Acta Mathematica Universitatis Ostraviensis

Michaela Holešová

Some monomial curves as set-theoretic complete intersections

Acta Mathematica Universitatis Ostraviensis, Vol. 12 (2004), No. 1, 33--39

Persistent URL:
http://dml.cz/dmlcz/120602

Terms of use:

© University of Ostrava, 2004

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Some monomial curves as set-theoretic complete intersections

Michaela Holešová

Abstract. We describe associated prime ideals of some monomial curves in A^{4} We use a procedure by which we prove that these curves are intersection of three hypersurfaces and we found their concrete description.

1. Introduction

It is known that k -dimensional algebraic affine variety is intersection of not less than n - k hypersurfaces in n-dimensional affine space A^{n}. There is the presumption that a number of these hypersurfaces is exactly $n-k$. In this case we can say that they are ideal-theoretic or set-theoretic complete intersections. This is also equivalent to the fact that either the associated ideal I of this variety has $\mathrm{n}-\mathrm{k}$ generators (idealtheoretic complete intersection) or the ideal I is radical of an ideal $a, a \subseteq I$, the ideal a has n-k generators (set-theoretic complete intersection). The number n-k is also height of the ideal I.

Kunz [6] showed that every monomial curve $C\left(n_{1}, n_{2}, n_{3}\right)$ in 3-dimensional affine space is an intersection of two hypersurfaces. This presumption is also correct for some monomial curves in 4 -dimensional affine space A^{4} as known by Bresinsky [2], Gastinger [5] and Solčan [7].

2. The associated prime ideal P of the monomial curve $C\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$

Let $n_{1}, n_{2}, n_{3}, n_{4}$ be positive integers with g.c.d. equal 1 and $n_{1}, n_{2}, n_{3}, n_{4}$ is a minimal set of generators for the numerical semigroup $H=\left\langle n_{1}, n_{2}, n_{3}, n_{4}\right\rangle=\{n, n=$ $\sum a_{i} n_{i}, a_{i}$'s are nonnegative integers $\}$.

Received: December 15, 2004.
1991 Mathematics Subject Classification: Primary 14H45, 14M10; Secondary 14A05
Key words and phrases: a monomial curve, an associated prime ideal, a set-theoretic complete intersection.

The paper was supported by VEGA 2/4138/24.

Let K be an arbitrary field, $R=K\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ the polynomial ring in four variables over $K . C\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ a monomial curve in affine space A^{4} over K having parameterization $x_{i}=t^{n_{i}}, i=1,2,3,4$. The ideal $P=P\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ of all polynomials $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in R$ such that $f\left(t^{n_{1}}, t^{n_{2}}, t^{n_{3}}, t^{n_{4}}\right)=0, t$ transcendental over K, is the associated prime ideal of local ring $R_{\left(x_{1}, x_{2}, x_{3}, x_{4}\right)}$ of the monomial curve $C\left(n_{1}, n_{2}, n_{3}, n_{4}\right) . \quad P$ is the corresponding ideal with $\operatorname{dim}(P)=1$ and height $\mathrm{ht}(P)=3$ (more information in [6]).

Let a binomial term $\prod_{i=1}^{4} x_{i}{ }^{\gamma_{i}}-\prod_{i=1}^{4} x_{i}{ }^{\vartheta_{i}} \in P$, where $\gamma_{i} \vartheta_{i}=0, i=1,2,3,4$. It is clear that $\sum_{i=1}^{4} \gamma_{i} n_{i}=\sum_{i=1}^{4} \vartheta_{i} n_{i}$.

We have basically two types of binomial terms of P :
i) $\quad x_{i}^{\gamma_{i}} x_{j}^{\gamma_{j}}-x_{k}^{\gamma_{k}} x_{l}^{\gamma_{t}},\{i, j, k, l\}=\{1,2,3,4\}, \gamma_{i} \gamma_{j} \gamma_{k} \gamma_{l} \neq 0 \quad$ or
ii) $\quad x_{i}^{r_{i}}-x_{j}^{\alpha_{i j}} x_{k}^{\alpha_{i k}} x_{l}^{\alpha_{i l}},\{i, j, k, l\}=\{1,2,3,4\}, r_{i} \neq 0$.

