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ČASOPIS PRO PĚSTOVÁNI MATEMATIKY A FYSIKY 

ČÁST MATEMATICKÁ 

Sets which satisfy certain a voidability conditions.*) 
B. L. Wilder, Ann Arbor, Mich. 

(Received September 8, 1937.) 

In a recent paper1) I have made use of Certain avoidability 
conditions in order to define a type of generalized closed manifold. 
These conditions are repeated in Definitions I and I I below, and 
together with other types of avoidability introduced in the sub
sequent definitions, are employed in the present paper to obtain 
further results concerning the relations of closed sets to their 
complements in euclidean w-space. 

We precede the applications by a determination of the logical 
relationships between the various definitions in certain special 
types of closed sets. This is done not only with a view to settling 
these relations once and for all for the sake of subsequent develop
ments and abbreviation of proofs, but because many results may 
be seen, later on, to hold for alternative choices of the types of 
avoidability used in the hypotheses of theorems. Where the latter 
is the case, we have sometimes explicitly pointed out the fact; 
where we have not done so, it is left to the reader to observe that 
such is the case. 

In the following definitions, M denotes a metric space, and P 
a point of M. 

•Definition I. M is completely i-avoidable at P if for every e > 0 
there exist d and r\ such that e > d > r\ > 0 and every i-cycle of 
F(P, d) bounds on S{P, s) — S(P, r\). 

Definition II . M is locally i-avoidable at P if for every e > 0 
there exist d and r\ such that e > d > r\ > 0 and every i-cycle of 
F(P, 6) bounds on M — S(P, rj). 

K Definition III . M is i-avoidable at P if for every e > 0 there 

*) Presented to the American Mathematical Society, Nov. 25, 1936. 
1) Generalized closed manifolds in n-space, Annals of Math. 85 (1934), 

pp. 876—903; to be referred to hereafter as G. C. M. (For other definitions 
of generalized manifolds the reader is referred to recent works of Cech, 
Lefschetz, Alexandroff and Pontrjagin.) ' 
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exists a d > 0 such that e > d and every i-cycle of F(P, e) bounds 
on M — S(P, d). • • • 

Definition IV.2) P is a HOn-i-cut-point of Jf if every i-cycle 
of M — P bounds on _¥ — P. 

Definition V. P is a ZocaZ non-i-cut-point of _¥ if for every 
e > 0 there exists a 5 > 0 such that every i-cycle of S(P, d) — P 
bounds on S(P, e) — P. 

In establishing the relations between these definitions, we 
shall use the following conventions concerning symbols: The 
symbol O will mean ,,implies";3) the symbol non D means ,,doe's 
not imply". Thus, I D II will mean that the property (of a space M 
under consideration) of being completely i-avoidable (for any i) 
at P implies that M is locally i-avoidable at P. For the sake of 
brevity, we shall also use the symbol > as indicated in the following 
example: I > II means that I D II and that II non D I. Finally, 
1 === II means I D I I and I I D I. If no implication relates two or 
more definitions, we state simply that they are independent. 

Lemma A. In a compact (or any more general) metric space, 
(a) I > II ; I II > II; I and I I I are independent. 
(b) IV is independent of I, II, I I I and V 
(c) V is independent of I, II , I II and IV. 
Proof of (a). That I D II and III D I I is obvious. That 

I I non D I is shown by the 
Example dt̂ : The euclidean n-sphere with i = w---l . That 

I I non D III is shown by the 
Example <%2: The set of points, (x, y, z) of cartesian 3-space 

such that x2 -f- y2 -f z2 <̂  1, and the set such that x2 + y2 = 4, 
2 = 0, with P = (0, 0, 0), e = 2 and i = 1. 

That I non D III is shown by Example cx2, and that III non D L 
is shown by Example otv 

Proof of (b). That IV non D II is shown by the 
Example a :̂ The set of points (Q, 0) of the polar coordinate 

plane such that (1) 0 = rc/4*, n = 1, 2, 3, . . ., 0 ^ Q <: 1; (2)* 0 = 
= 0, 0 f̂  Q 5^ 1; (3) Q = tan 0, 0 <̂  0 <I ;r/4; (4) any arc joining 
the point P = (0, 0) to (1,7r/4), but otherwise not containing any 
of the points defined in.(l)—(3); with i = 0. 

a) In this definition we do not restrict the notion to simply i-connected 
spaces. Although for i -= 0 this restriction has customarily been made in 
the theory of sets of points, we deem it inadvisable in the case i > 0. (See 
Example «4 below for instance.) 

