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Abefizations of weakly associative hyperstructures 
based on their direct squares 

Jan Chvalina and Šárka Hoškova 

ABSTRACT. The paper contains a simple construction of some types of com
mutative hyperstructures as hypergroupoids, weakly associative semi-hyper-
groupoids, hypergroups, quasi-hypergroups and weakly associative hyperrings 
from non-commutative hyperstructures. It is proved that the used construction 
induces reflectors on suitable categories of the mentioned hyperstructures. 

There are some important reasons for introducing and investigation of so called 
Hv structures, tha t is H„-group [20], LT^-ring [29], and so on, which are defined 
from the well known classes of hyperstructures in a certain simple way. The idea 
consists in replacing some axioms, such as the associative law, the distributive law 
and others by the corresponding weak ones. 

In particular, a Hv-sem,igroup is a set H (H ^ 0) equipped with a weak 
associative (we write WASS) hyperoperation • : H x H —> V*(H), where for all 
a,b,c G H', the following axiom is valid: 

a * (6 * c) n (a * 6) * c 7- 0. 

A H^-semigroup is called a Hv-group if moreover the reproduction axiom, i.e. 
a*H = H = H*a is satisfied for any a £ H. It is to be noticed that LL^-structures 
were introduced in [31] and investigated in the mentioned paper and in a series of 
others [5, 16, 17, 19-22, 25. 27-32]. In the classical group theory there is a well 
known construction called abelization of groups. From the point of view of the cat
egory theory, which allows one to make the notion of "universality", the mentioned 
construction yields an example of a reflector from the category of all groups and 
their homomorphisms into its subcategory of all commutative, i.e. abelian groups 
[13]. This contribution aims to present simple constructions of abelization of some 
types of hyperstructures, especially weak hyperstructures and quasi-hypergroups 
[3, 24, 25]. The bellow described constructions preserve weak associativity law, but 
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not associativity law, which also shows a certain compatibility of used constructions 
with the concept of weakly associative hyperstructures. 

Let A be a subcategory of B with embedding functor E: A <—» B. If E is a class 
of B-morphisms, then A is called E-reflective in B provided that for each B-object 
B there exists an A-reflection {TB,AB) such that each r^ € E. By an A-reflection 
(rB,AB) we mean — as usually — an 73-universal map (rs, As) for a B-object 73, 
i.e. rB '. B —> AB is a B-morphism for AB £ Ob A and for each A' € Ob A and each 
morphism / : B —* E(A') there exists a unique A-morphism / : AB —> A' such tha t 
the following triangle 

(D1) 

commutes. By this construction a functor 73: B — > A is defined, which is a left 
adjoint of E: A —> B, called a reflector for A. In case E is the class of all epimor-
phisms (monomorphisms) of B we say tha t A is epireflective (monoreflective) in B. 
For the definition of a reflector a quadratic diagram can be also used (which is more 
convenient for our purposes) instead of the above triangle: 

B —1—* B' 

rB\ \ra, (D2) 

Thus, for any B-object B there exists a unique pair (rB,AB), AB £ Ob A, 
rB : 73 —+ AB such that for any object 73' e O b B and any B-morphism / : 73 —• 73' 
there exists a unique A-morphism / : AB —> AB' making the diagram (D2) com
mutative. Then, by 73(73) = AB, R(f) = / a reflector 73: B -* A is defined. 

Recall the other basic notions. A hypergroupoid (or a multigroupoid) is a pair 
(M, o), where M is a nonempty set and o, M x M —> V*(M) is a binary hyperoper-
ation called also a multioperation. (V*(M) is the system of all nonempty subsets of 
M). A semihypergroup is an associative hypergroupoid, i.e. hypergroupoid satisfy
ing the equality (a o b) o c = ao(boc) for every triad a, 6, c G M. A quasi-hypergroup 
is a hypergroupoid (M, o) fulfilling the reproduction axiom, i.e. ao M — M = 
— M o a for any a € M . A hypergroup is an associative hypergroupoid (M, o), i.e. 
a semihypergroup, satisfying the reproduction axiom. 