We denote the binomial term $x_{i}^{r_{i}}-x_{j}^{\alpha_{i j}} x_{k}^{\alpha_{i k}} x_{l}^{\alpha_{i t}}$ by $\left(x_{i}^{r_{i}}\right)$ if r_{i} is minimal and by $\left(x_{i}^{r_{i}}, x_{j}^{r_{j}}\right)$ if $x_{j}^{r_{j}}-x_{i}^{\alpha_{j i}} x_{k}^{\alpha_{j k}} x_{l}^{\alpha_{j l}} \in P$ with r_{j} minimal and $\alpha_{j i}=r_{i}, \alpha_{j k}=\alpha_{j l}=0$. Every generating set for P contains for each $i(i=1,2,3,4)$ at least one polynomial $x_{i}^{r_{i}}-x_{j}^{\alpha_{i j}} x_{k}^{\alpha_{i k}} x_{l}^{\alpha_{i l}}$ with r_{i} minimal. We also denote polynomial $x_{i}^{r_{i}}-x_{j}^{\alpha_{i j}} x_{k}^{\alpha_{i k}} x_{l}^{\alpha_{i l}}$ by $\left(x_{i}^{r_{i}}(k, l)\right)$ if r_{i} is minimal with respect to the condition either $\alpha_{i k} \neq 0$ or $\alpha_{i l} \neq 0$. We define as H.Bresinsky a set B in three cases as follows:

- Let $\left(x_{s}^{r_{s}}\right), s=i, j, k, l,\{i, j, k, l\}=\{1,2,3,4\}$, with at least two exponents $\alpha_{s h}$ not zero, $h \in\{i, j, k, l\}-\{s\} . B=\left\{\left(x_{i}^{r_{i}}\right),\left(x_{j}^{r_{j}}\right),\left(x_{k}^{r_{k}}\right),\left(x_{l}^{r_{l}}\right)\right\}$
- $\left(x_{i}^{r_{i}}, x_{j}^{r_{j}}\right) \in P$, but $\left(x_{k}^{r_{k}}, x_{l}^{r_{l}}\right) \notin P$. Either $B=\left\{\left(x_{i}^{r_{i}}, x_{j}^{r_{j}}\right),\left(x_{k}^{r_{k}}\right),\left(x_{l}^{r_{l}}\right)\right\}$ or $B=\left\{\left(x_{i}^{r_{i}}, x_{j}^{r_{j}}\right),\left(x_{k}^{r_{k}}\right),\left(x_{l}^{r_{l}}\right),\left(x_{j}^{r_{j}^{\prime}}(k, l)\right)\right\}$,
- $B=\left\{\left(x_{i}^{r_{i}}, x_{j}^{r_{j}}\right),\left(x_{k}^{r_{k}}, x_{l}^{r_{l}}\right)\right\} \cup C, C \subseteq\left\{\left(x_{j}^{r_{j}^{\prime}}(k, l)\right),\left(x_{l}^{r_{l}^{\prime}}(i, j)\right)\right\}$.

We write $x_{i}^{\gamma_{i 1}} x_{j}^{\gamma_{j 1}}-x_{k}^{\gamma_{k 1}} x_{l}^{\gamma_{11}} \nless x_{i}^{\gamma_{i 2}} x_{j}^{\gamma_{j 2}}-x_{k}^{\gamma_{k 2}} x_{l}^{\gamma_{22}}$ if between the first (second) monomials of this polynomials it is holding either $\gamma_{i 1}>\gamma_{i 2}\left(\gamma_{k 1}>\gamma_{k 2}\right)$ and $\gamma_{j 1}<$ $\gamma_{j 2}\left(\gamma_{l 1}<\gamma_{l 2}\right)$ or the inequalities are reversed.

We next define a set $D_{i j}, i \neq j,\{i, j\} \subset\{1,2,3,4\}, D_{i j}=\left\{f=x_{i}^{\gamma_{i}} x_{j}^{\gamma_{j}}-x_{k}^{\gamma_{k}} x_{l}^{\gamma_{l}}\right.$, $\{k, l\} \subset\{1,2,3,4\}-\{i, j\}, \gamma_{h}<r_{h}$ for the polynomials $\left(x_{h}^{r_{h}}(k, l)\right)$ if $h \in\{i, j\}$, for the polynomials $\left(x_{h}^{r_{h}}(i, j)\right)$ if $h \in\{k, l\}$ and for each binomial term $f^{\prime}=x_{i}^{\gamma_{i 1}} x_{j}^{\gamma_{j 1}}-$ $x_{k}^{\gamma_{k_{1}}} x_{l}^{\gamma_{l 1}} \in P, f^{\prime} \neq f$ is $\left.f^{\prime} \nless f\right\}$.