*) That D and > are also used in another sense below (the former 
a s a set-theoretic symbol and the latter as a symbol for numerical magni
tude) should occasion no difficulty, the meanings of symbols between which 
these binary relations are used being sufficient to indicate the correct 
meaning in each case. 
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Consequently, by (a), IV non Z) I, IV non D III. That IV non D 
D V follows from Example av 

That I non D IV is shown by Example a2. That III non D IV 
follows from the trivial fact that III may be satisfied for every 
e > 0, and yet M — P contain a cycle non-bounding on M —- P 
which lies on no F(P, e); thus, with the usual euclidean metric, 
in the 

Example <x4: The set of points (x, y) of the cartesian plane 
such that x2 -f- y2 = 1, and the points 1 < x <I 2, y = 0, with 
P = (2, 0) and i = 1. 

That II non D IV now follows from (a). Finally, V non D IV; 
for instance, consider a space which is the sum of two closed mutu
ally exclusive subsets A and B, where A satisfies V at a point P, 
and B contains a cycle which is unbounding in the space. 

Proof of (c). The independence of IV and V is already shown 
in (b). That V non D II is shown by the set of points (Q, 0) which 
satisfy conditions (1) and (2) in Example az, as well as the points 
for which o = 1/2", n/An < 0 < 2n; let i = 0, P = (0, 0). Con
sequently, by (a), V non D I and V non D III. 

To show that I non D V and III non D V, and hence by (a) 
that II non D V, consider, with i = 1, 

Example a5: The set of points (x, y) of the cartesian plane 
lying on circles whose respective diameters are the portions of 
the #-axis from (1/n, 0) to 1/n + 1, 0) for all natural numbers n, 
together with the origin. 

Lemma B. In a semi-i-connected,*) compact metric space, 
(a) I > II; III > II; I and III are independent, 
(b) IV is independent of I, II, III and V. 
(c) I > V; V is independent of II, III and IV. 
The proofs of (a) and (b) are as in Lemma A, (a) and (b) 

respectively. 
Proof of (c). That IV and V are independent is proved as in 

Lemma A (c). That V non D II, and. hence, by (a), V non D I and. 
V non D III, is shown as in Lemma A (c). To show that III non D V, 
consider 

Example ae: The set of points (x, y, z) in cartesian 3-space 
whose x- and y-coordinates satisfy the equations of the circles 
defined in Example a6, and such that 0 <1 z <I 1; the set of points 
for which z -= 1 and whose projections on the #y-plane lie interior 

4) A metric space M is called semi-i-connected if, given a point P 
of M, there exists an e > 0 such that all i-cycles of S(P, e) bound on M; 
for a previous use of this notion, see my paper On locally connected spaces, 
Duke Math. Journ. J (1935), 643—555 (to be referred to hereafter as L. C.) 
If all i-cycles bound on M, we call M simply i-connected. 
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to the circles of Example a6; and the set of points (0, 0, z) such 
that 0 £ z £ 1 with P = (0, 0, 0) and i = 1. 

Consequently, by (a), II non D V. It remains to show that 
I D V . 

Let M be a semi-i-connected space which satisfies I at a certain 
point P, and consider an arbitrary e > 0. Then there exist & and rj 
such that any i-cycle of F(P, 6) bounds on S(P, e) — S(P, rj). 
Since M is semi-i-connected, we may assume rj to be so small that 
i-cycles of S(P, rj) bound on M. 

Consider any cycle y{ of S(P, rj) — P. Select a' so that | y* | . 
. S(P, e') ==- 0.6) Since I holds at P, there exist <5' and rj such that 
any cycle P* of F(P, b') bounds on S(P, e') — S(P, rj'). Consider 
any chain K^1 -> yl on M. By infinitesimal alterations of Ki+1 and 
harmonizing6) of chains, we can say that the portion of Ki+1 

exterior to S(P, 6) is a chain F*+x whose boundary is a cycle P* of 
F(P, 6), and we let Hi+1->ri be a chain of S(P, e) — S(Pr rj). 
Similarly, we may regard the portion of Ki+1 interior to S(P, d') as 
a chain Fx*+1 bounded by a rx* of F(P, d'), and we let HJ+1 -> P^ be 
a chain of S(P, e') — S(P, rj'). The chain Kl+1 — (P*+1 + Fj+ *) + 
-f (W+1 + HJ+1) -> yi lies in S(P. E) — P. Thus, any i-cycle of 
S(P, rj) — P bounds on S(P, e) — P, and M satisfies V at P. 

Lemma C In a simply i-connected compact metric space, 
(a) I > II = III > IV, 
(b)' I > V > IV; II and V are independent. 
Proof of (a). By Lemma A, I D II and III D II. That I > II 

is shown as in Lemma A. We can show that II D III as follows: 
Consider any P and e > 0. By II, there exist 6 and rj such that any 
cycle yi of F(P, <5) bounds on M — S(P, rj). Consider a P* of F(P,e), 
and let Ki+ x -> P* be a chain of M. As in the proof that I D V in 
Lemma B, we may consider the portion of K{+ * interior to S(P, 6) 
as a chain P*+ 1 bounded by a y* of F(P, 6). There exists an Hi+1 -> 
-> yi on M — S(P, rj). Then Ri+1 — P*+1 + W+1 -> yi is a chain 
of M — S(P,rj). 

