
x£k0 

Let x £ aa,p(F). We consider Taylor's series for F(x) in the disc K(.rF,ro) = A'o, 
i.e. we have (6) where x\F is replaced with a:F. Since r 0 < C i / p 3 , it follows that 

(2.7) \F"(xF)(x - xF)/2\p > \(n\)-lF(nHxF)(x - x1F)n-l\p for n > 3. 

Hence, 

(2.8) \F(x) - F(xF)\p = \x - x F | P | F ' ( . r F ) + F"(xF)(x - xF)/2\p. 

Suppose | F ' ( x F ) | p > |F"( .rF)(a: — x F ) / 2 | p . It follows from the assumptions of 
Lemma and (10) that 

a > \F(x) - F(xF)\p = \F'(xF)\p\x - xF\p > | F " ( . r F ) | p | x - xF\2
p > B2\x - xF\2

p. 

Similarly we get a > \F(x) - F ( . r F ) | p > d^\x - x F | 3 . Therefore \x - x F | p < r. 
Now we investigate the remaining case when 

(2.9) \F'(xF)\p<\F"(xF)(x-xF)/2\p. 

Let xF ^ X2, \x — x F | p < \x — x2\p and 

(2.10) \x - xF\p <\x2~ xF\p. 

Using Taylor's series, we get F(x) - F(xF) — ]T} (n\)~~lF(n)(xF)(x - xF)n. We 
n = l 

form 

(2.11) A 2 , F = E^lzI^fl^x-XF) = y(n\r1Fin)(xF)(x2-xF)n-i(x-xF). 
X<2 ~ XF

 £—* 

Then 
F(x) - F(xF) - A 2 , F = F"(xF)(x - xF)(x - x2)/2+ 

oo n - 2 

(2.12) + 52 ( n ! ) " l i r ( n ) ( -5F ) ( f l ; - xF){x - x2) Y(x ~ *F)J(X2 ~ xF)n-2-J. 
n=3 j = 0 

It follows from the assumptions of Lemma and (12) that the p-adic valuation of the 
left-hand side of (14) is less than a. By (9), the p-adic valuation of the right-hand 
side of (14) equals |F"(rrF ) /2j p | ( . r - xF)(x - x 2 ) | p . Therefore 

(2-13) a>\F"(xF)\p\x-xF\2
p 

and 

(2.14) \x-xF\p<(a/3^1)1^. 

If \x - arF |p > \x - x2\p then we get (16) where x2 is written instead xF. If (12) 
does not hold but the inequality 

(2.15) \x - xF\p < \xi -xF\p 

is valid, then we replace x2 by X\ in the formulas after (11). Again we obtain (15) 
and (16). 
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The definition of the points x i , x2 implies that there are only two possibilities: 
(12) and (17). If xF = x2 we replace xF by x2 and x2 by xi respectively in the 
formulas after (12). Thus the set aa 0(F) is covered by at most two discs from 
( E ( x F , r ) , K ( x 2 , r ) , K ( x i , r ) } . 

III. The set aa,0(F) has no points satisfying (5) or (8). Therefore 

(2.16) min max( |F ' ( x ) | p , | F " ( x ) | p , |F ' " (x ) | p ) = min | F ' " ( x ) | p > Cx. 
x£K0 X£K0 

Let x € <JQ<0(F). We consider Taylor's series for F ( x ) in the disc K(xi,r0) = K0. 
As above, (18) implies 
(2.17) 
|F(x) - F ( x ! ) | p = |x - x i lp lF^xx) 4- F " ( x O ( x - x,)/2 + F'"(xx)(x - xx)

2/(Z\)\p. 

The second multiplier of the right-hand side of (19) contains three addends. If the 
p-adic valuation of the j - t h addend (1 < j < 3) is greater than the others then 
similarly to the cases I, II we get |x — x i | p < r. 

Now we consider the case when the p-adic valuations of the addends coincide, 
i.e. 

| F ' ( x i ) | p = | F " ( x O ( x - x i ) / 2 | p = |F ' " (x i ) (x - x i ) 2 / ( 3 ! ) | p . 

We can take a point X3 such that |xi — X3|p = |x2 — x 3 | p . Similarly to (13) we form 
the differences Ai ) 2 and A2)3 for the points ( x i , x 2 ) , (x2,X3) respectively and the 
second order difference (A2i3 — Ai,3)(x — x 2 ) / ( x 2 — x i ) . Then instead of (14) we 
consider 

(2.18) F ( x ) - F ( x 3 ) - A2 ,3 - (A2 ,3 - Ai , 3 ) (x - x 2 ) / ( x 2 - Xl). 

