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Bernstein-Durrmeyer type operators

Zbigniew Walczak

Abstract. In this paper we introduce modified Bernstein-Durrmeyer operators
and study approximation properties of these operators, including theorems on
the degree of approximation.

1. Introduction

Let Cjo,1) be the set of all real-valued functions f continuous on [0, 1] with the norm

A= Ol = sup [f(@)]. ()]

[0,1]

In 1912 Bernstein constructed, for any function f € Cio 1), a sequence of poly-
nomials

By(fiz) == an,k(x)f <§), neN:={1,2,---}, 2)
k=0
where
Prk(Z) == (Z) .'L‘k(l — )"k 0<k<mn, (3)

z € [0,1], and proved that B,(f) =% f. These polynomials (2), called Bernstein
polynomials, possess many remarkable properties. We present only two of them.

Theorem A. Let f € Cl,1 and By(f;) be the Bernstein polynomial for f. Then
3 _
IBalfi) SO < Sw (fin72),  men,
where w (f;) is the classical modulus of continuity.
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Theorem B. Let f € 0[20.1] and By(f;-) be the Bernstein polynomial for f. Then
for every x € [0,1] we have

limp—oon {Bu(f;2) — f(z)} = %z(l -x)f"(x).

Theorems A and B are classical results of Popoviciu and Voronovskaya [4, Ch.
10]. }

The Bernstein polynomials and their connections with different branches of
analysis, such as convex and numerical analysis have been studied intensively. Basic
facts on Bernstein operators, their generalizations and applications, can be found
in, e.g., [7-11]. In [6] J.L. Durrmeyer introduced an interesting modification of the
Bernstein polynomials defined by

n 1
Mol = (04 1) Y pa@) [ paal)f () @
k=0 o

for f € Cp,1}, where n € N and py x(-) are defined by (3).

Approximation of continuous functions by Bernstein-Durrmeyer operator (de-
fined by (4)), has been investigated by many authors. A careful analysis of such
operators, was carried out for the first time by Derriennic in [3]. Subsequently,
Ditzian and Ivanov [5] studied their rate of convergence in terms of the so-called
Ditzian-Totik modulus of continuity.

Derriennic proved in [3] that:

(a) M, f is a positive operator,

() Mn(Lz) =1,

(c) limp o0 | Mn(f3-) = f()Il = 0 for f € Cpo )

Let the set of all f € Clo,1) with derivatives f',..., f) belonging also to Cpo
be denoted by C['('M], re No:={0,1,2,...} (C[%’l] = Clp,3))- The norm on C{To,x} is
given by (1).

In this paper we introduce the following class of operators in C{b,l]'

Definition. Fiz r € No. We define a class of operators M, » by the formula

n 1 L 0] .
M) = 0+ DY pnila) [ pos®0 ) O @ty ar, e
k=0 0 e

: ()
where py, k(+) are defined by (3).

Clearly, My o(f;z) = Ma(f;2) for z € (0,1}, n € N and f € Cyp 1)

In this paper we shall study a relation between the rate of approximation by
M), , and the smoothness of the function f.

In the sequel we shall denote the suitable positive constants depending only
onaby Knp(a), n=1,2,....
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2. Auxiliary results

In this section we shall give some properties of the above operators, which we shall
apply to the proofs of the main theorems.

We may remark here that if f(x) = 2%, 2 € [0,1], ¢ € Ny, then by Taylor’s

formula it follows that .

) X
f@) =3 -y,
j=0
for every fixed y € [0,1]. This fact and (5) yield

Lemma 1. Let f(z) = 29, z € [0,1], ¢ € Ny. Then for every fized g < r € Ny we
have
My, (t% x) = 29, neN.

In view of {3] it is known that
My(l;z) =1, My(z —t;2) = —(1 - 22)/(n+ 2), (6)
(n+q+2)M, ((J: — t)att, 7) = (7)
= (1 —z) {2qM, ((z — )" H2) — M), ((z — t)% ) } +
-1 =2z)(q+ )M, ((z — )% 7),
for z € [0,1], n € N and ¢ € N.

