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Časopis pro pěstováni matematiky a fysiky, roč, 75 (1950) 

A THEOREM O N THE LEBESGUE DIMENSION 

MIROSLAV KATfiTOV (Praha) 

(Received November 15th 1949) 

In a recent paper [1]*) of the present author, some results have been 
established concerning the relations between the inductive (Menger-
Urysohn) dimension of a compact ( = bicompact) space P and certain 
properties of the ring C(P) consisting of all (bounded) continuous real-
valued functions on P. In the present note I intend to give a characteri
zation of the Lebesgue dimension (in a sense slightly different, for 
non-normal spaces, from the usual one) in terms of the ring C(P), namely, 
to show that the Lebesgue dimension of P is equal to the analytic 
pseudodimension of P, to be defined in the sequel. 

§i-
We first summarize some definitions and results given in [1]. — 

Space always means a Hausdorff topological space, mapping means 
a continuous transformation, function means a real-valued function. 
The letter-P denotes a (non-void) completely regular space, R denotes 
a metric space. ' ' '. 

Let C be a commutative ring (with a unity element) in which there 
is defined, for any xe C and any real number A, the multiple Xxe C 
satisfying the usual axioms, and let C be, at the same time, a topological 
space such that the operations x + y, xy, he are~continuous. Then C 
will be called a (real commutative) analytic ring (with a unity). We shall 
say that a subring Cx 3 C is algebraically closed (in C) if (1) Cx is an ana
lytic subring, i.e. contains all Ae where A is real, e is the unity element 
of C, (2) x e C is contained in Cx whenever xn -f- a^^1 -f- ... + an == 0, 
tti € Cx\ if, moreover, Ct -= Cx (i. e. C'x is a closed set) we shall say that Cx 

is analytically closed (in C). -

If'P is a completely regular space, then C(P) denotes the analytic 
ring consisting of all bounded continuous functions / in P (with the 
topology defined by the norm |/[ =suptcp|/(<)|). 

*) The number in brackets refer to the list at the end of the paper. 
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Lemma 1. If SQP is connected and CXCC(P) consists of all 
x € C(P) which are constant on S, then Cx is an analytically closed subring. 

See [1], Lemma 17. 
Lemma 2. / / P is compact, Cx C C(P) is algebraically closed, then, 

for every t0e P, the set of all te P such that x(t) = x(tQ)} for any xeCv 

is connected. 

See [1], Lemma 18. 
P r o p o s i t i o n 1. Let P be compact and let Cx C @(P) be an analytic 

subring. Then Cx consists of all x e C(P) such that x(tx) = x(tz) whenever 
y(h) = y(k) for all y c Cv 

See [1], Theorem 2;'of. [2], Theorem 82, as well as [3], Theorem 4, 
and [4], Corollary 2. 

I t is clear that the intersection of an arbitrary system of analytically 
(algebraically) closed subrings of an analytic ring C is analytically 
(algebraically) closed. Consequently, there exists, for any M CO, the 
least analytically closed subring CXQC containing M. We shall say that 
M is an analytic base of Cx (in C), or that Cx is analytically generated1) 
byJf. 

If C is an analytic ring, then the least power of an analytic base of C 
will be called the analytic dimension of C, denoted2) dimC. 

P ropos i t i on 2. The analytically closed subring generated analytically 
by a set M C @(P) consists of all functions x e C(P) which are constant 
on every connected setS CP on which all functions y e M are constant. 

Proof. The set of all xeC(P) which have the above property 
is clearly a subring, contains M and is analytically closed by Lemma 1 
(since the intersection of analytically closed subrings is analytically 
closed). 

Let Cx C C(P) be an analytically closed subring containing if. 
For any t e P, denote by S(t) the set of all t' e P such that y(t') = y(t) 
whenever y e Cv By Lemma 2, every S(t) is connected. If x e C(P) has 
the property described in the proposition, then x is constant on every 
8(t) and therefore, by Proposition 1, x e Cx = Cv 

We now state some further auxiliary definitions and lemmas refer
ring, if necessary, for the proofs to [T\. 