As above, we obtain that the p-adic valuation of the right-hand side of (20) equals 

|F ' " (x 3 ) (x - x 3 ) (x - x 2 ) (x - x0 /3 ! | p 

and the p-adic valuation of the left-hand side of (19) is less than a. Therefore 

a > |F ' " (x 3 ) (x - x 3 ) (x - x 2 ) (x - x i ) | p . 

Thus the set o-a,0(F) is covered by ]T K(xj,r). 
i = l 

3. Proof of Theorem. The case of a iarge first derivative. 

For every Q e N, we define T(Q) = {F <E T : hF < Q). Let K be a disc in K0 and 
7 > 0. Suppose tha t the set 0 ( K , 7 , Q , F ) consists of points x G K such that 

(3-1) | F ( x ) | p < 7 Q - \ | F ' ( x ) | p > h~l/2 

a n d O ( K , 7 , Q ) = U 0 ( E , 7 , Q , F ) . 
FeHQ) 

Proposition 1 . There exists the constant C2 > 0 such that for any disc K C 
K0 and for any number 7 (0 < 7 < 1) there exists the positive number Q0 = 
Q o ( K , / i , / 2 , / 3 , 7 ) such that p I 7 ( K , 7 , Q ) < C 2 7 ^ K for each Q > Q0. 
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Proof. We cosider the functions F G T(Q) such that Q(K,-y,Q,F) ^ 0. As 
Z p is compact, there exists a point ap G Q,(K,j,Q, F) such that | F ' ( a F ) | p = 

min |F ' ( . r )L. Lemma 2 implies that 
x£Q(K,-y,Q,F) 

(3.2) titt(K,i;Q,F) « 7 Q ~ 4 | F , ( Q F ) i p 1 

where the Vinogradov symbol <C contains a positive constant C depending only on 
Ko,/i, 12,/V for every F G T(Q), we define the disc 

0 ( K , 7 , Q, F) = { i £ Z r \x - Q F | P < ( 2 p Q | F ' ( a ) | p ) ' " ] } . 

We notice that Q(K,y,Q,F) C K for suffiiently large Q. It follows from (22) that 

(3.3) n$l(K, 7, Q, F) C 7 Q-V- = - (K , 7, Q, P)-

As in Theorem 2 of [5] using Taylor's series, (21) and (22), we get \F(x)\p < ( 2 Q K 1 

for any x G U(K, 7, Q, F ) . Furthermore we have 0 ( K , 7, Q, F]) f| ft(K, 7, Q, i?2) = 
0 for any FUF2 G T(Q) if Fj - F 2 G Z. Therefore 

(3.4) £ / i O ( K , 7 , Q , F ) « / z K 

F e ^ Q . a i . a a . a a ) 

where T(<5,01,02,03) is the subset of T(Q) such that the coefficients 01,0-2,03 are 
fixed. It follows from (23) and (24) that 

] T fiQ(K, 7, Q, F ) « jQ'3fi.K. 
F€JF(Q,ai,ci2,a3) 

Since the number of different classes of F G T(Q,a\,02,03) equals (2Q + l ) 3 , 
Proposition 1 is proved. 

Now we consider the set of x G Ko such that the system of inequalities 

(3.5) \F(x)\p<*(hF), \F'(x)\p > hp1/2 

holds for infinitely many F G T. Let t G N and let A(t) be the set of points x G Ko 
such that there exists a solution F G J"(2*) of (25). Since $ ( 0 ) is monotonic, it 
follows from (1) that ^(h) < n~~4 for sufficiently large h. Hence, we have A(t) C 
fi(Ko, #(2*) ,2 t ) . According to Proposition 1 we get /iA(t) < 24f#(2<). The Borcl 
Cantelly lemma and (1) imply that the set under consideration has zero measure. 
The proof of this part of Theorem is complete. 

4. Proof of Theorem. The case of a small first derivative. 

Proposition 2. For almost all x G Ko the system 

(4.1) \F(x)\p < hF\ \F'(x)\p < h'F-/2 

has at most finitely many solution F G T. 

Proof. We discuss similarly to Theorem 3 in [5] and give a sketch of the proof. Let 
F G T be such a function that there exists a point x G Ko satisfying (26). It follows 
from (4) and the second inequality in (26) that min m a x ( | F " ( x ) | p , | F ' " ( . T ) | P ) > C\. 