Let (73, o) be a hypergroupoid; by A # we mean the diagonal of the Cartesian 
product 73 x 73, i.e. AH — [ [x ,x] ;x € 73}. 

Let us define a mapping D: H —» H x H by D(x) = [x, x) for all x £ 73, i.e. 
A// = 73(H). 

Remark. As a mapping, the operator D possesses usual properties, e.g. it is ad
ditive, i.e. for an arbitrary system { M 7 ; 7 € T} C V*(H), where M., C 73 for 
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each 7 e F, the equality D( IJ M 7 ) = (J D(M7) holds. Also the inclusion 

D( f| M 7 ) C f| D(M7) is evident. 

Let (H, •) be a hypergroupoid and ( A # , • ) be the hypergroupoid defined above. The 

basic properties of the used construction yield the following auxiliary assertions. 

Lemma 1. Let (H, •) be a hypergroupoid. Define a hyperoperation "*" on the diag

onal AH as follows: [x,x) * [y, y] = D(x • y U y • x) = {[u, u); u e x • y U y • x} for 

any pair [x,x], [y,y] e A H . Then the following assertions hold: 

1° For any hypergroupoid (H,-) we have that ( A H , * ) is a commutative hyper
groupoid. 

2° If (H, •) is a weakly associative hypergroupoid, then the hypergroupoid ( A H , * ) is 
weakly associative, as well. 

3° If (H,-) is a quasi-hypergroup, the hypergroupoid ( A H , * ) also satisfies the re
production law, i.e. it is a quasi-hypergroup. 

4° If(H, •) is associative, i.e., it is a semihypergroup, then the hypergroupoid (AH,*) 
is weakly associative (but not associative in general). 

Proof. The assertion 1° follows immediately from the above definition of the hy
peroperation "*". 

2° Suppose, [x, x), [y, y], [z, z] e A H - Then 

(\x, x) * [y, y)) * [z, z) =- D(x • y U y x) * [z, z] = (D(x • y) U D(y • x))*\z, z] 

= (D(x • y)*[z,z))u (D(y x)*[z,z)) 

= ( U [u,u)*[z,z))u({J [v,v]*[z,z]) 
u€x-y v£yx 

= U D(u- zUz-u)U U D(v-zUz-v) 
uex-y v£yx 

= U D(u-z)U U D(z-u)U U D(v-z)U \J D(z • v) 
u€x-y u£xy v€yx v£y-x 

= D( U U'Z)UD( U 2 - U ) U Z ) ( U V.Z)UD( U Z-V) 
u£x-y u£x-y v€y-x ' v<Ey-x 

= D((x • y) • z) U D(z • (x • y)) U D((y • x) • z) U D(z • (y • x)) 

= D((x • y) •z)uD(z-(yx)Uz-(x- y) U (y • x) • z). 

On the other hand 

[#i A * ([y, V) * [z, A) = ([z, z) * [y, y)) * [x, x) 

= D((z • y) • x U x • (z • y) U (y • z) • x U x • (y • z)) 

= D((x . (y • z)) U D((z • y) • x U x • (z • y) U (y • z) • x). 

As by the assumption (x-y)-zDx-(y-z) ^ 0 we get D((xy)- z)C\D(x-(y- z))^ 0. 

Thus (([x, x] * [y, y)) * [z, z)) n {[x, x] * ([y, y] * [*, «])) =.4 0. 
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3° Let x € H be an arbitrary element. Then x • H — H — H • x and we have 

[x, x] *AH= | J ([*, x] * [y, y}) = [ J D(x • y U y • x) 
y€H y€H 

= (J D(x - y) U |J D(y • x) =- D( |J x • y) U D( \J y • *) 

- D(x • B) U D(B • x) =- D(H) U D(H) - D(H) = A H . 