If P is a space, R is a metric space, then C(P, R) denotes the space 
consisting of all bounded mappings of P into R, with the metric o(f, g) = 
= sup*€pg(/(2), g(t)). En (w-= 1,2,...) denotes the ^-dimensional 
Euclidean space, E° denotes the space containing a single point: instead 
of C(P, E% C(P) is written. 

1) This notion is different from E. Hewitt's [4] notion of <& „$et of analytic 
generators". . 

2) Thus dim has, in this note, two different meanings: 1. the analytic dimension 
of an analytic ring, 2) the Lebesgue dimension of a space, to be defined below. 



Let P be a space, and let 21 be a finite open covering (abbreviated 
f. o. c.) of P; let M C P. If there exist M{ such that Z?M{ = M, MiMj = 0 
(for i 4= /), and each M{ is contained in some A e 21, then we write 
6(M) < 21. It is easy to see that Mi are open and closed in M. — If 21 r 

93 are f. o. coverings of P and every A €.21 is contained in some B e S3, 
then 21 < 93 is written.— A set M C P is said to have property A(R) 
in P, R beirig a metric space, if, for any / e C(P, R) any f. o. c. 2t of P, 
and any e > 0, there exists g e C(P, R) such that Q(f, g) < e and 
d(Mg~l(y)) < 21, for every yeR. 

Lemma 3. If P is compact, M C P w closed, 21 is a /. o. c. o/ P, 
and d(Mf~1(y)) < 21, /or any yeR, then there exists a f. o. c. $8 of f(P) C R 
such that d(f~l(B)) < 21, for any B € 93. 

. Proof. Since HMf^1(G) = Mf~i(y), G running over all neighbor
hoods of y e R, it is easy to see that there exists, for every y e f(P), 
an open neighborhood G = G(y) such that d(f"x(G)) < 21. Since f(P) 
is compact, {G(y)} contains a finite subcovering. 

Lemma 4. Let 21 be a f. o. c. of P and let K CP be compact. Then 
d(K) < 21 if and only if every connected S C K is contained in some 
.4 €21. 

Proof. The necessity being obvious suppose the condition to hold. 
For every x e K, let S(x) denote the intersection of all H C K which are 
open and closed in K and contain the point x. Then S(x) is connected; 
for otherwise S(x) = St + S2, Si closed non-void, SXS2 = 0, x e Sl9 and 
there exist open (in K) GiCK such that Gi O AŜ -, GXG2 — 0; therefore, 
for appropriate H}-, open and closed in K, we have x e II iH/ C Gx + C2, 
and GXH\Hj is easily seen to be open and closed in K from which a contra
diction follows at once. Since S(x) is connected, it is contained in some 
A e 21. There exists an open and closed (in K) set H(x) such that x e S(x) C 
C H(x) C -4* Since K is compact, we have, for appropriate X{, K = Z\Hi9 

each Hi= H(xi) being open and closed (in K) and contained in some 
A e 21. From this the assertion of the lemma follows at once. 

Lemma 5. If R is complete, then, for an arbitrary space P, C(P, R) 
is complete. 

This is obvious. Cf. [l],.Lemma 13. 

L p m a 6. If P is compact, M C P ** closed, %isaf.o.c. of P, thkn 
tht tet of all / € C(P, R) such that 6(Mf~1(y)) < 21, for any yeR,is open. 

See [1], Lemma 7. 

Definition. The order of a finite collection 9ER of sets is the largest 
integer n such that there are n + 1 sets from ^ with a non-void inter-
section. Given a (non-void) normal space P, the least cardinal number m 
such that, for any f. o. c. 21 of P, there exist a f. o. c, 93 < 21 of order 
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^ tn is called the Lebesgue dimension of P, denoted dimP. Clearly, 
0 <£ dimP <£ H0; for 8 = 0, we put dimS = — 1. 

We now proceed to establish the following proposition from which 
our main theorem will easily follow. 