In [1], H.Bresinsky gives the following theorem.

Theorem 2.1. $M=B \cup D_{i j} \cup D_{i k} \cup D_{i l},\{i, j, k, l\}=\{1,2,3,4\}$ is a minimal generating set for the associated prime ideal $P=P\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ of the monomial curve in A^{4}.

We can find in [5], Lemma 7.1, the next property of minimal generating set for a prime ideal P.

Lemma 2.1. Let $g_{j}=\prod_{i=1}^{4} x_{i}{ }^{\gamma_{i}}, j=1, \ldots, t$ be a monomial term in R. Let $M=\left\{x_{1}^{r_{1}}-g_{1}, x_{2}^{r_{2}}-g_{2}, g_{3}-g_{4}, \ldots, g_{t-1}-g_{t}\right\}$ be a minimal generating set for the associated prime ideal P of the monomial curve in A^{4}. If $x_{2} \mid g_{1}$ and $x_{1} \mid g_{2}$, then there is $k, 3 \leq k \leq t$ with $g_{k}=x_{1}^{\delta_{1}} x_{2}^{\delta_{2}}$.

The preceding lemma and theorem give necessary conditions of a minimal set of generators for an associated prime ideal P of a monomial curve. Put $N=$ $\left\{x_{i}^{r_{i}}-x_{j}^{\alpha_{i j}} x_{k}^{\alpha_{i k}} x_{l}^{\alpha_{i l}}, x_{j}^{r_{j}}-x_{i}^{\alpha_{j i}} x_{k}^{\alpha_{j k}} x_{l}^{\alpha_{j l}}, x_{k}^{r_{k}}-x_{i}^{\alpha_{k i}} x_{l}^{\alpha_{k l}}, x_{l}^{r_{l}}-x_{i}^{\alpha_{l i}} x_{j}^{\alpha_{l j}}\right\},\{i, j, k, l\}=$ $\{1,2,3,4\}$, where only $\alpha_{i l}$ or $\alpha_{j i}$ can be zero. By using the Lemma 2.1 we obtain, the set N can't be minimal generating set for the ideal P, but the set $N \cup\left\{x_{i}^{\gamma_{i}} x_{k}^{\gamma_{k}}-x_{j}^{\gamma_{j}} x_{l}^{\gamma_{l}}\right\}$ can be. When we use every conditions of the Theorem 2.1 we get the following relations:

$$
\begin{align*}
r_{i} & =\alpha_{j i}+\alpha_{k i}+\alpha_{l i} \\
r_{j} & =\alpha_{i j}+\alpha_{l j} \\
r_{k} & =\alpha_{i k}+\alpha_{j k} \\
r_{l} & =\alpha_{i l}+\alpha_{j l}+\alpha_{k l} \\
\gamma_{i} & =\alpha_{j i}+\alpha_{l i}, \gamma_{j}=\alpha_{i j}, \gamma_{k}=\alpha_{j k}, \gamma_{l}=\alpha_{i l}+\alpha_{k l} \tag{1}
\end{align*}
$$

3. Set-theoretic complete intersection

In this section we suppose that the ideal P has the minimal generating set $N \cup$ $\left\{x_{i}^{\gamma_{i}} x_{k}^{\gamma_{k}}-x_{j}^{\gamma_{j}} x_{l}^{\gamma_{l}}\right\}$ with respected the relations (1).

Theorem 3.1. Let P be the associated prime ideal of the monomial curve $C\left(n_{1}, n_{2}\right.$, $\left.n_{3}, n_{4}\right)$ in the notation as above. Then this monomial curve $C\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ is a set-theoretic complete intersection.

