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K Y B E R N E T I K A - V O L U M E 18 (1982), N U M B E R 3 

ON NUMERICAL EVALUATION OF MAXIMUM-
LIKELIHOOD ESTIMATES FOR FINITE MIXTURES 
OF DISTRIBUTIONS 

JIRI GRIM 

The paper deals with estimation of finite distribution mixtures which are practically important 
in cluster analysis, pattern recognition and other fields. After a brief survey of existing methods 
attention is confined to maximum-likelihood estimates, especially to an iterative procedure 
frequently discussed in the recent literature. It is shown that this procedure in a general form 
converges monotonly to a possibly local maximum of likelihood function. Application of the 
general iterative procedure to a particular type of mixture is simplified and illustrated by several 
examples. 

1. INTRODUCTION 

Let us consider a parametric family 

(1.1) , ^ = {f(x\b):x = (xu...,xdyeRd; b e St e «,} 

of probability density functions f(x | b) defined on <i-dimensional real vector space 
Rd and depending on a parameter b from a set 'M <= Rq. We denote by 3%M the M-fold 
cartesian product of SS with itself and represent an element of fflM as column 

B = (b1,b2,...,bMye@M 

Denoting further by 

(1.2) HTU = {W = (wu ..., wM)T e RM : wn ^ 0; £ wm = 1} 
m = l 

the set of all M-dimensional weight wectors W, we define finite mixture as a pro
bability density function of the form 

M 

(1.3) /M(X) = fM(x | W, B) = ^ wm/(x | bra); W e iVM, B e ®M . 
m = l 

(Analogously we obtain discrete finite mixture when the components / ( x | bm) are 
discrete probability distributions). Note that the components / ( x | bm) may be viewed 
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as conditional densities and their respective weights wm as the corresponding a priori 
probabilities. 

In order to identify an unknown mixture we have to estimate unknown parameters 
WeifM, B e J M or in a more general case, also the number of components M. 
The available information, except eventual a priori knowledge, is usually represented 
by a sample of independent observations 

(1.4) V = {xux2,...,xN}; xn = (xnl,...,x„dyeRd 

which is supposed to be obtained by observing a rf-dimensional random variable 
with an unknown density function/*(x). 

Remark 1.1. In statistical considerations (parametric problem) the estimated 
function/*(x) is directly assumed to be of the form (1.3). In practical situations, 
however, this assumption may be only rarely justified. The unknown density is there
fore rather approximated on a class of finite mixtures (approximation problem). 
This slight formulational difference may be meaningfull in some respects. 

Estimation of finite mixtures is an old and difficult problem studied since 1894 
(cf. [45]). There is a valuable survey paper by Isaenko and Urbakh [33] which 
includes nearly all important results and is frequently referred to in what follows. 
Also several of the references we cite contain extensive bibliographies (see e.g. [7], 
[17], [19], [30], [41], [43], [47], [61]). 

Comparing theoretical and sample moments Pearson [45] first derived equations 
for the five unknown parameters in a mixture of two univariate normal densities. 
Method of moments was further developed and simplified (cf. [10], [12], [50], [51]), 
modified for other types of mixtures (cf. [6], [7], [52], [53]), combined with graphical 
techniques (cf. [5], [9], [55]), extended to mutidimensional case (cf. [13]) and 
compared with other methods (cf. [14], [19], [20], [57]). 

More detailed discussion of these results may be found e.g. in [33]. Unfortu
nately, moment estimators are computationally complex especially in higher dimen
sions (d > 1) and for mixtures with more than two components. Also their sampling 
properties are not very good (cf. [14]). 

Alternatively Doetsch [16] used Fourier transform to identify normal univariate 
components assuming exact knowledge of values of the decomposed mixture /*(x). 
This approach was further extended to other types of mixtures (cf. [41]) and generali
zed to multivariate case (cf. [54]). Instead of exactly known function /*(x) Stanat 
[54] used Fourier approximation to the sample distribution. However, it appears 
that statistical aspects of the problem are not sufficiently reflected by Doetsch's 
solution. The literature in monography [41] is almost nonoverlapping with that 
of [33]. 