Proposit ion 3. The following properties of a compact space P are 
equivalent (for n = 0,1, 2,...): (1) d i m P ^ n; (2) property A(En) (in P); 
(3) every countable M QP is contained in an analytically closed subring 
CiCC(P) analytically generated by a set N QC(P) of power < n; (4) 
property (3) with arbitrary finite, instead of countable, M. 

Proo^. The proposition is easily seen to hold for n= 0 (observe 
that a compact space P is 0-dimensional if and only if no connected 
SQP contains more than one point and apply Lemma 4). Therefore 
we may suppose n 2> 1. — I. (1) implies (2). — Let % be a f. o. c. of P, 
/ € C(P, En), e > 0. There exists a f. o. c. © < 21 of order <£ n such that, 
for each G € ©, f(G) is of diameter < is. Let © consist of sets Gl9... GP. 
By a well known theorem on normal spaces (P is compact, hence normal) 
there exist open Hi such that H{ C Gu 2 i ^ * = -^ By Urysohn^Tietze 
Extension Theorem there exist g ĉ C(P) such that 0<1 gi(x) ̂  1, for 
any x*Py gt(x) = 0, for x*P — Git d(x) = 1, for xeHi. Choose 
points ZicEn such that (1) the distance Q(Z^ f(Gf)) is < \e, (2) every 
hyperplane in En contains n points Zi at most. Put, for every x e P, 
y(x) = (Zvigi(x))~l (this is possible, for every x lies in some Hi which 
implies g{(x) = 1 ) , and put g(x) = y(x) .Zigi(x)ZieEn, points z* being 
considered, of course, as vectors. Evidently, g € G(P, En). For any x e P, 
g+(x) 4= 0 only if x € G<; since, for . x e Giy f(x) e /((?*), Q(zif f(x)) < e, 
we have Q(g(x), f(x)) = Q(2%y(x)gi(x)Zi, Ely(^)gi(x)f(x))^I^y(x)gi(x). 
* Q(zi>f{x)) < e. Hence, Q(f, g) <1 e. 

For an arbitrary */ e g(P), denote by Ay the set of all A = (Ax,... kp) € 
e E* such thatZfAfZi = y, andfor some x € P, Ai.-s= ^ ( ^ ( s ) (* = 1,. • .> p). 
The set Ay is finite, for otherwise there would exist (since, for any X€ P, 
gk(x) = 0 for all k except n -f- 1 at most) points Zn,..., zif, r <i n -f- 1, 
such that y = ZiXuZik for infinitely many r-uples (Atl, . . . , 4 ) which 
is impossible (z t l , . . . , ẑ r are independent). Since, for any given A = 
-= (Ax,..., Ap) € E*, the set of all x* P such that ^(x) = A* (i = 1,...,, p) 
is clearly contained in some Gj., we have, consequently, d(g~l(y)) < ©, 
^(r"1^)) < 21- Hence P has property A(En). . 

II, (2) implies (3). — Let P have property A{En) (in P). Let ft c (7(P) 
(f =?= 1', 2, . . . ) . It is easy to see that there exists, for m -== 1, 2 , . . . , a f. b. c. 
3tw of P such that the diameter d(h(A)) i s , < mrx whenever A €$m, 
A?;_m (to find such a" f .o . c , we have only to choose f. p. coverings 
S3* oi fk(P) such that d(B) < m-1 whenever B e 58* and fc>.take for %m 

the coUeotionofalll^JL^ir1^*)* J5jr« S3*). By Lemmas 5 and 6Vand 



Baire's Theorem, property A(En) implies that there exists g€C(P9E
n) 

such that S(g"1(y))< SfTO (m= 1, 2,. . ,) , for any y € En. Put, for X€ P9 

k ==!,..., n9 gk(x) = k - th coordinate of gr(tf); then g^ € G(P).I ' Let 
S C -P be connected and let every gr* be Constant on S; then, for some y, 
SCU^ti/) and therefore, for m = 1, 2 , . . . , S is contained in some 
A€%m. Hence d(fk(S)) < m~l (k,m = 1929 ...;k<Lm)9 <*(/*.<#)).= 0 
(k = 1, 2, . . .) , every /* is constant on S. Hence, by Proposition 2, all the 
functions /*• are contained in the subring analytically generated by 
•7i, • • •> £n- Thus P has property (3). 