Proof. We have to prove that $P=\operatorname{Rad}\left(f_{1}, f_{2}, f_{3}\right), f_{s} \in P, s=1,2,3$. Let $f_{2}=x_{j}^{r_{j}}-x_{i}^{\alpha_{j i}} x_{k}^{\alpha_{j k}} x_{l}^{\alpha_{j l}}, f_{3}=x_{k}^{r_{k}}-x_{i}^{\alpha_{k i}} x_{l}^{\alpha_{k l}},\{i, j, k, l\}=\{1,2,3,4\}$. When we add a linear combination of polynomials f_{2}, f_{3} to a polynomial $f \in R$ we denote it as \longrightarrow. Let $f_{4}=x_{l}^{r_{l}}-x_{i}^{\alpha_{l i}} x_{j}^{\alpha_{l j}}$, hence

$$
f_{4}^{r_{j} r_{k}}=(-1)^{r_{j} r_{k}} \sum_{h=0}^{r_{j} r_{k}}\binom{r_{j} r_{k}}{h}(-1)^{h}\left(x_{i}^{\alpha_{l i}} x_{j}^{\alpha_{l j}}\right)^{r_{j} r_{k}-h} x_{l}^{r_{l} h}
$$

We denote $b_{h}=\binom{r_{j} r_{k}}{h}(-1)^{r_{j} r_{k}+h}, h=0, \ldots, r_{j} r_{k} \cdot f_{4}^{r_{j} r_{k}} \longrightarrow$

$$
\begin{aligned}
& \longrightarrow \sum_{h=0}^{\alpha_{l j} r_{k}-1} b_{h} x_{i}^{\alpha_{l i}\left(r_{j} r_{k}-h\right)+\alpha_{j i}\left(\alpha_{l j} r_{k}-h\right)} x_{j}^{\alpha_{i j} h} x_{k}^{\alpha_{j k}\left(\alpha_{l j} r_{k}-h\right)} x_{l}^{\left(\alpha_{i l}+\alpha_{k l}\right) h+\alpha_{j l} \alpha_{l j} r_{k}} \\
& +\sum_{h=\alpha_{l j} r_{k}}^{r_{j} r_{k}} b_{h}\left(x_{i}^{\alpha_{l i}} x_{j}^{\alpha_{l j}}\right)^{r_{j} r_{k}-h} x_{l}^{r_{l} h} \\
& {\left[x_{j}{ }^{\alpha_{l j}\left(r_{j} r_{k}-h\right)} \longrightarrow x_{j}^{\alpha_{i j} h}\left(x_{i}^{\alpha_{j i}} x_{k}^{\alpha_{j k}} x_{l}^{\alpha_{j l}}\right)^{\left(\alpha_{l j} r_{k}-h\right)}, \text { if } h<\alpha_{l j} r_{k}\right]} \\
& \longrightarrow \sum_{h=0}^{\alpha_{j k} \alpha_{l j}-1} b_{h} x_{i}^{\alpha_{l i} r_{j} r_{k}+\alpha_{l j}\left(\alpha_{j i} r_{k}+\alpha_{k i} \alpha_{j k}\right)-r_{i} h}\left(x_{j}^{\alpha_{i j}} x_{k}^{\alpha_{i k}}\right)^{h} x_{l}^{\alpha_{i l} h+\alpha_{l j}\left(\alpha_{j l} r_{k}+\alpha_{j k} \alpha_{k l}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{h=\alpha_{j k} \alpha_{l j}}^{\alpha_{l j} r_{k}-1} b_{h} x_{i}^{\alpha_{l i}\left(r_{j} r_{k}-h\right)+\alpha_{j i}\left(\alpha_{l j} r_{k}-h\right)} x_{j}^{\alpha_{i j} h} x_{k}^{\alpha_{j k}\left(\alpha_{l j} r_{k}-h\right)} x_{l}^{\left(\alpha_{i l}+\alpha_{k l}\right) h+\alpha_{j l} \alpha_{l j} r_{k}} \\
& +\sum_{h=\alpha_{l j} r_{k}}^{r_{j} r_{k}} b_{h}\left(x_{i}^{\alpha_{l i}} x_{j}^{\alpha_{l j}}\right)^{r_{j} r_{k}-h} x_{l}^{r_{l} h} \\
& {\left[x_{k}^{\alpha_{j k}\left(r_{k} \alpha_{l j}-h\right)} \longrightarrow x_{k}^{\alpha_{i k} h}\left(x_{i}^{\alpha_{k i}} x_{l}^{\alpha_{k l}}\right)^{\left(\alpha_{j k} \alpha_{l j}-h\right)}, \text { if } h<\alpha_{j k} \alpha_{l j}\right]} \\
& =x_{l}^{\alpha_{l j}\left(\alpha_{j l} r_{k}+\alpha_{j k} \alpha_{k l}\right)}\left(\sum_{h=0}^{\ddot{\alpha}_{j k} \alpha_{l j}-1} b_{h} x_{i}^{\alpha_{t i} r_{j} r_{k}+\alpha_{l j}\left(\alpha_{j i} r_{k}+\alpha_{k i} \alpha_{j k}\right)-r_{i} h}\left(x_{j}^{\alpha_{i j}} x_{k}^{\alpha_{i k}}\right)^{h} x_{l}^{\alpha_{i l} h}\right. \\
& +\sum_{h=\alpha_{j k} \alpha_{l j}}^{\alpha_{l j} r_{k}-1} b_{h} x_{i}^{\alpha_{l i}\left(r_{j} r_{k}-h\right)+\alpha_{j i}\left(\alpha_{l j} r_{k}-h\right)} x_{j}^{\alpha_{i j} h} x_{k}^{\alpha_{j k}\left(\alpha_{l j} r_{k}-h\right)} x_{l}^{\alpha_{i l} h+\alpha_{k l}\left(h-\alpha_{j k} \alpha_{l j}\right)} \\
& \left.+\sum_{h=\alpha_{l j} r_{k}}^{r_{j} r_{k}} b_{h}\left(x_{i}^{\alpha_{l_{i}}} x_{j}^{\alpha_{l j}}\right)^{r_{j} r_{k-h}} x_{l}^{\alpha_{i l} h+\alpha_{j l}\left(h-\alpha_{l j} r_{k}\right)+\alpha_{k l}\left(h-\alpha_{j k} \alpha_{l j}\right)}\right) \\
& =x_{l}^{\alpha_{l j}\left(\alpha_{j l} r_{k}+\alpha_{j k} \alpha_{k l}\right)} f_{1}
\end{aligned}
$$