Several experiments should also be mentioned in connection with application 
of minimum %2 (cf- [14], [19]) and Bayes estimators (cf. [35], [42]) to mixtures. 
Both methods appear to be intractable or computationally complex in higher di-
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mensions (d > 1) except possibly in a discrete case. Similarly various graphical and 
semigraphical methods (cf. [5], [6]) are also difficult to extend to higher dimensions. 
We have not mentioned also some other special approaches (cf. [33]) but they all 
seem to be greatly inferior to maximum-likelihood method,- which will be discussed 
in more details. 

2. MAXIMUM LIKELIHOOD ESTIMATES FOR MIXTURES 

In order to obtain maximum-likelihood estimates for a mixture (1.3) the corres
ponding likelihood function 

(2.1) L(W, B) = L(W, B j <?) = £ ln/M(x„) = £ In [ £ wm/(x„ | fam)] 
n=l n = l m = l 

generated by a sample SP is to be maximized with respect to parameters W e Hr
M 

and B e <%M. Unfortunately likelihood equations obtained by setting derivatives 
of L(W, B) to zero seem to have no explicit solution in case of mixtures. Procedures 
for numerical evaluation of maximum-likelihood estimates were proposed for 
mixtures only recently probably under influence of modern computers. All these 
procedures are of iterative nature. Omitting standard approaches like steepest ascent 
and Newton-Raphson (cf. [15], [18]) we confine ourselves to an especially attractive 
iteration scheme repeatedly treated in recent literature (cf. [1], [4], [14], [17], [21], 
[26], [27], [28], [30] [33], [47], [56], [60], [61]). This scheme can be very simply 
programed and may be easily extended to higher dimensions and general mixtures 
of various types. To illustrate the main ideas of the method we write recurrent equa
tions for parameters of a normal mixture: 

1 N v./') f(r I rW JWI 
(2.2) w<<+1) = i - £ p«\m | x„) ; p«>(m | x„) = ™» A * - | c-. • "m J ; 

zwfJKicyun 
7V л = i 

(2.3) c<„<+1) = £ x„ p«)(m | x„) ; 

£ /<>(m|x„)" = 1 

7 1 = 1 

(2.4) A^l> = £ (x„ - c^'+ ])) (x„ - cm'+ J ))T p«\m | x„) ; 

I / " ( m | x „ ) " = 1 

n = l 

m = l , 2 , . . . , M ; ( = 0 , 1 , . . , 

Here wm
 + 1), c^'+1) *4m

 + 1) are weight, mean and covariance matrix of the m-th com
ponent respectively — after (t + 1) iterations. Note that no stepsize is needed for 
computation and the constraints of the problem are automatically satisfied except for 
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possible singularity of matrices ^ , + 1). Morover equations (2.3), (2.4) represent 
a natural "weighted" generalization of m.-l. estimates for single population. 

It appears that Hasselblad [26] first recognized computational advantages of the 
above procedure, though originally in a form restricted to grouped data. By Hosmer 
[30]: "Iterative m.-l. estimates were proposed by Hasselblad and subsequently have 
been looked at by Day, Hosmer and Wolfe". Similarly Cohen [11] recalls that 
" . . . the more general case M 2; 3 dealt with by Hasselblad seems to have received 
little if any previous attention". 

When omitting the iteration index (t) equations (2.2) —(2.4) may be easily obtained 
by algebraically rearranging the corresponding likelihood equations. Using this 
heuristic idea Hasselblad [26] derived first an iteration scheme for univariate normal 
mixture of M components and later ([27], [28]) a general "successive substitutions" 
procedure for mixtures from exponential family. In the same way Behboodian [4] 
obtained Eq. (2.2) —(2.4) for univariate - and Day [14] for multivariate normal 
mixtures. Day considered only two components with common covariance matrix 
and pointed out the existence of singular solutions with general normal mixtures. 
By Wolfe [61] Eq. (2.2)-(2.4) are optimal".. . in the limiting case of very widely 
separated components . . ." and may be viewed as a special case of the method 
of scoring [36]. However there is no exact evidence of convergence properties 
in papers [26], [28], [4], [61]. 

In a recent paper Peters and Walker [47] studied Eq. (2.2) —(2.4) as a special case 
of a more general "deflected gradient type" iterative procedure converging locally in 
certain sense. Like Hasselblad [28] they observed in experiments that the conver
gence is monotone, i.e. that the likelihood function is actually increased at each 
iteration of Eq. (2.2) —(2.4), but they were unable to prove it. 