III. (3) implies (4) (trivially). IV. (4) implies (1). — Suppose that (4) 
holds. Let © = {Gi} (i= 1, ..., p) be a f. o. c. of P. There exist open 
sets Hi such that Hi C Gi, 2?-^i = -P» al-d continuous functions fi e C(P) 
(i= 1, ...,p) such that 0<^ ft(x) _\ 1, for any xcP, fi(x) = 1, for 
X€Hj, fi(x) = 0, for # € P — (?i. Since (4) holds, there exist gjeC(P) 
( / = 1,.. . ,») such that every /-, is contained in the ring Cx C C(-P) 
generated analytically by the functions gj. By Proposition 2, every /< 
is constant on every connected S C P on which each gr;- is constant. Put, 
for any x€P, g(x) = (gx(x)9..., gn(x)) € E

n; then g e C(P9 E
n). Every 

(non-void) connected S C P which is contained in some g"1(y) is clearly 
contained in sotne Gi e ©, for otherwise we would have, for appropriate 
Ui € S (i= 1 , . . . , p)9 Ui€ P — Gi, fi(Ui) = 0 (since every fi is constant 
on S), fi(x)=0 whenever x€S £i= l , . . . ,p) ,hence S C H?(P — Ht) 
which is impossible. Therefore, by Lemma 4, &(g"1(y)) < ©, for any 
y € En

9 which, by Lemma 3, implies that there exists a f. o. c. 93 of g(P\ 
such that, for each B € 93, d(g~1(B)) < 93. Since T = g(P) is w-dimensio-
nal at most, there exists a f. o. c. £ < 93 of order < n. Let £ = {Ul9... 
..., Ur}. Since d(g~1(Ui)) < <g, for each Ui} there ex i t F,y C P (i = 1,.'.. 
.... r; j = 1, . . . , ki) such that Vih . V{j = 0 (for A,-# j), I>\% = g~l(Vi)9 

every F# is contained in some 0 € ©. It is eaisy to see that the collection 
of aliy# is a f. o. c. (of P) of order <̂  n, This completes the proof. / 

Definition. Let C be an analytic ring. The least cardinal number 
m such that every countable M C C is contained in a subring generated 
analytically by a set of power <?m is called the analytic pseudodimension 
of C9 denoted psdimC " • ' - • • • 

Remarks. (1) Proposition 3 implies that, for C == C(P)9 P compact; 
„finite*' may be substituted for ,,countable" in the-above definition. ---
(2) Evidently, (a) psdimC <1 dimC, (b) psdimtf <\ »0, (c) psdimC = dimO 
whenever dhnO <̂  H0. - *•' ' 

Proposi t ion 4. dimP ==;p«dimC'(P), for any compact P. - *' -
This follows at once from Proposition 3. 
Remark. By Proposition 4 and the preceding remark (2), dimP =e 

=« dimC(P) whenever P is compact, dimC(P) ^ X0- The main theorem 
of [1} asserts that the inductive (Menger-Urysohn) dimension of a com* 
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pact space P is equal to dimO(P) whenever dimO(P) <£ 80. Thus 
dimC(P) <^ tf0 implies, for « compact P , dimP = indP, indP denoting 
the inductive dimension. 

As a matter of fact, the main theorem of [1] is virtually contained 
in the above Proposition 4. For it is easy to show that indP <C dimC(P) 
(cf. [1], Theorems 1 and 3). On the other hand, it is known (see [5]) that, 
for a compact P, dimP <^ indP; hence, by Proposition 4, psdimC(P) <^ 
<£ ind(P) and therefore indP == dimP whenever dimO(P) = psdim(7(P) 
which is equivalent to dim(7(P) <I N0. 