Using mathematical induction on ¢ € N and by (6) and (7), we can prove the
following

Lemma 2 ([5], pages 83-84, Lemma 6.3) For every g € N we have
q q-j
z(1—z) — )
M, ((z - )% z) = E_O @jqn(T) (“n ) n4, z€[0,1], m€N,

where aj,qn(z) are polynomials in x of fived degree with coefficients bounded for all
n.

Lemma 3. For every q € N there exists a positive constant K1(q) such that
My ((- = £)%%) | < Ki(gn™?  neN.

Proof. Applying Lemma 2, we get
1 (]
z(l—-x o
¥ (2= 0752) | < 3 lasan(a)l (=) o,
J=0
By Lemma 1 and by elementary calculations we immediately obtain

(M, ((z - )%52) | < Ka(g)47" 97977 < Ky(g)n .
=0
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Lemma 4. Fizr € Ny. Then
S
¥ (750 < 32 U ®
=0
for all f € C[TU‘[] andn € N.
Proof. If v = 0, then, by (5) and (1), we have

Maolf52)) < 1108+ 1S poa@) [ pust)it =11 fora €1l ne N,
k=0 0

If v > 1, then, by (1), (3)-(6), we immediately get

o (Fi)l <3 5 Mo (11900~ 17)7) <
g=0""

N
1
<3 I IMn (j2 - 1)
=0
Since |z —t| < 1 for @, t € [0, 1], it follows that My, (\Z - tlj;z) <1 forz,te0,1].
From this we obtain

=[S
(M (f;2)] <Y S T [0,1],n € N.
=0
This completes the proof of (8).
3. Rate of convergence
In this part we shall state some estimates of the rate of convergence of the operators

M, . We shall use the classical modulus of continuity defined by

w(f;t) = sup [f(z) = f(W), t20. ®
le—y|<t, z,y€[0,1]

The methods used to prove Lemma 4 and the Theorems are similar to those
used in construction of modified Bernstein polynomials (2, 8, 11].

Theorem 1. Fiz r € Ny. Then there exists a positive constant K3(r) such that
Mo (£3) = SO S Kalrn™ 20 (£05n71/2) (10)
for every f € C[Tm} andn e N.

Proof. For r = 0 the result is well-known (see, for example, [4, Ch. 10, Theorem
8.2]).

Let f € Cfpyy with 7 > 1 and let t € [0,1] be a fixed point. We apply the
following modified Taylor’s formula

T, Fl@) .
1@ =Y 0wty
=0
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(r:;))l/ (I—w)™~ l{f(r)(tJru T~ t)) — fm t)}du z € [0,1].

From this we derive the following equality from (5) and (6):

f(z)z(nug(pn,k(x)_/o Pn,k(f)f(ﬂﬂ)df):Mn,r(f(t):l') ()

+ (1) puila)

k=0

i { & L i a0y 0 0}k

for z € [0,1] and n € N. Applying (9) and the inequality w(g; At) < (1 + Nw(g;t)
for g € Cjp,1y and At € [0, 1], we get

Ot ulz 1)~ 1O 0] <o (fO5ule - ) <
<w (f(’); |z — 1|) <w (f(");n"/z) (1 +nt? e — tJ)
for 0 <wu,z <1andn € N. This inequality and (11) and (4) imply that
[£(2) = My (F(t);2) ] < (12)

n 1 r
- T —t 2
w (f(');n '/2> (n+1) an'k(z)/o pn,k(t)‘ 7 ! (1 +nl/? |z — tl) dt =
k=0

~w<f(r) "71/2) L {M (Jz —tI"; J)+"1/2M (lx 7t|r+l;z)}

for all z € [0,1] and n € N. Further, by Hélder inequality and Lemma 3 and (6),
we have

12

M, (lz—t|";2) < (Mn(l;z)M,, ((:I' - t)2q;:z)) (13)

= (M, ((z—-t)%;z))l/""g (K:ligq))l/z, z€[0,1], n,g€ N.
Collecting (13) and (12) we obtain

Mo (f52) = F(@)| < Ka(r)n~%w (£05n12),
for z € [0,1] and n € N. This completes the proof of (10).