4° Since a semihypergroup is also weakly associative, the assertion 4° follows 
from 2°. Q 

Example 1. Let (R, <) be the naturally ordered set of all real numbers and H = 
~ End(R, <) the monoid (with a binary operation of composition "o" of functions) 
of all endomorphisms preserving ordering of the chain (R, < ) , i.e., the monoid of 
all non-decreasing functions of one real variable. If we define / •< g for any pair 
/ , g e H such tha t f(x) < g(x) for all i G l , it is easy to show tha t (H, o, •<) is an 
ordered monoid. Let "•" be a hyperoperation defined in the following way: 

/ • g :-= {h £H;gof^h}, i.e., hefmg** g[f(x)} < h(x) 

for all x € M. Then (H,») is a semihypergroup. 
As above D(H) = { [ / , / ] ; / € IT}. Let "*" be a hyperoperation on D(H) given 

by the rule: 

[/, / ] * [g, g] - D(f .gUg. f) = {[h, h}; h e f • g U g • / } . 

Notice that f • g • h — {k(x); h(g[f(x)j) < k(x)} (see [8]). Using a concrete triad 
of functions we will show that the hyperstructure (D(H),*) satisfying the weak 
associativity law is not associative. 

From the proof of Lemma 1,2° we have: 

([/»/I * b .9\ ) *[h,h}^D(f.g.hUh.f.gUg.f.hUh.g.f) = D(M1), 

[ / , / ] * (fo, 0 ] * [ M ] ) ~D(f.g.h U / . / I . ; 9 U g.h.f U h * g * f) = D(M2). 

We will show that D(Mi) 7̂  D(M2), in general. Choosing, e.g. f(x) = x + 1, 
#(a;) = x3 , /i(x) - 2 s , we obtain 

/ «ff • h t % [ / ( * ) ] ) = 2 ^ + 1 ) 3 , / . g . h= h(g[f(x)}) = 2<*+1>3, 

tW • <7 = g{f[h(*)]) = (2X + l ) 3
5 / • / - • * - = <? W ( * ) ] ) = 2 3 * + 3 , 

p * / * /» = fc(/fo(s;)]) = 2* 3 + 1 , p . fc . / = / ( % ( * ) ] ) - 2*3 + 1, 

h • 9 • / = /(#(*)!) = 2'3"T + *• * • * • / = /MM*)]) = 23x + 1. 
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Then M1 and M 2 have the following form: 

4 

Mx — M {ip: R —» H; (/^(.r) < ^(a?) for any x G R}, where 

fc=i 

n(x) = 2 ^ \ <p2(x) = (2* + I ) 3 , <p3(x) = 2* 3 + 1 , <p4(x) = 23x + 1, 

4 

M2 = M {V-': R —* R; ^fc(x) < V(#) for any a: € H}, where 

fc=i 

^ ( z ) = 2 ( a ; + 1 ) 3 , ib2(x) = 23x+3, iJ3(x) = 2X* + 1, tf>4(x) - 23* + 1. 

It is easy to see that e.g. (p3 G Mx, ip2 G M 2 , <p3 $ M2, ip2 $ Mx, hence Mx ^ M 2 

and consequently D(MX) 9- D(M2). 
On the other hand, e.g. ipl G Mx n M 2 , 0X G Mx n M 2 (since <£>._ = 1/^), thus 

0 -£ {(/?: R ~> R; y?! < v?} C M-. n M 2 , {'0: R -> H; ^ < 0 } C Mx n M 2 , which 
implies D(MX) n D(M2) ^ 0. This follows, of course, from Lemma 1, 4°. 

Let (if, •) be a quasi-hypergroup. In connection with the concept of a reflector 
in the category theory it will be useful to write rH instead of D: H —* H x H 
because rH will be considered as a morphism in a suitable category. Tha t means 
rH : (H,-) —>(D(if),*) is a homomorphism of quasi-hypergroups (Lemma 1,2°) 
because for all pairs x, y G H we have rH(x.y) = D(x.y) C D(x.y) U D(y.x) — 
= D(x.yUy.x) = [x,x] *[y,y] = rH(x)*rH(y). 

Let quasi-hypergroups (Hi, t ) , (H2j 2) be given. Suppose / : (Hi, -\) —* (H2-, -2) 
is a homomorphism. For an arbitrary [x,x] G D(H\) we define 

f([x,x]) = [f(x),f(x)]eD(H2). 