We denote the generator $x_{i}^{\alpha_{j i}+\alpha_{l i}} x_{k}^{\alpha_{j k}}-x_{j}^{\alpha_{i j}} x_{l}^{\alpha_{i l}+\alpha_{k l}}$ of the ideal P as f_{5}. Take an equation $x_{j}^{\alpha_{l j}} f_{5}=-x_{l}^{\alpha_{i l}+\alpha_{k l}} f_{2}-x_{i}^{\alpha_{j i}} x_{k}^{\alpha_{j k}} f_{4}$. It is clear that

$$
x_{j}^{\alpha_{l j}} f_{5} \equiv-x_{i}^{\alpha_{j i}} x_{k}^{\alpha_{j k}} f_{4} \quad \bmod \left(f_{2}, f_{3}\right)
$$

also

$$
x_{j}^{\alpha_{j} r_{j} r_{k}} f_{5}^{r_{j} r_{k}} \equiv(-1)^{r_{j} r_{k}} x_{i}^{\alpha_{j i} r_{j} r_{k}} x_{k}^{\alpha_{j k} r_{j} r_{k}} f_{4}^{r_{j} r_{k}} \quad \bmod \left(f_{2}, f_{3}\right)
$$

and

$$
\begin{equation*}
f_{4}^{r_{j} r_{k}} \equiv x_{l}^{\alpha_{t j}\left(\alpha_{j l} r_{k}+\alpha_{j k} \alpha_{k l}\right)} f_{1} \quad \bmod \left(f_{2}, f_{3}\right) \tag{2}
\end{equation*}
$$