Finally an outstanding paper of Shlezinger [56] should be mentioned in which 
a general form of the above iterative procedure is suggested applicable for any type 
of multivariate finite mixture. Also the monotone convergence of this procedure to 
some possibly local maximum is proved in full generality. Shlezinger's paper clarifies 
the underlying principle of the procedure which may be independently modified for 
a more general purpose (cf. [22]). The main results of the paper [56] are presented 
in Sections 3 and 4 though in a different way. In Section 5 an implicit relation occur
ring in Shlezinger's original procedure is generally solved for a class of mixtures. 
Examples of use of the general procedure for special types of mixtures are presented 
in Section 6. 

3. GENERAL ITERATIVE PROCEDURE 

To characterize the principle of the procedure we first express likelihood function 
(2.1) in a special form (cf. [56]). Defining the value of indetifinite expression 0 In 0 
by 
(3.1) 01n0 = l im£ln£ = 0 
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and denoting 

(3.2) P = [p(m | x„)]-_. ». . . p ( w | _._) __ _ _ _ ^ J A L ) . 

we can write 

(3.3) L(W, B) = £ [ _T p(m | x„)] In wm + £ [ £ p(m | x„) Inj(x„ | _•„)] -
m = l n = l m = l n = 1 

N M 

- __ __ K m I x « ) l n K m I Xn) 
n = l m = l 

whenever it holds 

(3.4) /_.(*•)> 0 ; n = 1,2,..., N. 

In the course of iterative process the M x N stochastic matrix P may be viewed as 
an internal dependent parameter. At each iteration expression (3.3) is first maximized 
under fixed values of p(m | x„) with regard to the parameters W e WM and B e 3SM 

and next the matrix P is recomputed for new values of W and B. In the following 
we describe the general iterative procedure more precisely: 

Step 0. Choose initial values W(0> _ WM, B(0) e ._?M such that the inequalities 

(3.5) j(
f°>(x„) = £ w<°>j(x„ | b_°>) > 0 ; n = 1, ..., N 

m= 1 

are satisfied and compute the matrix of parameters 

(3.6) P(0> = [p(0>(m | x X , ._, ; P(0>(m | x„) = ^ ^ ^ 
JM .x«. 

Step 1. For a given matrix P ( , ) = [p(,)(m | x„)]_f=1 ___ , (t = 0 ,1 , 2,. . .) compute 
new parameters W(<+1) e #"__, B ( , + 1 ) _ __M by formulas 

(3.7) w<. + 1) = - £ _>('>(m|x„); 
» JVn=l 

(3.8) b<|+1 = arg max { £ p('>(m I x„) lnj(x„ | b)} ; m = 1, 2 , . . . , M 

beX n = l 

Step 2. Using parameters W(<+1), B('+1> compute the corresponding matrix P(,+1> 

„.(«+!) . . y I _ ( ' + i ) . 

(3.9) P((+1> = [_>('+1>(m x j l " __. ; p ( ' + 1)(m x„) = > ,-. I(x" I "^ A 
V 7 L^ V | n. J m - 1 n - 1 > .K V I '"/ W l + 1 ) / V \ 

JM ,Xn. 
and continue by Step 1. 

Remark 3.1. Using notation (3.8) we assume that the parameter bm
 + 1> E 3S corres

ponds to a finite maximum of the parenthesized expression, i.e. 
JV N 

(3.10) oo > _] p("(m | x„) ln/(x„ | b(„'+1>) k V _>("(m,| x„).lnj(x„ l b ) ; b e j 
n = l n = l 
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Further we assume that bm
 + 1 ) e ^ is uniquely chosen when the maximum is not 

unique. 

Remark 3.2. Observe that if /M>(x„) > 0 then p("(m0 | x„) > 0 for some m0, 
(l ^ m0 :£ M). Further, considering Eq. (3.7), (3.10) we can write 

(3.11) p«(m 0 | x„) > 0 - , < + 1 ) / ( x „ | faLf
0
+1>) > 0 => 

=> / M + 1 , W > 0 (=>p<f + 1 > (m o | x „ )>0) 

and condition (3.5) is automatically satisfied in further iterations. 

Note that the M-tuple of equations (3.8) represent a special case of the following 
more general equation. 