Consider the following diagram: 

(#1 , . - ) -> (Я2,-2) 

1 н 
(D(Яi),*0 / 4 ( D ( Я 2 ) , * 2 ) 

(DЗ) 

Lemma 2 . The following assertions hold: 

1° T/ie mapping / : (D( i f i ) ,* i ) —• (_D(Lf2),*2) £«$ a homomorphism. 

2° TTie diagram. (D3) is commutative for any homomorphism f: (Hi, »i) —* (Lf2, - 2 ) . 

3° T7ie homomorphism f completes the diagram (D3) /or ant/ homomorphism 

f'-(Hi,-i)->(H2,-2) uniquely. 

4° T/ie homomorphism rH: (H,-) —> (A/ / ,* ) is a bimorphism, i.e., both a mono-
and an epimorphism, for any quasi-hypergroup (H, •). 

Proof. 
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1° Suppose [x,x], [y,y] G D(/Li) are arbitrary elements. Then we have 

/ ( M ] * i IvM) =f(D(x.1yUy.1x)) 
= f({[u,u];u€ x.iyUy.ix}) = {f([u,u];u e.x.iyUy.ix)} 

= {[f(u>),f(u)];u(Ex.iyUy.ix}. 

Since for any u G x. iy U y.iX we have 

f(u) G / ( x . i y U y.iX) - f(x.xy) U / ( y . l S ) C (f(x) -2 / ( y ) ) U (f(y) -2 / ( x ) ) , 

consequently 

{ [ / ( « ) , / ( « ) ] ; « G a r . iyUy. ix ) C {[v,v];v G (f(x) -2 / ( y ) ) U ( / (y) -2 / ( x ) ) } 

== [ / (*) . / (*)] *2 [ / (y) , / (y) j = / ( [x ,x]) * 2 / ( [y ,y]) , 

therefore / : (D(LI i ) ,*i) —> (D(Lf2),*2) is the homomorphism. 

2° Suppose x G IIi is an arbitrary element. Then 

(r//2 o / ) (x ) - rHa(f(x)) = [f(x)J(x)] = f([x,x}) = f(rHl(x)) = (forHl)(x). 

Thus rH2 o / = / o rHl. Consequently the diagram (D3) commutes. 

3° Suppose g: (D (H i ) , * i ) —» (D(H2) ,*2) is a homomorphism which creates the 

diagram (D3) with / : ( B i , - i ) —> (LI2,-2) commutative. Then for arbitrary 

[x0 ,x0] G D(Hi) we have 

o([x0 ,x0]) - (oo id )([x0 ,x0]) = (gorHl o r ^ ) ( [ x 0 , x 0 ] ) 

= (.9orH1)(r /}1
1[xo,Xo]) = (rH.2 o / ) ( x 0 ) - r / / a ( / ( x 0 ) ) = / ( [ x 0 , x 0 ] ) . 

Hence, for any homomorphism / : (Hi, -i) —> (H2. 2) there exists a unique ho

momorphism / : ( D ( B i ) , * i ) —> (D(H2) ,*2) making the diagram (D3) commu

tative. 

4° Let (A, •) be an arbitrary quasi-hypergroup from Ob (QHG) and (p,ip: (A, -) -+ 

(H, •) be homomorphisms such that rH o<p = rH oi/j. Let a € i be an arbitrary 

element. Suppose <p(a) 7̂  ip(a). Then 

(r f / o » ( a ) - rH(ip(a)) = [<p(a), <p(a)} ^ [i/j(a),ip(a))\ = rH(i/j(a)] = (rH o ip)(a). 

