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Characterizations of commuting relations 

Tamos Glavosits and Arpâd Szâz 

Abstract. After some preparations, we give some necessary and sufficient con­
ditions in order tha t two preorders, tolerances, resp. equivalences R and S 
on the same set be commuting with respect to composition in the sense tha t 
RoS = SoR. 

0. Introduction 
To provide some necessary and sufficient conditions in order that two preorders, 
tolerances, resp. equivalences be commuting, we prove the following theorems. 

Theorem 1. If R and S are preorders on X, then the following assertions are 

equivalent: 

(1) SoRcRoS; 

(2) Ro S is a preorder; 

(3) Ro S is the preorder generated by RU S . 

Theorem 2. If R and S are tolerances on X, then the following assertions are 
equivalent: 

(1) RoS = SoR; 

(2) Ro S is a tolerance; 

(3) R(x)HS (y) ^ 0 implies S (x) DR(y)^0 for all x, y G X. 

Theorem 3. If R and S are equivalences on X, then the following assertions 
are equivalent: 

(1) RoS^SoR; 

(2) Ro S is an equivalence; 
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(3) there exists an equivalence E on X such that 

E(x) = {J{R(u): R(u)cE(x)}={J{S(v): S(v)cE(x)} 

for all x ~ X, and 

R (u) C E (:/;) and S (v) C E (x) imply R(v)nS (v) / 0 

for all x, u, v G X. 

Remark. In assertion (1) of Theorem 1 we cannot write equality instead of 
inclusion. But, in assertions (1) of Theorems 2 and 3 we can write any of the 
two possible inclusions instead of equality. 

Moreover, it is also worth mentioning that the relation E in Theorem 3 is 
uniquely determined. Namely, if H and S are equivalences on X such that asser­
tion (3) of Theorem 3 holds, then we necessarily have E ~ R o S. 

1. A few basic facts on relations 

As usual, a subset H of a product set X2 = XxX is called a relation on X. In 
particular, the relation Ax = {(x, x) : x G X } is called the identity relation 
on X. 

If H is a relation on X, and moreover x ~ X and A C X, then the sets 
R(x) = {y e X : (x, y) 6 H} and R[A] = ( J a G A R(a) a r e called the images 
of x and A under H, respectively. 

If H is a relation on X, then the images R(x), where x e X, uniquely 
determine H since we have H = U x e x {x}xR(x). Therefore, the inverse H"1 

of H can be defined such that H-1 (x) = { y G X : x £ R(y)} for all x e X. 

Moreover, if H and S are relations on X, then the composition S o H of 
S and H can be defined such that (So R)(x) = S [R(x)] for all x C X. In 
particular, we write Rn = H o Hn_1 for all n G N by agreeing that H° = A x • 

A relation H on X is called reflexive, symmetric and transitive if Ax C H, 
H_1 C H and H2 c H, respectively. Moreover, a reflexive and transitive relation 
is called a preorder, and a symmetric preorder is called an equivalence. 

For any relation H on X , we define H* = \J^LQ Rn and H* = ( H U H " 1 ) * . 
Thus, H* and H* are the smallest preorder and equivalence on X containing H, 
respectively. Moreover, • and * are algebraic closure operations on V (X2). 

Besides preorders, reflexive and symmetric relations are also of fundamental 
importance. They are usually called tolerances. Note that if d is a pseudo-metric 
on X, then the surroundings Br = { (x, y) C X2 : d(x, y) < r } are tolerances. 

In the sequel, whenever confusions seem unlikely, we shall simply write H (A) 
in place of H [ A}. Note tha t this convention may only cause some serious troubles 
whenever A c X such that A G X which is rarely the case in practice. 
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2. Characterizations of commuting relations 

Theorem 2 .1 . If R and S are relations on X, then the following assertions are 
equivalent: 

(1) SoR c RoS; 

(2) R (x) n S~1(y) / 0 implies S (x) n R~1(y) + % for all x, y G X. 

Proof. To check this, note that for any x, y G X we have 

(x,y) e SoR <=> y e (SoR)(x) 4=> 

4=> yeS(R(x)) <=> R(x)nS-1(y)^-0. 

Now, as some immediate consequences of Theorem 2.1, we can also state 

Corollary 2.2. If R and S are symmetric relations on X, then the following 
assertions are equivalent: 

(1) SoR c RoS; 

(2) R(x)C\S (y) ^ 0 implies S(x) n R(y) ^ 0 for all x, y G X. 