X£KQ 

Therefore we introduce two sets. Let 02(F) be the set of points x G Ko satisfying 
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(26) and the inequality min (|F"( .r)jp) > C\. Let 03(F) be the set of points x E K0 
x€K0 

satisfying (26) and the inequalities \F"(x)\p < C\, min |F" ' ( . r ) | p > C\. At first 
x£Ko 

we consider 02(F) . We divide \J 02(F) into essential and inessential domains by 

the Sprindzuk method. As in Theorem 3 of [5], Lemma 2 implies that the set of 
x € K0 belonging to infinitely many essential domains a2(F) has zero measure. As 
in Theorem 3 of [5], Lemma 2 and the result in [9] imply that the set of x € K0 

belonging to infinitely many inessential domains a2(F) has zero measure. Details 
see in [5]. 

Now we consider 03(F) . We divide 03(F) into four subsets. Let S\(F) be the 
set of points x €E 03(F) satisfying the inequalities 

\F'(x)\p<*(h), hF
l/2 <\F"(x)\p<C\. 

Let S2(F) be the set of points x £ 03(F) satisfying the inequalities 

| F ' ( * ) | P < *( / i ) , \F"(x)\p<hF
1/2. 

Let S^(F) be the set of points x G 03(F) satisfying the inequalities 

*(h) < \F'(x)\p < h~1/2, hF
i/2 < \F"(x)\p < C\. 

Let S4(F) be the set of points x G 03(F) satisfying the inequalities 

* W < \F'(x)\p < hF
1/2, \F"(x)\p < hF

1/2. 
We are interested in those x £ K0 which belong to infinitely many St(F) (i = 
1,2,3,4) for F (E T. The measure of the set S\(F) is estimated similarly to Propo
sition 1. As in Theorem 3 of [5], the measures of the sets S2(F), Sz(F) and SA(F) 

are estimated by Lemma 2, the result of [9] and with help of the Sprindzuk method. 
The Borel-Cantelly lemma finishes the proof. 

References 
[1] Khintchine, A. Einige Satze uber Kettenbruche mit Anwendungen auf die Theorie der Dio-

phantischen Approximationen. Math . Ann. 92 (1924), 115-125. 
[2] Mahler, K. Uber Transzendente p-adische Zahlen. Compozitio Mathematica. 2 (1935), 259-

275. 
[3] Adams W. W. Transcendental numbers in the p-adic domain. Amer. J. Math . 88 (1966), 

279-308. 
[4] Mahler K. p-adic numbers and their functions. Cambridge, 1981. 
[5] Beresnevich V., Kovalevskaya E. A full analogue of the Khintchine theorem for planar curves 

in Z p P rep r in t / Insti tute of Math. NAS Belarus. 2 ( 556 ) Minsk, 2000. 
[6] Bernik V., Dodson M. Metric Diophantine approximation on manifolds, Cambridge Tracts 

in Math. 137, Camb. Univ. Press, Cambridge, 1999. 
[7] Melnichuk, Yu. On the metric theory of the joint Diophantine approximation of p-adic num

bers. Dokl. Akad. Nauk Ukrain. SSR, Ser. A.5 (1078), 394-397. 
[8] Kovalevskaya E. The convergence Khintchine theorem for polynomials and planar p-adic 

curves. Ta t ra Mt. Math. Publ. 20 (2000), 163-172. 
[9] Silaeva N. On analogue of Schmidt's theorem for curves in 3-dimensional p-adic spase. Vesti 

National Acad Sci. Belarus. Phys. and Math . Ser. 4 (2001), 35-41 . 
[10] Beresnevich V., Vasilyev D. An analogue of the Khintchine theorem for curves m 3 -

dimensional complex spase. Vesti National Acad Sci. Belarus. Phys . and Math. Ser. 1 (2001), 
5-7. 



7 8 E. I. Kovalevskaya 

[11] Bernik V., Kovalevskaya E. Extremal property of some surfaces in n-dimensional Euclidean 
space. Mat. Zarnetki 15 N 2, 247-254. 

INSTITUTE OF MATHEMATICS OF NATIONAL ACADEMY OF SCIENCES 220072, SURGANOVA 

11, MINSK, BELARUS 
E-mail address: kovalevsk«Sim.bas-net .by 


		webmaster@dml.cz
	2013-10-22T11:17:16+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