(3.12) B<' + 1> = arg max { f f p^(m | x„) ln/(x„ | bm)} 
BaMM m = l n = l 

characterized by the inequality 

(3.13) oo > f f p"(m | x„) ln/(x„ | b<,'+1>) £ f f - > , | x„) ln/(x„ | bm) ; 
m = l n = l m = l n = l 

Be®M 

Obviously, when the parameters 6., b2,..., bM are independent, then (3A2) reduces 
to (3.8). 

Note further, that expression maximized in (3.8) or (3.12) may be multiplied by 
any positive constant. Thus for w<,f) > 0 Eq. (3.8) is equivalent to 

(3.14) bm'+1> = arg max { f % ^ } ln/(x„ | b) 
-«• l«-» fiP(*n) 

which may be more practical since it is formally applicable even if wm> = 0. By 
appropriate norming both expressions in (3.8) and (3.14) may be transformed to the 
form 

iV 

(3.15) &(b) = SP(b \v,sr) = Y,v* lnf(*» I b ) ' b e a ; V e ^n 

which will be called weighted likelihood function for obvious analogy. 
To simplify notation we introduce mappings 

(3.16) a) <2>0 : WM x <8M - 0>MN ; P<'> = <Z>0(W<'>, B<'>) 

b) ^ l ^ M i V - ^ M ; w< f+1> = ^(P<'>) 

c) * 2 : - * * » - * * , 6 ( ' + 1 ) = ^ ( P ( , ) ) 

defined by Eq. (3.9), (3.7) and (3.8) respectively, whereby 0>
MN c RMN denotes the 

set of all M x N stochastic matrices. By iterating first and second steps of the above 
procedure we obtain sequences 

*={*<'>},<%; B = {B^}T=0; P = {P(T=o 
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interrelated through equations (3.16). It is easy to see that if the sequences VV, B, P 
converge, i.e. 

a) lim W(<> = VV* e WM ; b) lim B(t> = B* e ^ M ; c) lim P(» = P* e 0>m 

and the mapping <P2 is continuous at the point P* then parameters W*, B* represent 
fixed point of the procedure, i.e. they satisfy equations 

(3.17) a) VV* = <Z>,(P*); b) B* = <P2(P*) ; c) P* = <P0(W*, B*) 

We conclude this Section by proving that fixed points defined by Eq. (3.17) satisfy 
corresponding likelihood equations provided that desirable derivatives exist. In 
certain sense this is a counterpart of the well known fact, that iterative equations 
analogous to (3.16) may be obtained just by rewritting the likelihood equations. 
Without any loss of generality only nonzero weights w* > 0 are considered in the 
theorem since otherwise related parameters may be ignored. 

Theorem 3.1. Let [VV*, B*] e WM x 3$M be a fixed point of the iterative procedure 
with all the weights w*,(m = 1, 2 , . . . , M) positive. Then the parameters VV*, B* 
satisfy necessary conditions for a maximum of likelihood function L(W, B) provided 
that desirable derivatives exist. 

Proof. Using a Lagrangian multiplier 1 we form the function 

(3.18) L(W, B) = £ In [ £ wm/(x„ | bm)] + 1 ( 1 - 1 O 
n=l m=l m=l 

Necessary conditions for a maximum of L(W, B) are expressed by equations 

J = l 

(3.20) gradb,„ L' - | ^ ^ i f e J i s I = 0 , m = 1 M; 

"" ZV(*.|*y) 
J = I 

Note first that multiplying equations (3.19) by corresponding weights wm and 
summing across m we obtain 1 = TV. To prove the Theorem we use equations for 
fixed point (3.17) in the original notation (3.7)-(3.9). Substituting from (3.9) 
c) we can write (3.17) a) in the form 

(3.21) w m / | — ^ x " l b " ) A A = 0 ; m = l , . . . , M ; 

\=iZ»*f(*n\l>*) ) 

It follows that VV* and B* satisfy Eq. (3.19) since w* is positive. Further it may be 
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seen that equations (3.17) b) imply necessary conditions 

(3.22) grad„ { £ p*(m | x„)ln/(x„ | *>)}(„=„„,, = 0 ; m = 1,. . . , M 
n = l . . 

which may be rewritten in the form 

(3.23) | 2 % ^ / ^ J ^ ^ = 0 ; m = l,...,M. 
^ I^j(x„|b*) 

J'=I 

The proof is complete since by (3.23) the parameters W*, B* satisfy also Eq. (3.20). • 

4. CONVERGENCE PROPERTIES 

In this section we use repeatedly a discrete version of an inequality known in in
formation theory (cf. [39]). For the sake of completeness we bring the proof here 
since it is brief. 