We next show that III 3 IV. Consider any P and let y{ be 
a cycle of M— P. Select an e > 0 such that | yi \ . S(P7e) = 0. 
By III, there is a 6 > 0 such that any i-cycle of F(P9 e) bounds on 
M — S(P, 6). Let Ki+1 -> y' be a chain of M. As in the preceding 
paragraph, the chain K{+1 may be converted into a chain of M — 
-S(P,d). 

That IV non D III is shown by the following example, with 
i — 0. The set of points (x, y) of the cartesian plane (1) lying on the 

5) By I yi I we mean the closure of the set of all points on the 
cycle yi. 

•) See L. C. 
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curve y = sin l/x; 0 < x <C 1/TT; (2) all points a; = 0, — 1 5^ y ^ 1; 
(3) an arc joining (1/TZ, 0) to (0, 1), but otherwise not containing any 
points defined in (1) and (2). Let P be the point (0, — 1). 

Proof of (b). That I > V follows as in Lemma B. To show that 
V D IV, consider any cycle y* of M — P, and let e > 0 be such 
that | y{ | . S(P, e) = 0. By V, there exists a <5 > 0 such that any 
i-cycle of S(P, d) — P bounds on S(P, e) — P. Consider any positive 
number rj < d, and let Ki+1 be a chain of M bounded by y*. If 
I Ki+1 | D P, the portion of Ki+1 in S(P, rj) is a chain P i + 1 bounded 
by a cycle P i of F(P, rj). Let jHri+x -> P i be a chain of £(P, -s) — P. 
Then JF+.1 — Fi+1 + H ^ 1 -> ^ is on _M — P. That IV non D V 
follows from Example at. 

That V non 3 III follows as in Lemma A (c), and that 
III non D V follows from example <%6. 

Lemma D. In a compact J*,7) where i <̂  &, 
(a) I > II; III > II; I and III are independent. 
(b) IV > III; IV is independent of I and V. 
(c) I - - V. 
Proof of (a). As in Lemma A (a). 
Proof of (b). That IV is independent of V, as well as that 

III non D IV is shown as in Lemma A (b). We haVe to show that 
IV D III. Consider any P and e > 0. Let <5 and rj be arbitrary, 
except that e > d > rj > 0. As our space is a J*, there exist8) 
cycles yl

m, m = 1, 2, . . ., s, of P(P, <5) which form a basis for 
homologies in S(P, e) — S(P, rj). As P is a non-i-cut-point, there 
exist chains KV+1 -> yl

m gn M — P. Let 6' > 0 be such that for 
each m, \ Km

i+1\ . S(P, d') = 0. Let yi be a cycle of F(P, e). As P is 
a non-i-cut-point, there is a Ki+ 2 -> y* on i f — P. The portion of 
-Ki+ x in /S(P, 5) can be considered as a chain P i + 1 bounded by a P* 
of F(P, d). Since P* is related to the cycles y*w by a homology in 
S(P, e) — S(P, rj), and the y V s in turn bound exterior to S(P, d')y 

the chain Ki+1 can be replaced by one not meeting S(P, 6'). 
Proof of (c). By Lemma B (c), I D V. We have to show that 

V D I. Consider any P and e > 0, and take d < e such that every 
cycle of F(P, d) bounds on S(P, e) — P. Let rj be any positive num
ber less than d. Since our space is a Jk, there is a finite basis of 
cycles y»'m of F(P, 6) for homologies in S(P, e) — S(P, rj). For 
each m, there is a Km

i+ * -> y*m on S(P, e) — P. Let rj' be a positive 
number such that | Ki+1 \ . S(P,rj') = 0 for each m. The remainder 
of the proof should be obvious from the methojds used above. 

7) We use the symbol Jk to denote a metric space that is locally 
i-connected for i = 0, 1, . . ., k (See L. C) . 

8) See Theorem 2 of L. C. 
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Lemma E. In a simply i-connected compact Jk, 

I = V > II 1= III = IV. 

Proof. By Lemma D (c), I == V. By Lemma C(a), II = III. 
By Lemma C (a), III D IV, and by Lemma D (b), IV D III; 
accordingly III = IV. That V D II follows from Lemma D (a), (c). 
That II non D V is shown by Example <xv 

We now turn to the study of some of the relations of closed 
point sets, that satisfy various avoidability conditions, to their 
complements in euclidean spaces. In the theorems (this does not 
include the lemmas) that follow we assume that the sets considered 
lie in the euclidean w-space, En, n I> 2. (In case n = 2, and a cond
ition is stated in a hypothesis for i = 0, 1, . . ., n — 3, it is to be 
understood that this condition is deleted.) 