Corollary 2.3. If R is a relation on X, then the following assertions are equi­
valent : 

(1) R~lo R c RoR-1; 

(2) R(x) r\R(y)^$ implies R~1(x) n R"l(y) ^ 0 for all x,yeX. 

In addition to Corollary 2.2, we can also prove the following 

Theorem 2 .4 . / / R and S are symmetric relations on X, then the following 
assertions are equivalent: 

(1) So Re RoS; (2) RoS is symmetric; (3) RoS = SoR. 

Proof. If (1) holds, then it is clear that 

( R o S ) - 1 ^ - ^ R~1=SoR c RoS. 

Therefore, (2) also holds. 

While, if (2) holds, then it is clear that 

R o S = (R o S) -1 = S'1 o R-1 = S o R. 

Therefore, (3) also holds. 

Concerning transitive relations, in contrast to Theorem 2.4, we can only prove 

Theorem 2 .5. / / R and S are transitive relations on X such that SoR c RoS, 
then RoS is also a transitive relation on X. 

Proof We evidently have 

(RoS)2 = (RoS)o(RoS)= Ro(SoR)oS C Ro(RoS)oS = R2o S2 c RoS. 
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The following example shows tha t an analogue of Theorem 2.4 for transitive 
relations need not be true. 

Example 2.6. If X = { 1, 2, 3 } , and moreover 

R= { ( 1 , 2 ) , ( 1 , 3) , (2, 3 ) } and S= { ( 1 , 2 ) , ( 1 , 3) , (3 , 2 ) } , 

then it can be easily seen tha t R and S are transitive relations on X such that 
R o S and S o R are also transitive relations on X, but 

S o R <£ R oJS and R o S £ S o R. 

3. Characterizations of commuting preorders 
Despite Example 2.6, as a partial analogue of Theorem 2.4, we can still prove 

Theorem 3 .1 . / / R and S are preorders on X, then the following assertions are 
equivalent: 

(1) SoRcRoS; (2) RoS isapreorder; (3) RoS = (RUS)*. 

Proof. Since A x = A x o A ^ C R o S, by Theorem 2.5 it is clear that the 
implication (1) => (2) is true. 

Moreover, by the corresponding properties of the operation * , it is clear that 
R C R* C (R U S)* and S C S* C ( R U S)* , and hence 

RoS c ((RUS)*)2 = (RUS)*. 

On the other hand, by the reflexivity of the relations R and S, it is clear that 
R = RoAx C RoS and S = Ax o S c RoS, and thus HU;5 C RoS. Hence, 
by using (2), we can already infer tha t 

( f l u S)* C (RoS)* = RoS. 

Therefore, the implication (2) => (3) is also true. 

Finally, from the inclusion RoS C (RU S)* established above, it is clear 
that 

SoRc (SUR)* = (RUS)*. 

Therefore, the implication (3) = > (1) is also true. 

The following example shows that , in contrast to Theorem 2.4, the equality 
cannot be stated in assertion (1) of Theorem 3.1. 

Example 3 .2. If X = { 1, 2, 3 } , and moreover 

R={(1,2)}* and S= { ( 3 , 1 ) } * , 

then it can be easily seen tha t R and S are is a preorders on X such that RoS 
is also a preorder on X, but RoS <f. S o R. 

Now, as an immediate consequence of Theorem 3.1, we can also state 

Corollary 3 .3. If R is a preorder on X, then the following assertions are equi­
valent : 

(1) R~loRcRoR~l; (2) RoR*1 is a preorder; (3) R* = RoR-1, 
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Moreover, by using Theorems 2.4 and 3.1, we can also easily establish 

Theorem 3 .4. If R and S are equivalences on X, then the following asseriions 
are equivalent: 

(1) R o S = S o R; (4) RoS is a preorder ; 

(2) So R C RoS; (5) RoS is a tolerance; 

(3) R o S = (R U S) * ; (6) RoS is an equivalence. 

Hint. To check this, note that R U S is now a symmetric relation, and therefore 
(RuS)* = (RUS)*. 

Remark 3 .5 . Note that in each of the assertions in Theorems 2.4 and 3.4 we may 
write S in place of R and R in place of S. 

4. Some further composition properties of preorders 
In addition to Theorem 3.1, it is also worth proving the following 

Theorem 4 . 1 . If R is a reflexive relation and S is a preorder on X, then the 
following assertions are equivalent: 

(1) RcS; (2) S = RoS; (3) S = SoR. 

Proof. If (1) holds, then it is clear that 

S = Ax o S C R o S c S2 = S and S = S o Ax c S o R c S2 = S. 

Therefore, (2) and (3) also hold. 