Lemma 4.1. Any two discrete probability distributions o = (als.... aM)y ei^~M, 
b = (bu ..., bM)Ts"lfM satisfy the inequality 

M a 
(4.1) £ amln^ = 0 

m = l bm 

whereby the equal sign in (4.1) holds if and only if o = b. 

Proof. Using convention (3.1) we may assume am > 0 for all m = 1,2, ..., M, 
without any loss of generality. If we denote 

(4.2) «m = — ; m = l,2,...,M 
am 

then by Jensen's inequality, we obtain relation 

(4.3) £ am In a,„ = In [ £ amam] = 0 
m = l m = l 

which may be rewritten in the form (4.1). Since logarithm is a strictly concave function, 
the left-hand side of (4.3) equals zero only if ax = a2 = . . . = aM, i.e. only if o = b. 
The proof is complete since the left-hand side of (4. l) is zero if a = fa. D 

The most interesting property of the iterative procedure is its monotone conver
gence more precisely expressed in the following theorem. 

Theorem 4.1. Let W, B, P be sequences produced by the iterative procedure (cf. 
(3.16)). Then the sequence 

(4.4) L = {L(,)}r=0 ; & = L(W«\ &*)) 

180 



is nondecreasing, i.e. 

(4.5) L(, + 1) - Lc" ̂  0; 1 = 0 , 1 , . . . 

whereby the left-hand side of the inequality (4.5) is strictly positive if W(, + 1) + W(,) 

or P ( , ) + P ( , + 1). Further if L(f + 1) = L(t> then Wc '+1) = W(,) and Pc' + 1» = Pc". 

Proof. We first express the difference Lc<+1) - L('\ Employing (3.3) we get 
N M TV 

(4.6) L(' + 1) - Lc'» = X/1T *)(x.) - X I P("(™ | O ̂  w(;)/(x„ I b<[>) + 
n = l m = l n = l 

+ £ I/^lx^ln/'Xmlx,,). 
m = l n = l 

By simultaneous adding and subtracting the expression 

(4.7) £ £ P(t)(m | x„) In w(,'+ J) /(x„ I b 0 + ! ) ) 
m = l n = l 

we may rewrite equation (4.6) in the form 
N M 

(4.8) L(' + *> - L(,) = X [ X / > | x„)] ln/«+ 1J(x„) + 
n = l m = l 

M N w ( '+1)fCx |b ( ( + 1 ) ) M " „(D/ro | x \ +.?, .?/> i *•>'" ̂ > f e ) +I..?/"(-1 *•' - s ^ i ^ o -
Finally, using formulas (3.7) and (3.9), we obtain 

M N , / I fa(t+m 

(4.9) L ( ' + 1 ) -L ( " = Z E / > K ) t o T l | : ( J + 
m=l n=l /(X„ I b«J) 

M W ( t + D JV M (,) / | x 

+ N I *T » In V + I I ^V *-)ln J^M • 
m = l < ' / i = l m = l p ( ' + 1 , ( m | X „ ) 

Note that the value of (4.7) is finite by relations (3.10) and (3.11). In Eq. (4.9) the 
first term on the right is nonnegative by the inequality (3.10) and hence we can write 

(4.10) L(, + 1) - L(,) ̂  N £ w (;+1) In ^ ™ ^ + 
m = l W,(„° 

£ V ft)/ I x, PW(w]x„) 
+ 1 I P C > N l n - i ^ r V i V 

n = i m = i p ( ' + 1)(rc? | x„) 

The proof is complete since the assertion of Theorem 4.1 is now an immediate 
consequence of Lemma 4.1 and the above inequality (4.10). • 

Remark 4.1. It should be noted that Theorem 4.1 remains valid even if the ine
quality (3.10) holds only for b = b%\ i.e. if the parameter b<„'+1> in Eq. (3.8) does 
not maximize but only increase the parenthesized expression. In this case however 
Theorem 3.1 need not hold. 
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As it follows from Eq. (4.9) the total increment of the maximized likelihood 
function consists of three nonnegat ive par ts . The first one given by the first sum 
in (4.9) is achieved in the Step 1 (Eq. (3.8)) while comput ing the new paramete rs 
b(„', + 1). The second and third part represent a measure of dissimilarity between W(t+1) 

and W(t) and between P ( ( + 1 ) and P(f) respectively, which is known as relative entropy 
or minimum discrimination information (cf. [39]). 