We know that $R /\left(f_{2}, f_{3}\right)$ is a module over $K\left[x_{i}, x_{l}\right]$ and $\left\{f_{2}, f_{3}\right\}$ is a Gröbner basis for $\left(f_{2}, f_{3}\right)$ with respect to the lexicographic order, taking $x_{j}>x_{k}>x_{i}>x_{l}$. By [4], Chapter 1, §3, Exercise 4 each element $\bar{f} \in R /\left(f_{2}, f_{3}\right)$ is uniquely expressed $\bar{f}=a_{1}^{1} \cdot 1+\ldots+a_{1}^{r_{k}} \cdot x_{k}^{r_{k}-1}+a_{2}^{1} \cdot x_{j}+\cdots+a_{2}^{r_{k}} \cdot x_{j} x_{k}^{r_{k}-1}+\ldots+a_{r_{j}}^{1} \cdot x_{j}^{r_{j}-1}+\ldots$ $+a_{r_{j}}^{r_{k}} \cdot x_{j}^{r_{j}-1} x_{k}^{r_{k}-1}+\left(f_{2}, f_{3}\right), a_{d}^{n} \in K\left[x_{i}, x_{l}\right], n=1,2, \ldots, r_{k}, d=1,2, \ldots, r_{j}$. Clearly, the module $R /\left(f_{2}, f_{3}\right)$ has a basis $\left\{\overline{1}, \ldots, \overline{x_{j}^{r_{j}-1} x_{k}^{r_{k}-1}}\right\}$ (that is, a generating set that is linearly independent over $\left.K\left[x_{i}, x_{l}\right]\right)$, thus $R /\left(f_{2}, f_{3}\right)$ is free module over $K\left[x_{i}, x_{l}\right]$ and its rank is $r_{j} r_{k}$. Therefore

$$
\begin{equation*}
f_{5}^{r_{j} r_{k}} \equiv(-1)^{r_{j} r_{k}} x_{i}^{\alpha_{i j}\left(\alpha_{j k} \alpha_{k i}+\alpha_{j i} r_{k}\right)} x_{l}^{\alpha_{j k} \alpha_{k l} r_{j}} f_{1} \quad \bmod \left(f_{2}, f_{3}\right) \tag{3}
\end{equation*}
$$

Let $g=x_{i}^{r_{i}}-x_{j}^{\alpha_{i j}} x_{k}^{\alpha_{i k}} x_{l}^{\alpha_{i l}}$ be another generator of the ideal P. Moreover,

$$
x_{j}^{\alpha_{i j}} g \equiv-x_{i}^{\alpha_{j i}+\alpha_{k i}} f_{4} \quad \bmod \left(f_{2}, f_{3}\right) .
$$

We use the same properties as above and we have a consequence,

$$
\begin{equation*}
g^{r_{j} r_{k} \equiv(-1)^{r_{j} r_{k}} x_{i}^{\alpha_{i j} \alpha_{j i} r_{k}+\alpha_{k i} r_{j} r_{k}-\alpha_{j k} \alpha_{k i} \alpha_{l j}} f_{1} \quad \bmod \left(f_{2}, f_{3}\right) ~} \tag{4}
\end{equation*}
$$

If P is the associated prime ideal of the monomial curve, then $P=\operatorname{Rad}(P)$ and $f_{1} \in P$. That is way $\left(f_{1}, f_{2}, f_{3}\right) \subseteq P$ and this inclusion induces $\operatorname{Rad}\left(f_{1}, f_{2}, f_{3}\right) \subseteq P=$ $\operatorname{Rad}(P)$. If we know (2),(3),(4) then we easily get $P \subseteq \operatorname{Rad}\left(f_{1}, f_{2}, f_{3}\right)$. There is $P=\operatorname{Rad}\left(f_{1}, f_{2}, f_{3}\right)$ and our proof is completed.

Let

$$
\begin{gathered}
P=\left(x_{i}^{r_{i}}-x_{j}^{\alpha_{i j}} x_{k}^{\alpha_{i k}} x_{l}^{\alpha_{i l}}, x_{j}^{r_{j}}-x_{i}^{\alpha_{j i}} x_{k}^{\alpha_{j k}} x_{l}^{\alpha_{j l}}, x_{k}^{r_{k}}-x_{i}^{\alpha_{k i}} x_{l}^{\alpha_{k l}},\right. \\
\left.x_{l}^{r_{l}}-x_{i}^{\alpha_{l i}} x_{j}^{\alpha_{l j}}, x_{i}^{\alpha_{j i}+\alpha_{l i}} x_{k}^{\alpha_{j k}}-x_{j}^{\alpha_{i j}} x_{l}^{\alpha_{i l}+\alpha_{k l}}\right)
\end{gathered}
$$

be the ideal from the Theorem 3.1.
We have four cases:

$$
\begin{array}{ll}
\text { a) } & \alpha_{i l}=0 \wedge \alpha_{j i}=0 \\
\text { b) } & \alpha_{i l} \neq 0 \wedge \alpha_{j i} \neq 0 \\
\text { c) } & \alpha_{i l} \neq 0 \wedge \alpha_{j i}=0 \\
\text { d) } & \alpha_{i l}=0 \wedge \alpha_{j i} \neq 0
\end{array}
$$