Thus the morphism rH is a monomorphism. 
Now we will show tha t it is an epimorphism. Let x G H, [x, x] G AH be an 

arbitrary element and <p, ip be a homomorphisms such that <p o rH = if) o rH. 
Suppose, tha t y?([x,x]) -^ ^([x,x]) . Then 

(>porH)(x) = <p(rH(x)) ^ i)(rH(x)) = (ip orH)(x), 

hence p>o?•# ^ 1/;or#. Thus <^OrH = iporH implies <p = ip. Therefore rH is an 
epimorphism and simultaneously a monomorphism, thus it is a bimorphism. • 

Let QHG'be the category of all quasi-hypergroups and their homomorphisms, 
AQHG be its full subcategory of all commutative (i.e. abelian) quasi-hypergroups. 
Define a functor F: QHG -> AQHG by F( (H , - ) ) = ( D ( B ) , * ) = (A/f ,*) for any 
quasi-hypergroup (B , •) G Ob(QHG), F ( / ) - / : F((HU •{)) -> F ( ( # 2 , -2)) for any 
pair of quasi-hypergroups and any homomorph i sm/ : ( B i , - i ) —* (B2, '2)- Similarly, 
let us denote by H^G the category of all H^-groups and their homomorphisms, 
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by AH„G its subcategory of all commutative H„-groups. In fact, H„G is a full 
subcategory of the category QHG. Thus, define a functor G: H„G —> AH„G as a 
restriction of the functor F, i.e. G(H, •) = F(H, •) for any (H, •) £ Ob (H„G) and 
similarly for morphisms. 

By the above considerations (concentrated in Lemma 1, Lemma 2) we have 
proved the next 

Theorem 1. The following assertions hold: 

1° Let QHG be the category of all quasi-hypergroups and their homomorphisms, 
AQHG be its full subcategory of all commutative (i.e. abelian) quasi-hypergroups. 
Then the functor F: QHG —* AQHG is a reflector; more precisely the pair 
( r # , ( A t f , * ) ) is k^WG-reflection for (H,-) t= Ob(QHG), hence the category 
AQHG is a bireflective (i.e. mono- and epireflective) full subcategory of the 
category QHG. 

2° Let H„G be the full subcategory of all M.u-groups of the category QHG, AH„G 
its full subcategory of all commutative VLy-groups. Then the functor G: H„G —> 
AHyG is a reflector and AH„G is a bireflective full subcategory of the category 
UUG . 

Example 2. Let S be a nonempty set, V*(S) be the system of all its nonempty 
subsets, i.e., V*(S)U{0} is the power set of the set S. For any nonempty subsystem 
C C V*(S) (possibly a covering of S, which means X £ C implies 0 ^ X C S and 
\JC = S) we denote by Cst(M,C) the combinatorial star of a nonempty set M C S, 
i.e., Cst(M.C) = {X £ C;XnM £ 0}, cf. [8]. If we define 

A-B = Cst(A\B,C)U{A,B} for any pair of sets A, B £V*(S), 

then it is easy to verify that (V*(S),-) is a non-commutative H^-group. Indeed, for 
an arbitrary triad of nonempty subsets X, Y, Z C S we have 

(X-Y)-Z = (Cst(X\Y,C)U{X,Y}) -ZU{X,Y}-Z 

= {V e c; V n (X \ Y) ^ 0} • Z U C s t ( x \Z,C)U Cst(Y \Z,C)U {X, Y, Z} 

= \J (Cst(U \ Z, C) U {U, Z}) U C s t ( x \Z,C)U Cst(Y \Z,C)U {X, Y, Z}. 

On the other hand 

X • (Y • Z) = X • C s t ( y \Z,C)UX • {Y, Z} 

= X • {V e C; V n (Y \ Z) ? 0} U Cst(X \ Y,C) U Cst (X \ Z,C) U {X, Y, Z} 

\J (Cst(X\V,C)u{X,V})uCst(X\Y,C)U 
vec 

vn(y\z)#0 

UCst(X\Z,C)U{X,Y,Z}. 