It is easy to see that if L(W, B) is a bounded function on WM x 3&M then the 
sequence L converges since it is nondecreasing by Theorem 4.1. Unfortunately 
likelihood function is not bounded in the important case of normal mixture since 
covariance matrices may become singular. However, the sequence L converges mostly 
also in case of normal mixtures whereby singular solutions cause difficulties only 
when initial estimates are poor and/or sample size is small (cf. [18], [30]). 

It should be pointed out that the convergence of L does not generally imply that 
of the sequences W, B and P. Without making additional assumptions we can prove 
the following assertion. 

Theorem 4.2. If the sequence L has a finite limit, i.e. 

(4.11) limL(f) = L*; L* < oo 
(-•00 

then sequences W, P satisfy the following necessary conditions of convergence 

(4.12) lim | | W ( f + 1 ) - W(t)\\ = 0 ; lim | |P ( f + 1) - P ( f ) | = 0 
r->oo <->oo 

where || • || denotes usual Euclidean norm. 

Proof. To prove the Theorem we make use of the inequality 
M M 

(4.13) Yj^m^ = K l k - ^ ] 2 = !!*-fal2; a,beiTM 
m=l Dm m = l 

derived by Kullback [38]. Applying (4.13) to (4.10) we obtain 

(4.14) L ( f+1) - L(f) ̂  i | | W ( f+1) - W(f)||2 + i | |P ( t + 1 ) - P(f) | |2 . 

The proof is complete since the left-hand side of (4.14) tends to zero by Eq. (4.11). 

D 

5. EXPLICIT SOLUTION OF THE STEP 1 

Recall that the iterative procedure includes implicit relation (3.8), (resp. (3.12)) 
which is to be solved for all components at each iteration. Obviously an efficient 
use of the procedure is possible only if there is a simple solution of this relation. 
It is easily verified that in case of normal mixture Eq. (3.8) is equivalent to (2.3) and 
(2.4). Considering these equations we see that the weighted likelihood function 
in (3.8) is maximized by correspondingly weighted m.-l. estimates for a single normal 
population. 
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This analogy suggests possibility of a more general solution first noticed by Hassel-
blad [28]. In the following Theorem the generalized solution is obtained for m.-l. 
estimates which are additive with regard to the sample in certain sense. 

Theorem 5.1. Assume that for any sample Sf the likelihood function 
N 

(5.1) L(b I ST) = £ ln/(x„ | fa) ; fa e # «= Rq 
n = l 

is maximized by b(Sf) e 3S, 

(5.2) MS?) = i £ /?(x„); /J(x„) = (/^(x,,),..., /Ux„)f e Rq 
N n=l 

where /}(•) is a vector of real functions defined on Rd, i.e. we can write 

(5.3) L(b(S") | S") ^ L(fa | ^ ) , for all fa e 3t 

Then, given a vector V* = (v*, ...,vN)eWN we may form weighted likelihood 
function (cf. (3.15)). 

(5.4) S£(fa | ^ , V*) = £ y* In f(x„ | fa) ; fa e £ 
n = l 

which is maximized by b*(Sf) e 3S, 

(5.5) b*(^) = £ » : /?(x„) 
n = l 

provided that the functions f(xn | b); n = 1, ...,N are continuous with respect to 
fa at fa = fa*(^). 