It is known that associated prime ideal P of monomial curve $C\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ is from case a), when numerical semigroup $H=\left\langle n_{1}, n_{2}, n_{3}, n_{4}\right\rangle$ is symmetric and the curve is not ideal-theoretic intersection (see [2],[3]).

In $[8]$ we can find two groups of monomial curves

$$
\begin{aligned}
& C(4 s-1,4 s, 4 s+1,6 s) \quad \text { and } \\
& C(4 s+1,4 s+2,4 s+3,6 s+3), s \in N, s \geq 2
\end{aligned}
$$

Minimal generating sets of their associated prime ideals are

$$
\left\{x_{i}^{s+1}-x_{j} x_{k} x_{l}^{s-1}, x_{j}^{2}-x_{i} x_{k} x_{l}, x_{k}^{2}-x_{i} x_{l}, x_{l}^{s+l}-x_{i}^{s-1} x_{j}, x_{i}^{s} x_{k}-x_{j} x_{l}^{s}\right\}
$$

and

$$
\left\{x_{i}^{s+2}-x_{j} x_{k} x_{l}^{s-1}, x_{j}^{2}-x_{i} x_{k} \grave{x}_{l}, x_{k}^{2}-x_{i} x_{l}, x_{l}^{s+l}-x_{i}^{s} x_{j}, x_{i}^{s+1} x_{k}-x_{j} x_{l}^{s}\right\}
$$

for $(i, j, k, l)=(3,4,2,1)$ and $(i, j, k, l)=(1,4,2,3)$. By a direct computation, we know that the relations (1) hold for exponents of these polynomials, so we can say that these ideals are from the case b).

We obtain ideal from the case d) [case c)] by indexes permutation of generators for an ideal from the case c) [case d)]. Now, we show two examples of monomial curves which associated prime ideals are from new case c) or d). The prime ideals for this curves $C\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ are given by Computer algebra system Macaulay created by D.Bayer and M.Stillman.

Example 3.1. Let $C(8,9,15,19)$ be a monomial curve. $Q=\left(x_{1}^{3}-x_{2} x_{3}, x_{2}{ }^{3}-\right.$ $\left.x_{1} x_{4}, x_{3}^{3}-x_{1} x_{2}^{2} x_{4}, x_{4}^{2}-x_{1} x_{3}^{2}, x_{1}^{2} x_{2}^{2}-x_{3} x_{4}\right)$ is the associated prime ideal of this curve and it has description for $(i, j, k, l)=(3,2,4,1)$ as the ideal in the Theorem 3.1 from case c) or for $(i, j, k, l)=(1,3,2,4)$ from case d). Hence, the curve $C(8,9,15,19)$ is set-theoretic intersection and

$$
Q=\operatorname{Rad}\left(f_{1}, x_{2}^{3}-x_{1} x_{4}, x_{4}^{2}-x_{1} x_{3}^{2}\right), \text { where }
$$

$$
\begin{gathered}
\left.f_{1}=x_{3}^{8}-6 x_{1} x_{2}^{2} x_{3}^{5} x_{4}+\sum_{h=2}^{6}(-1)^{6+h}\binom{6}{h}\left(x_{2} x_{3}\right)^{6-h} x_{1}^{3 h-3} \quad[\text { case } \mathrm{c})\right] \text { or } \\
Q=\operatorname{Rad}\left(f_{1}^{\prime} x_{2}^{3}-x_{1} x_{4}, x_{3}^{3}-x_{1} x_{2}^{2} x_{4}\right) \text {, where } \\
f_{1}^{\prime}=\sum_{h=0}^{3}(-1)^{9+h}\binom{9}{h} x_{1}^{19-3 h} x_{2}^{h} x_{3}^{h}+\sum_{h=4}^{5}(-1)^{9+h}\binom{9}{h} x_{1}^{15-h} x_{2}^{h} x_{3}^{2(6-h)} x_{4}^{h-4}+ \\
\left.\sum_{h=6}^{9}(-1)^{9+h}\binom{9}{h}\left(x_{1} x_{3}^{2}\right)^{9-h} x_{4}^{2 h-10} \quad[\text { case d })\right] .
\end{gathered}
$$