Theorem 1. In En, let Mbea closed point set and r a non-negative 
integer such that the complementary domains of M have (1) diameters 
that form a null sequence,9) (2) boundaries that are locally r-connected, 
and (3) boundaries all but a finite number of which are simply r-con
nected. Then M is locally r-connected. 

Proof. Consider any point P of M and e > 0. We may assume e 
so small that any complementary domain of M that lies wholly in 
S(P, e) has a simply r-connected boundary. As the diameters of the 
complementary domains form a null sequence, there is an e' < e 
such that if a complementary domain meets both F(P, e) and 
F(P, e'), it has P on its boundary. 

Denote the domains that meet both F(P, e) and F(P, s') 
by Dm, m = 1, 2, . . ., s. There exists, by (2), a <5 < e' such that any 
/•-cycle of Bm . S(P, d), where Bm is the boundary of Dm, bounds 
a chain of Bm . S(P, e). 

Consider any cycle yr of M . S(P, d), and suppose it fails to 
bound on M . S(P, E). Then in the complement of the latter set 
there exists a cycle rn—r~x that is linked with yr. However, consider 
any chain Kf+1->yr in S(P, d). The intersections of Kr+1 and 
Ffc—r—i must lie in a finite number of domains complementary to M. 
These intersections may be removed as follows: The portion of 
Kr+1 in a domain D complementary to M is a chain Hr+1 bounded 
by a cycle on the boundary B of D. If D is a Dm, Hr+1 may be 
replaced by a chain of Bm . S(P, e). If D is not a Dm, then it must lie 
wholly in S(P, e), is therefore a domain with simply r-connected 
boundary, and Hr+ 1 may be replaced by a chain of this boundary. 
The total effect of these replacements is the replacement of Kr+1 

by a new chain Lr+1->yr in S(P,e) and not meeting rn~r—x, 

•) We call a sequence of numbers eh a null sequence if lime. = 0 . 
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contradicting the fact that yr and F'n—r—1 a r e linked. Thus yr must 
bound on M . S(P, e) and M is locally r-connected. 

Theorem 2. In En, let M be a closed point set whose comple
mentary domains have (1) diameters that form a null sequence, and 
(2) boundaries that are g. c. (n—l)-m.V°) all but a finite number 
of which are simply i-connected for i = 1, 2, . . ., n — 2. Then M 
is a J*-*. 

Since the g. c. (n— l)-m.'s are locally i-connected for i = 0, 
1, . . ., n — 2, Theorem 2 follows from Theorem 1. 

We digress at this point to prove some lemmas needed in the 
sequel. 

Lemma F. / / M is both r-avoidable and completely r-avoidable 
at P, then for any e > 0 there exists a d > 0 such that for any positive 
number rj < d, there exists an rj <rj such that if yr is any cycle on 
F(P, 0), where d^>0^>rj, then yr bounds on M. [S(P, E) — 
-S(P,rj')].11) 

Proof. We first select • d and rj satisfying the definition of 
complete r-avoidability, and let rj be a positive number < rj such 
that any r-cycle of M . F(P, d) or M . F(P, rj) bounds on M — 
— M . S(P, rj'). Consider any number 0 such that <5 >̂ 0^rj, 
and let yr be a cycle of F(P, 0). Since M is r-avoidable at P, 
yr bounds a chain Kr+1 on M — P. If this chain meets S(P, rj), the 
portion of it in S(P, rj) is a chain Hr+1 bounded by a cycle Zr on 
F(P,rj), and we may replace jf7r+1 by a chain I/+1 on M — 
— M . S(P, rj'). Then the chain F7r+1 = &+1 — # r + - + 2 /+ 1 -> yr 

lies on M — M . S(P, rj'). If F^1 meets F(P, e), the portion of it on 
M — M . S(P, d) is a chain. *'+* bounded by a cycle zr of F(P, d) 
which may be replaced by a chain hr+x of M . [S(P, e) — S(P, rj)]. 
We then have F^1 — hr+1 + hr+1 - * / onilf . [S(P, e) — S(P,rj')]. 
We observe, finally, that any number rj < 6, greater than the rj 
obtained above from the definition of complete r-avoidability, may 
be used with the same rj' as determined above. Also, that if any rj 
less than that used above is assigned, a new rj may be obtained and 
the conclusion holds as before. 

Lemma F \ / / certain sets Mm, m = 1, 2, . . ., s, finite in 
number, have a point P in common, and if for each m, Mm is both 
^-avoidable and completely r-avoidable at P, then for any e > 0 there 
exists a d > 0 such that for any rj < d, there exists an rj' <rj such 
•that if yr is a cycle on Mm . F(P, 0), (m = I, 2, . . ., s), where 
d^0^rj, then yr bounds on Mm . [S(P, e) — S(P9 rj')]. 

10) G. c. n~m. = generalized closed n-manifold as defined in G. C. M. 
n ) Compare this lemma with Axiom H of Cech, Annals of Math. 84 

(1933), p. 667. 