From Theorem 1 we derive the following

Corollary. If f € Cjy,), r € No, and f) € Lipa with 0 < o < 1, ie
w (F5t) = O(t) for t > 0, then
Moy (fi) = FO)l = O~ CF/2) - neN.

Now we shall give the Voronovskaya type theorem.
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Theorem 2. Suppose that f € Co! *2 with a fited v € No. Then for every x € [0,1]
we have

(=)D @) My, (8 — )5 2)
(r+ 1) +
( D (r+ 1) fU+2 (@) My, (¢ = 2)+2; 1) L
(r+2)! +az( ‘*’“)

M (fi2) — flz) =

(14)

as m — 00,

Proof. The assertion (14) for the Bernstein-Durrmeyer operators M o(f) and
fe C[Zn,l] is given in [3].
Fix r e N and 2 € [0,1]. If f € C'3, then f0) € CTO”] 7,0 < j <r. Hence,
for every f() we can write Taylor’s formula:
) TE2 G4 (5 . o .
9 = Z Ehdi i @) (t—2)' +o(t;x) (t — )7, 0<j<r (15
i=0 :
for t € [0, 1], where @;(t) = p;(t; ) is a function such that ©j (1) >~ belongs to

Cﬂ;—lz] 7 and limy—., ¢;(t) = 0. From this we get

t)j 29 p ) (1)

(- ) der

Moo (fi2) = (n+1) m(z>/ pnmz
k=0 1=0

(16)
20 gy

Yy (t52) ¢ - 2)

Hn+ 1) par(e) / sy €
k=0 /0

J=0
= Am(m) + B (), MEN
We may observe that
An (@) =

n (o — 1) 22 oy —;
=(n+1) an,k(l)/o P,k () Z t ’ Z f z:) I)l dt =

k=0
_7 742 f([) )

" Vo dt =
n+1)2pnk )/ pnk");} 7 Z(l— | -
n o (z
- n+l)zpn,k(1/pnkt)z( Iy {Zf i
k=0

F@ e £ g
Lot s S o)

n+1)ZPnk w)/ pnk(f)zf (z)(t )Z()( 1)7dt+
f(rm(“)( +1) ank /pnk x)”‘Z(T+1)(~1)1dt+

r+ 1!
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f(r”) /1 )2 " (r +2
(n+1) Z Prik(®) | pak(t)(t—2) (~1)ydt =
(T + 2)' k=0 =0

[

1

"+1)Zﬁnk I)/ pnkt)zf l,T) ’Z() (—1)7dt+

=0

f('“)( ~(r+1 ;
ACER ("+1)ank7f)/l)nkt) —2)" ljo( j )( -1)7dt+
F+2 () e (142

T 2 <n+1>2mu [ et *( ) cava

for n € N. Using the equahtles

; (;) (1)) =0, re€N,

) ("5 v =cary

Z( ey =eenewr

3=0
and (3), (4) we deduce that

(=)t (@) My, (¢ — )™+ 2)

Apr(z) = f(z) + r+ 1) + 17
(=17 + 1) (2) My (¢ = 2)" 252
+ r+o) ( l), n e N.

Observe that
By r(z) =

n 1
(n+1)> pap(@) / k() (t— ) Br () dt = My, ((t - 2) 20, (1) ;2),
k=0 0
for n € N, where
®, (t) = b, (t;z) _Z\—%tz) telo,1],

and @, is a function belonging to 0[0,1] and lim_,, @, (t) = @, (z) = 0. By the
Holder inequality and by Lemma 3, we get

|Bor(2)] < (M (23(0); )) * (Mo (¢ - 2P+ 2)) 7 <

K@) 1/2
< (2l " @), nen
Since ®2 € Cjp,1), we have by statement (c)
Jim M, (%(t); z) = ®2(z) = 0.
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From the above we deduce that

1
Bur(z) = 0p (7711775) ) as n — oo. (18)

Collecting (16), (17) and (18) we obtain (14).

Theorem 1 and Theorem 2 in our paper show that the operators My, n € N,
give better degree of approximation of functions f € C{TOJI than B,.
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