While, if (2) and (3) hold, then we can at once see that 

R = RoAx CRoS = S and R = AxoRcSoR = S, 

respectively. Therefore, the implications (2) ==> (1) and (3) ==> (1) are also true. 

Now, as an immediate consequence of the above theorem, we can also state 

Corollary 4 .2. If R is a reflexive and S is a transitive relation on X such that 

R C S, then R o S = S o R. 

Proof Note that now Ax C R C S also holds. Therefore, by Theorem 4.1, we 
have RoS = S = SoR. 

Moreover, in addition to Theorem 4.1, we can also easily prove the following 

Theorem 4 .3 . If R is a tolerance and S is a transitive relation on X such that 
R C S, then for any x, y G X the following assertions are equivalent: 

(1) yeS(x); (3) R(y)cS(x); 

(2) ye(RoS)(x); (4) R(y)nS(x)^%. 

Proof. By Theorem 4.1, we have S = RoS. Therefore, assertions (1) and (2) are 
equivalent. 
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Moreover, if (1) holds, then it is clear that 

R(y) c R(S(x)) C S(S(x)) = S2(x) = S(x). 

Therefore, (3) also holds. 

While, if (3) holds, then we have R (y)nS (x) = R (y). Thus, since y G R(y), 
(4) also holds. 

Finally, if (4) holds, then it is clear that 

ycR-~l(S(x))=R(S(x)) = (RoS)(x). 

Therefore, (2) also holds. 

Now, as an immediate consequence of the above theorem, we can also state 

Corollary 4 .4. If R is an equivalence on X, then for any x, y G X the following 
assertions are equivalent: 

(1) yeR(x); (3) R(x) = R(y); 

(2) R(y)cR(x); (4) R(x)nR(y)^0. 

5. Some important properties of commuting equivalences 

Definition 5 . 1 . If R and E are relations on X such that for each x € X there 
exists A C X such that E (x) = R (A), then we say that R divides E . 

Simple reformulations of the above definition give the following 

Theorem 5 .2. / / R and E are relations on X , then the following assertions are 

equivalent: 

(1) R divides E; 

(2) there exists a relation S on X such that E = R o S; 

(3) E(x) = U {R(u) : R(u)cE(x)} for all xeX. 

Proof. If (1) holds, then for each x G X there exists Ax c X such that 
E (x) = R(AX). Hence, by defining a relation S on X such that S (x) = Ax 

for all x E l , we can at once see that 

E(x) = R(AX) = R(S(x)) = (RoS)(x) 

for all x e X. Therefore, (2) also holds. 

While, if (2) holds, then we have 

(1) E(x) = (RoS)(x)=R(S(x))= U R(u) c 

u<=S(x) 

C | J {H (w) : R(u)c R(S(x))}=U {R(u): R(u)cE(x)} C E (x) 

for all x e X. Therefore, (3) also holds. 

Finally, if (3) holds and x G X, then by defining 

A={ueX : R(u) C E(x)} 
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we can at once see that E (x) = [JuGA R (u) = R (A). Therefore, (1) also holds. 

Theorem 5.3. If R and S are preorders on X such that S o R c R o S, then 
E = R o S is a preorder on X such that R divides E . 

Proof. By Theorem 3.1, E is a preorder on X. Moreover, by Theorem 5.2, R 
divides E. 

Remark 5.4. In addition to the above theorem, we can also note that 

R = RoAx C RoS = E and S = Ax o S C R o S = E, 

and thus by Theorem 4.1 we also have 

E = RoE = EoR and E = SoE = EoS. 

Definition 5.5. If R, S and E are relations on X such that 

R(u)cE(x) and S(v) c E(x) imply R(u)nS(v)^0 

for all x, u, v G X, then we say that E controls R and S. 

The appropriateness of this definition is apparent from the following 

Theorem 5 .6 . If R and S are equivalences on X such that SoR c RoS, then 
E = Ro S is an equivalence on X such that 

(1) R and S divide E; (2) E controls R and S. 

Proof. By Theorem 3.4, it is clear that E is an equivalence on X , and moreover 
E = Ro S = S o R. Therefore, by Theorem 5.2, assertion (1) holds. 

To prove (2), suppose tha t x, u, v E X such that 

R(u) C E (x) and S (v) C E (x). 

Then, by the reflexivity of R and S, we also have u & E (x) and v G E(x). 
Hence, by using Corollary 4.4, we can infer tha t 

ueE(x) = E(v) = (RoS)(v) = R(S(v)). 