191 



Proof. We select dm as provided relative to e for each Mm by 
Lemma F. Let <5 be a positive number less than the minimum dm, 
and let rj < 6 be arbitrary. For each m, by Lemma F, there exists 
an rj'm < rj as provided by Lemma F. Let rj be the smallest rj'm. 
Now if yr is a cycle of any Mm . P(P, 0) for (5 >̂ 0 I> 77, then since 
<5m > (5 2> 0 ^ rj ^ 77̂ , yf bounds a chain on Jfm . [S(P, dm) — 
— S(P, rj'm)] and hence on Mm . [S(P, e) — S(P, rj')]. 

Lemma G. If M is completely r-avoidable at P, and for some 
neighborhood U of P all r-cycles of U — P bound on M, then the 
conclusion of Lemma F holds. 

Proof. For e > 0 arbitrary, subject to the condition that all 
r-cycles of M . S(P, e) — P bound on M, we determine d and rj as 
in the definition of complete r-avoidability. Obviously any smaller 
number than rj may be selected. We then determine d1 and r\x such 
that any yr o n l . F(P, dx) bounds on M . [S(P, rj) — S(P, ij-J]. 
Let 0 be such that d^0^>rj. Then if yr is on M . F(P, 0), it 
bounds a chain _Kf+1 on M. If Hr+1 meets S(P, rj^, the portion of it 
in S(P, dj is a chain fT'+i bounded by a cycle Zr of F(P, dx). This 
may be replaced by a chain I/+1 on M . [S(P, rj) — S(P, rj^]. 
Similarly a portion exterior to S(P, s) may be replaced by a chain 
on M . [S(P, e) — S(P, rj)]. We observe, finally, that rj may be 
replaced by any number greater than rj and less than d, by retain
ing dx and rjx as already determined above. 

The following lemma now follows from Lemma G just .as 
Lemma F' follows from Lemma F: 

Lemma G'. / / certain sets Mm, finite in number, have a point 
P in common, and if for each m, Mm is completely r-avoidable at P and 
for some neighborhood Um of P all r-cycles of Um — P bound on Mm, 
then the conclusion of Lemma F' holds. 

Theorem 3. Let M be a closed point set and r a non-negative 
integer <^n — 2 such that the complementary domains of M have 
(1) diameters that form a null sequence, (2) boundaries thai satisfy at 
all points thehypothesis of either Lemma F or Lemma G, and (3) bound
aries all but a finite number of which are simply r-connected. Then M 
is completely r-avoidable at all its points. 

Proof. We proceed as in the first paragraph of the proof of 
Theorem 1, and define the domains Dm (with boundaries Bm) as 
in the second paragraph of that proof. By Lemma F' or Lemma G', 
there exist d and rj such that e' > d > rj > 0 and such that any 
r-cycle of Bm . F(P, d) bounds on Bm . [S(P, e) — S(P, rj)]. Of the 
domains complementary to M that do not meet F(P, e) but do 
meet F(P, d), only a finite number have P on their boundaries, 
and there exists an rj' such that rj > rj' > 0 and such that of these 
domains only the. latter have points in S(P, rj). Denote those 
domains that meet F(P, d), have P on their boundaries, and do not 
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meet S(P, e), by Gk, Jc = 1, 2,"-. . ., t. Then thpre exist <5r and rjx 
such that rf > di> rj1> 0, and such that any r-cycle of Fk, 
boundary of Gk, on P(P, 3X) bounds on Fh . [S(P, rj') — S(P, %)]. 

The numbers e, d and % satisfy the complete avoidability 
definition. For consider a cycle yr on M . F(P, d). As r <I w — 2, 
there exists on P(P, <5) a chain l£f+1-->yf. Suppose yf does not 
bound on H = M . [S(P, e) — S(P, rj^]. Then there exists a cycle 
P*-" - 1 of En — H that is linked with yr. The intersections of P * - ' - 1 

and Kf+1 lie in a finite number of the complementary domains 
of M, and these intersections may be removed as follows: If D is 
a domain containing such an intersection, then the portion of -Kf +x 

in D is a chain Hr+1 bounded by a cycle Zr on the boundary B of D. 
Now if D is a Dm, Hr+1 may be replaced by a chain Hr+1 -> Zf on 
£„, . [S(P, e) — S(P, rj)] CH.UD is not a Z>m and does not have P 
on its boundary, then its boundary B is simply /--connected and lies 
in H, and hence the chain Hr +1 may be chosen on B C H. The 
only remaining possibility is for D to be a domain Gk. In this case 
we first let Lr+x be any chain of Fk bounded by Zr. If Lr +*• lies on H, 
we denote it by Hr+1; otherwise, the portion of it in S(P, rjx) is 
a chain Nf+1 bounded by a cycle zr on F(P, rjx). But as we have 
chosen dx and rjl9 there is a chain hr+1~> zr on Fk . [(S(P, rj') — 
— S(P, Vi)] C H, and we Jet IP*1 = Z/+1 — JV'+i + Af+1. The 
chain _Kf +1 — ZHr+1 -f EHr + -• -> yf does not meet P*-**-1, contrad
icting the fact that yr and J'n—r—I a r e linked. 