Now, it is evident tha t 0 ^ Cst(X\Z,C)U{X,Y,Z}c((X-Y)-Z)n(X-(Y-Z)) 
and it is easy to see tha t the reproduction axiom is satisfied. 
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Applying the abelization to the hyperoperation "•" we get a new commutative 
hyperoperation "•". With respect to an evident formula 

Cst( U M^c)^ U Cst(M7,C) 
7€r ' 7er 

for any family {My;j € T} C V*(S) we have 

A»B = A-BUBA = Cst(A \B,C)U {A, B} U Cs t (B \ A, C) U {B, A} 

= Cst(AAB,C)U{A,B}, 

where A means the symmetrical difference of set. 
Similarly as in the proof of .Lemma 1 it is easy to verify tha t (V*(S), •) is the 

commutative B^-group. 
Now applying Theorem 1, 2° to (V*(S), •) we obtain the commutative B^-group 

G(V*(S),-) = (D(V*(S),*)), where G is a functor from the mentioned theorem. 
As in the proceeding we have 

[A,A]*[B,B] = { [ Z , Z ] ; Z e C s t ( v 4 A B , C ) U { v 4 , B } } = 

= {[Z, Z]; Z e Cst((A \ B) u (B \ A),C)U{A, B}} 

- {[Z,Z];Z€ Cst(A \B,C)U Cs t (B \A,C)U {A, B}} 

= {[Z,Z];Z e A-BUBA}. 

Evidently G(V*(S), •) = (D(V*(S),*)) ~ (V*(S), • ) . Moreover, it can be eas
ily seen that the hyperstructure G(V*(S), •) is not associative, in general. 

From [31, 32] it follows tha t non-associative hyperstructures as quasi-hyper-
groups play an essential role in geometry. On the other hand certain quasi-hyper-
groups can be obtained from quite fundamental structures as transformation groups 
of bijective linear real functions of one variable. In [3] a certain construction of non-
commutative quasi-hypergroups is described based on a certain decomposition of 
the structure mentioned above. 

As an application of the previous results we obtain a theorem for binary hyper
structures with two binary hyperoperations — called Hv-rings which is analogous 
to the above one. In [6], [29] Lf^-rings are defined and investigated. Recall tha t 
LIi,~rings are triads (R, +,•), where R is a set and +: R x R —* 71, •: R x R —> 71 
are weakly associative (WASS) hyperoperations such tha t "+" satisfies the repro
duction axiom (i.e. (R, +) is iL^-group, (R, •) is a iL^-semigroup) and the hyper
operation "•" is weakly distributive with respect to the hyperoperation "+•", which 
means that 

x.(y + z) n (x.y + x.z) i= 0, 

(x + y) • z n (;r • 2 + y • z) ^ 0 

for all elements x,y,z E R, see [32]. 
Recall that iL^-ring homomorphisms or weak homomorphisms of Bj,-rmg 

(R, +, •) into another one (S, +, •) are mappings / : R —* S such tha t f(x + y)n 
(f(x) + f(y)) ? 0, f(x • y) n (f(x) • f(y)) ± 0 for any pair x,y e R. However, 
for our purposes we will consider so called inclusion homomorphisms between By-
rings as the basic morphisms for this objects. Let us remind tha t a mapping of a 
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LL^-ring (R, +, •) into another one (S, +, •) is called an inclusion homomorphism if 
f(x) + f(y) C f(x + y), f(x) • f(y) C f(x • y) for all elements x, y e R. 

Remark. In the following consideration we will apply the following useful identity 
valid for subsets of any hypergroupoid. Let (R, +) be a hypergroupoid, R ^ 0, 
X, Y, U, V nonempty subsets of the set R. Then 

(X U Y) + (UuV) = (X + U)U (X + V) U (Y + U) U (Y + V). 

Further denote the category of all if^-rings by HIj/R and their inclusion homo-
morphisms, by AH^M its full subcategory of all commutative H„-rings. Thus 
(R, +, •) e Ob AHuR whenever (R, +, •) is a Lf„-ring such tha t x • y = y • x for 
any pair x,y € R. Similarly as above we define for an arbitrary iI^-ring (R, +, •) 
the hyperoperations 0 , 0 on the diagonal D(R) = AR by 

[x,x] 0 [y, y] = {[u, u]; u e (x + y) U (y + x)}, 

[x,x]Q[y,y] = {[v,v];v e (x • y) U (y • x)} 

for all pairs x, y e R. Then we have 

Lemma 3. Let (R, +,•) be a Hv-ring. Then (D(R), 0 , 0 ) is a commutative Hv-ring. 