Therefore, by the symmetry of R , we also have 

R(u) f)S(v) = R-l(u) n S(v) ^ 0 . 
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6. The unicity of the relation E 

Theorem 6 .1 . If R and E are relations on X such that R divides E, and 
moreover R is transitive, then R o E C E . 

Proof. By Theorem 5.2, there exists a relation S on X such that E = R o S. 
Hence, it is clear that 

RoE=,Ro(RoS) = R2oS c RoS = E. 

Remark 6.2. Note that if in addition R is reflexive on X, then we also have 
E — Ax ° E C R o E, and thus the equality E = R o E is also true. 

However, it is now more important to note the following 

Corollary 6.3. If R and E are relations on X such that R divides E. and 
moreover R is transitive and E is reflexive on X, then R C E. 

Proof. By the reflexivity of E and Theorem 6.1, we have R = RoAx C RoE C E. 

Now, as a certain converse to Theorem 5.6, we can also prove the following 

Theorem 6 .4 . If R and S are symmetric and transitive relations on X such 
that there exists a reflexive relation E on X such that 

(1) R and S divide E, (2) E controls R and S, 

then Ro S = S o R . 

Proof By Theorem 2.4 and Corollary 2.2, it is enough to show only that 

R(x)HS(y)^0 implies S (x) n R (y) £ 0 

for all x, y €• X. 

For this, note that if R(x) n S (y) ^ 0, then there exists z £ X such that 
z € R(x) and z G S (y). Hence, by using the symmetries of R and S and 
Corollary 6.3, we can infer that 

xeR-1(z) = R(z) c E(z) and y C S~l (z) = S (z) C E (z), 

Now, by using Theorem 6.1, we can also easily see that 

S(x) C S(E(z)) cE(z) and R(y) cR(E(z)) C E (z). 

Therefore, by (2), we also have S(x)nR(y) ^®. 

Now, concerning the unicity of the relation E, we can also prove the following 

Theorem 6 .5 . If R, S and E are equivalences on X such that 

(1) R and S divide E, (2) E controls R and S, 

then E = RoS . 

Proof By Corollary 6.3, we have R C E and S C E. Hence, it is clear tha t 
RoS CE2 = E. 
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On the other hand, if x G X and y € E (x), then by Theorem 6.1 and the 

reflexivity of E it is clear that 

R(y) cR(E(x)) =(RoE)(x) cE(x) 

and 
S(x) c S(E(x)) = ( 5 o £ ) ( x ) c E(x). 

Hence, by (2), it follows that R (y) n 5 ( a : ) / D , and thus 

yeR~1(S(x)) =R(S(x)) =(RoS)(x). 

Therefore, E C R o S is also true. 

Remark 6.6. Note that , by [7 , Theorem 3.1], we may write 'refines' instead of 

'divides' in Theorems 5.6 and 6.5. 

Acknowledgement. The authors are indebted to the referee for drawing our 

attention to a paper by Frantisek Sik. 

Professor Sik [6] has formerly proved the equivalences (1) <=> (3) 4=> (6) 

of Theorem 3.4 in a direct way. 

Meantime, we have also learned that a certain form of Theorem 3 was already 

proved by Oystein Ore [4 , p. 590] . 

References 
[1] T. Glavosits, Generated preorders and equivalences, Acta Acad. Paed. Agriensis, Sect. Math. 

29 (2002), 95 103. 
[2] T. Glavosits, Preorders and equivalences generated by, commuting relations Acta Math. Acad. 

Paedagog. Nyhazi. (N.S.) 18 (2002), 53-56, (electronic). 
[3] T. Glavosits and A. Szaz, Decompositions of commuting relations, Acta Math. Inform. Univ. 

Ostrava 11 (2003), 25-28. 
[4] O. Ore, Theory of equivalence relations, Duke Math. J. 9 (1942), 573-627. 
[5] G. Pataki and A. Szaz, A unified treatment of well-chainedness and connectedness, properties 

Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 19 (2003), 101-165, (electronic). 
[6] F . Sik, Uber Charakterisierung kommutativer, Zerlegungen Spisy vyd. pfirod. fak. 

Masarykovy univ. 1 9 5 4 / 3 , 97-102. 
[7] A. Szaz, Relations bibitemining and dividing each other, Pure Math. Appl. 6 (1995), 385-394. 

Author(s) Address(es): 
INSTITUTE OF MATHEMATICS, UNIVERSITY OF DEBRECEN, H-4010 DEBRECEN, P F . 12, 

HUNGARY 

E-mail address: g l a v o s i t S d r a g o n . k l t e . h u , szaz0math .k l t e .hu 


		webmaster@dml.cz
	2013-10-22T11:28:29+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