For the proof of the next theorem we need the following lemma: 
Lemma H. / / certain sets Mm, finite in number, have a point P 

in common, and if for each m, Mm is locally r-avoidable at P and for 
some neighborhood Um of P all r-cycles of Mm. Um — P bound 
on Mm, then for any e > 0 there exist d and rj such that if Y ^s a cycfe 
of Mm . F(P, d), then yr bounds on Mm — Mm. S(P, rj). 

Proof. Let e be small enough that all r-cycles of any 
Mm . S(P, e) — P bound on Mm. Since each Mm is r-avoidable at P, 
there exist, for each m, positive numbers dm and rjm such that any •/ 
of Mm . F(P, bm) bounds on Mm — Mm . S(P, rjm). Let 6 be such 
that e > 6 > dm for all m9 and rj such that rjm > rj > 0 for all m. 
If yr is a cycle of Mm. F(P, 6), it bounds a chain jKf+1 on Mm\ 
if this chain meets 8(P, rj), the portion of it in S(P, rjm) (and hence 
the portion in 8(P, rj)) may be removed by methods similar to 
those used in proofs above. 

Theorem 4. Let M- be a closed point set and r a non-negative 
integer < n such that the complementary domains of M have (1) diame
ters that form a null sequence, (2) boundaries all but a finite number 
of which are^simply r-connected, and (3) boundaries which at each 
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point P satisfy the conditions placed on Mm in Lemma H. Then M 
is r-avoidable at all its points. 

The proof of Theorem 4 employs methods similar to those 
used in the proof of Theorem 3. We use Lemma H to provide 8 
and r\ such that any r-cycle of Bm . F(P, 8) bounds on Bm . [En — 
— S(P, rj)], and 8± and rjx such that any r-cycle of Fm . F(P, 8±) 
bounds on Fm : [En — S(P, ^ ) ] . 

» Theorem 5. Let M be a compact connected Jn~2. Then the dia
meters of the complementary domains of M form a null sequence12) 

Proof. Suppose M has infinitely many complementary domains 
of diameter greater than some e > 0. Then there exists a point P 
of En and positive numbers 8 and rj, where d > rj, such that infin
itely many complementary domains of M, say Dl9 D2, . . ., Dm, . . ., 
contain points of both F(P, 8) and F(P, rj). 

00 

We may show that the set M' = En — 2 A» *s a -ocally 

compact e/n_2, by methods used in the first part of the proof of 
Theorem 7 of L. C. 

In each Dm there is an arc xmym such that xm and ym are points 
of F(P, 8) and F(P, rj), respectively, and xmym — xm — ym C 
C S(P, 8) — S(P, r]). Let 0 be such that 8 > 0 > rj, and let 
Sl9 S2, . . ., Sm, ; . . be a sequence of subdivisions of F(P, 0) whose 
meshes form a null sequence. For a fixed integer h, only a finite 
number of the sets Dm can contain vertices of ASA, and consequently 
there exists for each h a domain Dn^h) that contains no vertex of $&. 

Now by methods similar to those used in paragraphs seven to 
eleven of the proof of Theorem 7 of L. C , we can show the existence, 
for h great enough, of a cycle A*1""1 which fails to meet the arc xm(h) 
tfm(hh a n ^ ye*> which approximates Sh as closely as we please (de
pendent on h). Since for h great enough such a cycle must meet the 
arc xm(h) ym{h), a contradiction results. 

Theorem 6. Let M be a compact connected Jn~2. Then all but 
a finite number of the complementary domains of M are simply 
i-connected for i = 1, 2, . . ., n — 2. 

Proof. As M is compact, there exists an e > 0 such that all 
. i-cycles of diameter < e bound on M. If the complementary domains 
of M are infinite in number, then by Theorem 5 all but a finite 
number of them are of diameter less than e, and we assert that those 
domains whose diameters are less than e are simply i-connected. 
For if D is such a domain, and y* is a cycle of D which fails to 
bound in D, then yi is linked with a cycle jpn—•—l of the boundary 

1%) For the plane, this result was proved by Schoenflies. See Schoen-
flies, A., Die Entwickelung der Lehre von den Punktmannigfaltigkeiten, 
Erganzungsband, Jahre^b. d. Deut. Math.-Ver., Leipzig, 1908, p. 237. 
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of D. But JP*—-—- is of diameter less than e and must therefore 
bound on M, hence bound a chain which fails to meet y*. 

We now state one of our principal theorems, the motive for 
which will be found in Principal Theorem D of G. C. M. 