Proof. Let (R, +, •) be a H^-ring. According to Lemma 1 we obtain that (D(R), 0 ) 
is a commutative weakly associative hypergroupoid satisfying the reproduction ax
iom, thus it is a commutative LI^-group. Similarly (D(R),Q) is a commutative 
Hv-semigroup. Thus it remains to prove tha t 

[x,x] 0 ([y,y] 0 [z,z]) n ([x,x] 0 [y,y]) © ([x,x] 0 [z,z]) £ 0 

for arbitrary elements x,y,z e R. 
Indeed, we have [y, y] © [z, z] — {[u,u];u e (y + z)U (z + y)} and 

[x,x]Q([y,y]®[z,z])=: 

= U lX' x) © [u> u] 
u€(y+z)U(z+y) 

= ( U [-c,-c] 0 [«,«]) U ( U [x,x}0[u,u]\ 
u€(y+z) u€(z+y) 

= ( U {[v,v];v e x • uUu-x}) u ( U {[v,v];v e x-uUu-x}\ 
ue(y+z) u€(z + y) 

— U { [ u ' t l ] ^ € x • u ) u U {[ v » t , ] . u e u x ) u U {K^li^^'wu^^} 
w€(y+z) ug(y+-) ue(z+y) 

= {[v,v]\v e x • (y + x)} U M(x,y,z) 

where M(x,y,z) = \J {[v,v];v e u • x} U \J {[v,v];v e x • uUu-x}. 
u€(y + z) u€(z + y) 

On the other hand 

[x,x] 0 [y,y] = {[v,v];u € xyUy-x} = {[f,v];v € .x • y} U {[v,v];v € y • x}, 

[x,x] 0 [z,z] = {[v,v];v e x • z}U {[v,v];v e z • x} 
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and then 

([x,x]Q[y,y])@([x,x]o[z,z]) = 

= {[u,u];u e x • y} U {[v, v];v G y • x}) ® ({[v,v];v e x • z} U {[v,v]; v e z • x}) 

= ({[v,v];v e x • y} © {\v,v];v e x • z}) U ({[v,v],v G x • y} © {[u,u];u e z • x}) 

U ({[v,v];v e y • x} © {[v,v];v e. x • z}) U ({[v,v],v e y • x} © {[v,v];v e z • x}) 

= ( U lv»vl ® [u'uD u ( U fi;'?;3 ® [w 'uDu 

U ( U b i v] © [u, u]) U ( U [v, v] © [u, u]) 
v€y -x vey-x 
u£x-z u£zx 

U {[t,t];t e (v + u) U (u + v)} U K(x,y, z), 

where 

A'(x, y,z) = ( U [«. v] © [u, u]) U ( U K v] © [u, u]) U ( U [w, v] © [u, u]). 
vGx-y v€y-se v€yx 
u£z-x uGcc-z U€X'.T 

Now, we have 

([x,x] 0 [u,u]) © ([x,x] 0 [*,*]) = 

- U {[*,*];* G « + V}U U {[t.tlitett + v j u ^ y ^ ) 
v€xy v£xy 
u€x-z uex-z 

- {[t,t];t e x-y + x- z}U{[t,t];t ex- z + x • y] U K(x,y, z). 

As by the supposition (x-y+x-z)nx-(y+z) -£ 0, we have [t0 ,t0] G {[u,u];u G x-(y-f;z)} 
for some t0 G a; • y + x • z, thus 

{[v,v];v G x - (x/ + z ) } n {[t,t];t e x • y + x • z} ^ 0, 

consequently fthe sets [x, x] 0 ([«, y] © [2, 2]), ([x, x) 0 [y, y\) © ([x, x] 0 [2,«]) have a 
nonempty intersection. D 

Remark. The above proof implies that either of the laws of the weak distributivity 
for (R, +,•) (right or left) ensures the weak distributivity of (D(R), ©, 0 ) . 