§2. 

We are now going to extend the equality dimP = psdimC(P) 
to arbitrary completely regular spaces, after defining the Lebesgue 
dimension of non-normal completely regular spaces in an adequate way. 

Let P be completely regular. I t is well known (see e. g. [6]) that there 
exists an (essentially unique) compact space l3P, called the jS-extension 
of P,^such that (1) PCjSP, P = fiP; (2) every feC(P) admits of an 
extension F c C(jSP). 

I t is clear that the correspondence between a function / e C(P) and 
its extension F e C(f3P) is one-to one and preserves algebraic operations 
as well as closures of sets (in fact, even distances). Therefore, analytic 
rings C(P) and C(@P) elijoy the same properties and may be considered 
as identical. 

Lemma 7. If P is normal, then, for arbitrary closed (in P) sets 
Fk C -£*> the closure of HfFi in /SP is equal to the intersection of closures 
of Fi in pP. 

Remark . Lemma 7 and the following Proposition 5 are essentially 
due to H. Wallman [7] (observe that, if P is normal, Wallman's extension 
coP and/S-extension coincide). 

Proof. I t is sufficient to prove F1F2= PXFV Obviously, FXF2Z) 
3 FXF%. Suppose b e FXF2 — FXF2. Choose m open (in /SP) set G such 
that b € G, GFXF2 = 0, and put Ak = GFk. Then AXA2 = 0, b e 2k. 
There exists, by Urysohn's Lemma, a functioii / c C(P) such that f(x) = k 
for x c Ak. Since / admits of an extension F € C(fiP)} we have a contra
diction (namely, F(b) = k for k = 1,2). 

P r o p o s i t i o n 5. For a normal P , dimP = dim/JP. 
Proof. I. Suppose dim/?P<I n. Let ® = {0lt..., Gm} be a f. o. c. 

of P . Put Ui^flP — P — Gi. Lemma 7 implies EfL7t-=/3P. There 
exists a f. o. c. {Hj} of pP, of order <^ n, such that each Hj is contained 
in some #*. Cleanly, {PHj} < <&; II . Suppose dimP<£n. Let <g-= 
«{(?! , . . . , (? f}beit io.c.0f/SP.LetHiUo$mmpP,TliDG,InHi=* pP. 

m 
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There exists a f. o. c. V = {Vy} (j = 1,. . . , s) of P, t)f order <£ n, such 
that each Vj is contained in some H{. Put 17; = / ? P — P — V7. Then 
Lemma 7 implies SjC7> = £P — n i P ^ " ^ _ = £ P . If IIV; = 0, j running 
over a given set of integers 1,.. .,s, then S P — V;- = /IP, U(f$P — P—V?) 
= 0, IIUy = 0. Hence {U7} is of order <£ n. If V;- C H*, then 

£P — p^ZVjCPP — PzrHiC~HiCGi. 

Hence {U{} < (S which proves the proposition. 
Propositions 4 and 5 imply (since C(P) and O(/3P) may be considered 

as identical): 

P ropos i t i on 6. For a normal space P, dimP = psdimC(P). 

Defini t ion. If P is completely regular then the Lebesgue dimension 
of the compact (hence, normal) space /SP will be called the Lebesgue 
dimension of P, denoted dimP. 

P ropos i t i on 7. The above definition coincides, for a normal P, with 
the usual one (this note, p. 81—82). 

This follows at once from Proposition 5. 
Remark . It is possible to replace the above definition by an equi

valent one not making use of the /^-extension. This may be done e. g. by 
restricting the considerations to normal (Tukey [8]) f. o. coverings or, 
which is the same, to f. o, coverings possessing refinements of the form 
{/—1((2y} where / is a mapping of P into Er, {Gi} is a f. o. c. of /(P). 

We now state our main theorem. 

T h e o r e m l . For any completely regular space P, dimP = psdimO(P), 

This follows immediately from Propositions 4 and 5 and includes 
Proposition 6 as a special case (cf. Proposition 7). 