Principal Theorem A. In order that a compact continuum M 
should have only complementary domains (1) whose boundaries are 
g. c. (n — l)-m's all but a finite number of which are simply i-connected 
for i = 1, 2, . . ., n — 2, and (2) whose diameters form a null sequence, 
it is necessary and sufficient that M be a J"~2 which is completely 
i-avoidable for i = 0, 1, . . ., n — 3, and locally (n— 2)-avoidable. 

The necessity follows from the properties of g. c. (n — l)-m.'s 
and Theorems 2—6 above, and the sufficiency follows from Prin
cipal Theorem D of G. C. M. 

As an important corollary of this theorem we have: 
Corollary. Among the dompact connected Jn~2's, those which 

have g. c. (n—l)-m.'s as boundaries of all their complementary 
domains are characterized by the fact that they are completely i-avoid
able for i = 0, 1, . . ., n — 3 and locally (n — 2)-avoidable. 

It should be noted here that by Lemma D, Principal Theorem A 
and its Corollary remain true if the condition that the set be completely 
i-avoidable is -replaced by the condition that all its points be local-non-
i-cut-points — a matter not without interest in view of the fact that 
(by Lemma A) these two conditions are in general independent. 

Theorem 7. Let M be a closed point set whose complementary 
domains have diameters that form a null sequence and whose bound
aries are all simply i-connected (i = 0, 1, . . ., n — 2) g. c. (n — 
— l)-m.'s. Then all points of M are non-i-cut-points, i-avoidable and 
locally i-avoidable. 

Proof. By Theorem 1, i f is a J91—2. That M is simply i-connected 
follows from the duality.theorem for closed sets. Hence by the Cor
ollary above, M is completely i-avoidable for i = 0, 1, . . ., n — 3 
and locally (n — 2)-avoidable. By Lemma E, M has only non-i-cut-
points, and its points are also i-avoidable and locally i-avoidable. 

Theorem 8. Let M be a compact continuum and D a domain 
complementary to M such that (1) D is u. I. i-c.iz) for i = 0, 1, . . ., k, 
where k <Ln — 3; (2) small i-cycles bound in D for k < i <Ln — 2, 
and (3) M is locally i-avoidable for i = 0, 1, . . ., n — k — 3. Then 
the boundary of D is a g. c. (n — \)-m. 

Proof. We show that D is u. 1. i-c. for k < i <̂  n — 2. Suppose 
D not u. 1. i-c. Then there exist a point P of M and an s > 0 such 
that for every rj > 0 there exists in D . S(P, rj) a cycle ly* which 
Jails to bound in D . S(P, e). By condition (3) there exist d and rj 
such that any /-cycle, y', where j = n — i — 2, of M . F(P, d) 

18) U. 1. i-c. = uniformly locally i-connected (defined in G. ,C. M.). 
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bounds on M — M. S(P,r]). We may take rj so small that it not 
only satisfies this condition, but also the condition (2) that i-cycles 
of diameter < r\ bound in D. 

Consider a cycle ŷ*. It bounds a chain Ki+ x of D which a forti
ori lies in En — M . S(P, d). Any chain I/*-1.bounded by y in 
S(P, rj) also lies in En — [F(P, €) + M — M . S(P, d]\. The cycle 
K**1 — i*+ 1 must fail to link M . F(P, d), since j-cycles on the 
latter set bound on M—M . S(P, rj) and cannot meet the chain 
Jfi+i — L*+l. Thus by the Alexander Addition Theorem vy* bounds 
in D . S(P, e), D is u. 1. i-c, and the boundary of D is a g. c. 
(n — l)-m. by Principal Theorem C of G. C. M. 

The proof of the following theorem is similar to the proof just 
given: 

Theorem 8a. Let M be a compact continuum and D a domain 
complementary to M such that (1) small i-cycles of D bound in D for 
i = 1, 2, . . ., ro— 2, and (2) M is locally i-avoidable for i = 0, 
1, . . ., n — 2. Then the boundary of D is a g. c. (n — l)-m. 

The following corollaries are of interest. 
Corollary. In the plane, if M is a continuum all of whose points 

are locally 0-avoidable, then the boundaries of the complementary 
domains of M are simple closed curves. 

Corollary. In 3-space, if M is a continuum all of whose points 
are locally 0- and 1-avoidable, and D is a complementary domain of M 
whose small 1-cycles bound in D, then the boundary of D is a closed 
2-dimensional manifold. 

Theorem 9. In order that the boundary, B, of a bounded, simply 
(n— l)-connected domain D should be a g. c. (n— l)-m., it is ne
cessary and sufficient that (1) the small i-cycles of D bound in D for 
i = 1, 2, . . ., n — 2 and that (2) B be locally i-avoidable for i = 0, 
1, . . . , n — 2. 

Proof. The necessity follows from the properties of a g. c. 
(n — l)-m. and Lemma A (I > II); the sufficiency from Theorem 8a. 