Example 3.2. Let $C(12,13,20,23)$ be a monomial curve. Its associated prime ideal is $J=\left(x_{1}^{3}-x_{2} x_{4}, x_{2}^{4}-x_{1} x_{3}^{2}, x_{3}^{3}-x_{1}^{2} x_{2} x_{4}, x_{4}^{2}-x_{2}^{2} x_{3}, x_{1}^{2} x_{2}^{3}-x_{3}^{2} x_{4}\right)$. The ideal J has description as the ideal in the Theorem 3.1 from case d) for $(i, j, k, l)=(2,3,1,4)$ or from case c) for $(i, j, k, l)=(3,1,4,2)$. Therefore, this curve is set-theoretic intersection and

$$
J=\operatorname{Rad}\left(f_{1}, x_{1}^{3}-x_{2} x_{4}, x_{3}^{3}-x_{1}^{2} x_{2} x_{4}\right), \text { where }
$$

$$
\begin{gathered}
f_{1}=-x_{2}^{23}+9 x_{1} x_{2}^{19} x_{3}^{2}-36 x_{1}^{4} x_{2}^{1} 6 x_{3} x_{4}+\sum_{h=3}^{9}(-1)^{9+h}\binom{9}{h}\left(x_{2}^{2} x_{3}\right)^{9-h} x_{4}^{2 h-5} \\
\quad[\text { case d)] or } \\
J=\operatorname{Rad}\left(f_{1}^{\prime}, x_{1}^{3}-x_{2} x_{4}, x_{4}^{2}-x_{2}^{2} x_{3}\right) \text { where } \\
\left.f_{1}^{\prime}=x_{3}^{13}-6 x_{1}^{2} x_{2} x_{3}^{10} x_{4}+\sum_{h=2}^{6}(-1)^{6+h}\binom{6}{h}\left(x_{1} x_{3}^{2}\right)^{6-h} x_{2}^{4 h-4} \quad[\text { case c })\right] .
\end{gathered}
$$

Question. Did we give a description of all associated ideals P of monomial curves in A^{4} generated by 5 elements?

Acknowledgment: The author would like to thank for a very helpful conversation with Štefan Solčan regarding this paper.

References

[1] H.Bresinsky: Binomial generating sets for monomial curves, with applications in A^{4}. Rend.Sem.Mat., Univers. Politecn. Torino, 46, 1988, pp. 353-370.
[2] H.Bresinsky: Monomial Gorenstein curves in A^{4} as set-theoretic complete intersections. Manuscripta Math, 27, 1979, pp. 353-358.
[3] H.Bresinsky: Symmetric semigroup of integers generated by 4 elements. Manuscripta Math, 17, 1975, pp. 205-219.
[4] D. Cox, J. Little, D. O'Shea: Using Algebraic Geometry. Graduate Texts in Mathematics, Volume 185, Springer - Verlag, 1998.
[5] W.Gastinger: Über die Verschwindungsideale monomialer Kurven. Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften, Landshut, 1989.
[6] E.Kunz: Einführung in die kommutative Algebra und algebraische Geometrie. Vieweg, Braunschweig, 1980.
[7] S.Solčan: Monomialne krivky $C\left(p^{2}, p^{2}+p, p^{2}+p+1,(p+1)^{2}\right)$ ako množinové úplné prieniky. Zbornik vedeck ych prác z medzinárodnej vedeckej konferencie Matematika vo výuc̆be, výskume a praxi, Nitra 2002, pp. 94-97.
[8] M.Turčanová: Niektoré monomiálne krivky v A^{4} ako množinový úplný prienik. Rigorózna práca, FMFI UK Bratislava, 2000.

Author(s) Address(es):

Department of Algebra, Geometry and Didactics of Mathematics, Faculty of Science, University of Zilina, J. M. Hurbana 15, 01026 Zilina, Slovakia
E-mail address: michaela.holesova@fpv.utc.sk