We now have to show that the above generalized definition of the 
Lebesgue dimension is „reasonable" which essentially means that the 
inequality dimM _J dimP, for M C P, and the Sum Theorem obtain, 
under some reasonable assumptions. This will be shown below (Theorem 2). 

Def in i t ion . A subset M of a completely regular space P will be 
called normally closed if it is closed and every / c C(M) admits of an 
extension FeC(P). 

P r o p o s i t i o n 8. If P is completely regular, M CP is normally 
closed, then dimM <^dimP. 

Proof. Clearly, MCfiP is compact, and every feC(M) may be 
extended over j3P. Hence M = fiM. Now let <g = {(?*} be a f. b. c. of W. 
There exist open (in §P) sets Hi such that MH{ = (?». The sets Hi 
together with fiP — M cover /?P. Therefore, supposing dimP <£. n, there 
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exists a f. 6. c. .0 = {V;} of /?P, of order <£ n, such that eaoh V7- is con
tained either in fiP — i f or in some H^ The f. o. c. U = {MVj} of M ==-
= pMisof order<l n; U < <8.•" 

Proposit ion 9. / / . P is normal, AjtQP are closed, P = *L\ A%, 
dimA* <̂  n, then dimP <.. w. v 

This well known result is due to E. Cech [9]; cf. E. Hemmingsen [10]. 
Proposit ion 10. If P is regular and every open covering of P contains 

a countable subcovering, then P is normal. 
Remark. This result is due to E. Cech (unpublished). The idea o{ 

the proof is due to A. Tychonoff [11]. 
* Proof. Let A Q P, B C P be closed, AB = 0. For every xe P choose 

an open set G(x) such that xe G(x) and either AG(x) or BG(x) is void. 
The covering (&(x)} contains a countable subcovering {Gn}. Denote 
by Fn (n= 1, 2,.. .) the sum of G&, k_\ny such that AGk = 0, and put 
G = 2(Gn — Fn). Since Eftf* = P, FnA = 0 (n = 1, 2, . . .) , we have 
A C G. If x e B, then a; e Gm, for some m, and clearly Gm(Gn — Fn) = 0 
(n = m, m -f- 1,...) whereas, for n <i m, we have either (?n — Fn = 0 
or GnB=0; therefore xnone 6?. Hence GB=0 which proves the 
normality of P. 

Lemma 8. / / there exist, in a space P, compact sets KnQP such 
that P = 2-i°ifn, then every open covering & of P contains a countable 
subcovering. 

Proof. Since Kn is compact, <J5 contains Gni such that .2f*i#n£ I> Kn. 
The collection of all Gni covers P. 

Theorem 2. If P is completely regular, P = TiTAn, An are normally 
closed in P, then dimP = sup dim.4n. 

Proof. Denote by Bn the closure of An in /SP and put B = S.Bn. 
Since -4n are normally closed, Bn = 0.A, and therefore dimPrt = ditaAn. 
Clearly flP = fiB which implies dintB = dim/SP = dimP. Now apply 
Lemma 8 and Prbpdsitions 10 and 8. ' 

* Remark. It is sufficient to suppose, in Theorem 2, instead of An 

being normally closed only that every f*C(An) admits of an extension 
F€C(P).f ' ' • 
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Věta o Lebesgueově dimensi 

(Obsah předeš lého článku). 

Hlavním výsledkem článku je věta: Je-li P úplně regulární prostor, 
pak dimP = psdimO(P). Při tom je dimP definována jako Lebesgueova 
dimense Čechova obalu fíP (takže pro normální prostor P se shoduje 
s Lebesgueovou dimensí, definovanou obvyklým způsobem pomocí 
konečných otevřených pokrytí prostoru P), psdimC(P) je pak nejmenší 
kardinální číslo m takové, že každá spočetná M C C(P) je obsažena 
v jistém analyticky uzavřeném podokruhu C± okruhu C(P) (jenž se skládá 
z omezených spojitých funkcí v P), vytvořeném nejvýše m funkcemi 
z C(P). 
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