Prom the above considerations it follows immediately: 

Lemma 4. Let (R, +, •) be a Hv-ring and rn(x) = [x,x] G D(R) for any x G R. 
Then the mapping r # : (R, +,•) —> ( D ( R ) , © , 0 ) is an inclusion homomojphism of 
Hv -rings. 

In order to prove a theorem analogous to Theorem 1 we show tha t the following 
lemma holds. 

Lemma 5. For any pair ofHv-rings (R, +, •), (S, +, •) and for any inclusion Hv-ring 
homomorphism, f: (R,+,-) —* (5,4-,-) there exists exactly one inclusion Hv-ring 
homomorphism f: (D(R), ©, 0 ) —> ( D ( 5 ) , © , 0 ) such that the diagram 
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( Я , + , - ) 

rн[ [r, (D4) 

(D(Я), , ) — S — > (D(5) , , ) 

is commutative. 

Proof. Consider an arbitrary inclusion ring homomorphism / : (/?., +, •) —> (S, + , •) 
and define / : (D(R) —> (D(S)) as the restriction of the mapping / X / : R X R —» 
5 x S onto D(H) cRxR, i.e. / = (/ x f)\D(P), hence /([a;, a:]) - [/(x), /(x)] for 
any x £ R. 
Now we have 

/ ( [x ,x] © [y,y]) = / ({ [u ,u ] ;u € (a; + y) U (y + a:)} 

- {[ / («) , / ( u ) ] , u £ (x + y) U (y + x)} 

- {[v, w], V e / ( x + y) U / ( y + x)} C {[v,«],« G (f(x) + / (y ) ) U ( ( / (y) + / ( * ) ) } 

= [/(*) + /(y)] © [/(y) + /(*)] = / ( [M) © /([y, v]) 
for any pair of elements x,y £ R and similarly / ( [x , x] 0 [y, y]) C / ([x, x]) 0 / ( [y , y]), 
which we obtain immediately from the above calculation changing the operation 
"©" by the operation "©". Moreover, we show that the diagram (D4) commutes. 

Let us suppose / : (R, + , •) —> (S, + , •) is an arbitrary HV-ring homomorphism. 
Then evidently / : ( D ( R ) , © , 0 ) -» ( D ( S ) , © , 0 ) is a /Turing homomorphism as 
well. For an arbitrary x £ R we have 

( r , o / ) ( x ) = r , ( / ( x ) ) = [ / (x) , / (x) ] = ( / x / ) ( x , x ) = / ( [x ,x] ) 

= / ( r R ( x ) ) = ( / o r R ) ( x ) , 

i.e. 

r / ° / = / °r i ?> (1) 

Now let g: (D(R), ©, 0 ) —> (D(S), ©, 0 ) be a Hiring homomorphism such tha t 

rf o / = y o r,R. (2) 

Since r# : R —• D(R),rs: 8 —• D(£) are bijections there is well defined r^ 1 : D(H) —> 
H, r " 1 ; D(S) -> 5 . We get then that the equalities (1), (2) imply 

/ = / o id = forRo r'1 =zrso f or^1 = gorRor~l = go id = y. 
D(R) o(H) 

The proof is complete. • 

From the above results we "obtain immediately the following theorem. 

Theorem 2 . Let H„R be the category of all Hv-rings and their inclusion homo-
morphisms, AH^R be its full subcategory of all commutative Hv-rings. Then the 
functor $ : H^M -» AH^M defined by 

$ ( # . + , - ) = ( D ( R ) , © , 0 ) , * ( / ) = / for any (R,+,-) £ O b H V R 
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and any m,orphism f e MorH^M, / : (R, +,•) —> (5, +,•) is a reflector; more pre
cisely the pair (rR, (AR, ©, 0 ) ) is an AMuR-reflection for any (R, + , •) e Ob(H„R) . 
Thus AH„K is a reflective full subcategory of the category H„R. 

Remark. The results presented at the Second Conference on Mathematics and 
Physics at Technical Universities and published in [11] are a special case of the 
topic studied in the first part of the presented paper. 
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