As a Corollary of Theorems 6 and 8a we have: 
Theorem 10. If a compact continuum M is a J"—2 and locally 

i-avoidable for i = 0, 1, . . ., n — 2, then all but a finite number of 
the complementary domains of M are bounded by simply i-connected, 
g. c. (n — l)-m.'s. 

Theorem 11. In order that a simply i-connected (i = 0, 1, . . ., 
n — 2) compact closed set should nave only simply i-connected g. c. 
(n—l)-m.9s as boundaries of its complementary domains, it is 

i sufficient that M should be locally i-avoidable. 
Proof. Being simply 0-connected, M is a continuum. Condition 

(1) of Theorem 8a holds for any complementary domain of M, since 
M is simply i-connected for i = 1, 2, . . ., n — 2, and condition (2) 
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of Theorem 8a is part of our hypothesis. Consequentlythe bound
aries of the domains complementary to M are g. c. (n— l)-m.'s. 

Let D be a domain complementary to M, and B its boundary. 
By Principal Theorem A of G. C. M., En — B is the sum of two 
domains Dx and D2, of which B is the common boundary. As 
DcEn — M C En — B, we know that D c A + D2> and hence 
D C Dl9 say. Then D = Dx and D23M — B. Suppose p*(B) > 0, 
where 1 ^ i <I n — 2. Then pn-i~l(En — B) > 0. It readily 
follows from the duality in Theorem 5 of G. C. M. that pn—*— l(D) > 
> 0, hence by the duality for closed sets that p{(M) > 0, which is 
contrary to hypothesis. 

Corollary. In E3, if M is a simply l-connected continuum which 
is locally i-avoidable for i = 0, 1, then the complementary domains 
of M all have 2-spheres as boundaries. 

Principal Theorem B. In order that a simply i-connected (i = 0, 
1, . . .. n — 2) compact Jn—2 should have only simply i-connected g. c. 
(n — l)-m.'s as boundaries of it£ complementary domains, it is necess
ary and sufficient that it have only non-i-cut-points. 

Proof. The necessity follows from Theorems 7 and 5. As for 
the sufficiency: By Lemma D, M is locally i-avoidable at all points, 
and consequently by Theorem 11 the boundaries of the comple
mentary domains of M are all g. c. (n— l)-m.'s. 

We conclude with a theorem concerning the common boundary 
of two domains: 

Theorem 12. Let M be a compact, common boundary of two 
domains Dx and D2 such that (1) D% is u. I. i-c. for i = 0, 1, . . ., 
njc (k = 1. 2), where nx-\- n2 < n — 3; (2)'small i-cycles of Dx bound 
in Dx for i = nx + 1, nx + 2, . . ., n — n^ — 2; (3) M is locally 
i-avoidable for i = n2 -f- 1, n2 -f- 2, . . ., n — n± — 3. Then M is a g. 
c. (n — l)-m. 

Proof. Wefirst show that Dx is u. 1. i-c. for any i such that 
nx -f- 1 <I i <I n — n2 — 3. If for some such i, Dx is not u. 1. i -c , 
there exist a point P of M and e > 0 such that for any rj > 0 there 
is a cycle ly* of Dx. S(P, rj) that fails to bound in Dx. S(P, e). 
However, let d and rj be selected so as to satisfy the local (n—i — 2)-
avoidability definition at P, as well as so that i-cycles of Dx . 
. S(P, rj) bound in Dx. By using the argument of the second parag
raph of the proof of Theorem 8, we may now show that any fly* 
bounds in D±. S(P, e), thus obtaining a contradiction. 

We conclude, then, that Dx is u. 1. i-c. for i = 0, 1, . . », n — 
— ttg — 3, and since D2 is u. 1. i-c. for i = 0, 1, . . ., n2 it follows14) 
that M is a g. c. (n — l)-m. 

14) By Theorem 2 of my paper A characterization of manifold bound-
aries . . ., Bull. Amer. Math. Soc. 42 (1936), pp. 436—441. 
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Množiny, na nichž se lze vyhnouti danému bodu. 

(Obsah předeš lého článku.) 

* Je-li P bod topologického prostoru M, je-li P cyklus, jehož 
nosič neobsahuje bod P a je-li P ^ 0 v prostoru M, pak jedna 
z vyšetřovaných vlastností je, že r musí býti ~ 0 v prostoru 
M — P. Další vlastnosti (celkem je jich pět) vzniknou rozmani-
týlni lokalisacemi. Některé z těchto vlastností se již dříve vyskytly 
(u autora i u jiných matematiků) při axiomatické definici variety 
pomocí homologie. V prvé části článku se studují vzájemné vztahy 
pěti vyšetřovaných vlastností. Ve druhé části jsou mimo jiné 
odvozeny podmínky, které stačí předpokládati o uzavřené množině 
M vnořené do euklidovského 2?n, aby hranice každé komplemen
tární oblasti byla (n—l)-rozměrnou varietou. 
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