Proof. For any given weight vector V* e ifN and an integer k > N we can choose 
integers k1,k2,...,kN with the property 

^ ì ; n = l , 2 , . . . , N 
k 

(5.6) £ fc„ = k ; kn = 0 ; 
n = l 

Using the above integers we define a weight vector 

(5.7) V<*> = (if>,... , i#>)T e iTN vn
k) = ^ 

/c 

and applying vectors from Sf repeatedly we construct an artificial sample 

(5.8) sm = {Yl(i),..., jr.(fc.),..., YM • • •> / # » ) } ; 

y„(f) = x„ e ^ ; ' = 1, . . . , ka ; n = l,2,...,N 

Now, by assumption of the Theorem, the likelihood function 

(5.9) L(b | S*m) = £ fc„ lnf(xn | b) = fe £ B ? ' lnf(«» I fa) 
n = l n = l 
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is maximized by b(Sf(ky) e J1, 

(5.10) b ( ^ ) = i I fc„/Kx„) = £^>/J(x„). 
kn=l „=1 

Thus, for any k > N it follows 
N N 

(5.11) £ e?' In j(x„ | b^*1)) £ J 0 « In j(x„ I b) for all b e f 
n = l n = l 

It can be seen that 
(5.12) lim Vw = V*eiTN; lim b(^ky) = b*(^). 

fc-00 k - 0 0 

Letting fe -> co in (5.H) and considering the assumed continuity of/(x„ ] b) at b*(£f) 
we obtain the inequality 

(5.13) £ t>* In j(x„ | b*(^)) = £ t;* In j(x„ \b); b e J 
n = l n = l 

which completes the proof. • 

Remark 5.1. Note that m.-l. estimate in (5.2) may be supposed in a more general 
form 

(5-14) 6 ( y ) = ^ ! / W ) 

where î (-) is a continuous function. 

6. APPLICATION TO SPECIAL TYPES OF MIXTURES 

Applying the iterative procedure in a particular case we need to specify essentially 
only the general implicit relation (3.8) or eventually (3.12). In what follows we 
employ Theorem 5.1 or solve the implicit relation directly. The examples presented 
illustrate, that virtually any type of mixture may be identified. 

a) Normal mixture 

Weighted likelihood function corresponding to normal components 

<"> / ( " l c - " A - ) = 7pfe)exp!-1(x--cJTA"' ('^a; 

(m = \,...,M) 
is given (cf. (3.15), (3.8)) by 

(6,) *«.,*.) -k^k^km^ fei(M'-)'^'(«,-=.)}]; 
^ = p(,)(mjx„)/£/"(m|*.-)-

i = l 
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If Am is a positive definite matrix then, by Theorem 5.1, expression (6.2) as a function 
of cm is maximized by 

(6-3) 

E P('Í™ I O 
I x„pЄ>(m|xи). 

Similarly for a fixed vector c„, e Rd the function =S?(c„„ Am) is maximized by 

1 
(6.4) AĽ + 1 ) = 

I PІП(m | x„) " = 

I (x„-cm)(x„-c„l)
Tp>î|x„). 

Combining (6.3) and (6.4) we obtain the well known equations (2.3), (2.4). 

Note that proving formula (6.4) we should consider possible occurrence of singular 
matrices in Eq. (5.2), (5.5) and (5.10). The proof of Theorem 5.1 may be easily modi
fied if Am

 + X) obtained in (6.4) is a positive definite matrix. On the other side a singular 
matrix Am

+ 1 ) corresponds to a singular point of likelihood function. In this case 
the computation must be stopped and repeated with other initial values. In approxi
mation problems (cf. Remark IT) the singular component may be omitted. 

In case of equal covariance matrices At = A2 = ... = AM = A we have to use 
Eq. (3.12) instead of (3.8). Consequently we obtain weighted likelihood function 

(6.5) _?(c 1 ,c 2 , . . . ,cM >A) = 

_ y y !>(t,H« 
Jtx „=1 N 

In T exp {-i(x„ _ cm)T A-Hxn - c„)}l. 
Lv((2^detA) P 1 A" m) {" ")]\ 

Again from Theorem 5.1 it follows that (6.5) as a function of A is maximized by 

(6.6) A«+» = H * - ^ L _ _ (x„ - cm) (x„ - cm)T = 
m= 1(1=1 N 

i N M 

_ 1 £ x„xT - £ ^+1)cwcT
m 

Nn=l m = l 

where the optimal vectors cm may be substituted from (6.3). 

b) Laplace mixture 
Assuming components in form of Laplace densities 

(6.7) j(x|am,cm) = n r 1 I IX, - c„ 
e x p ^ -la 

we obtain weighted likelihood function 

; xєRd; amx> 0; o m ,c ш єl 

(6.8) 3(cm, am) = ívnln\l\(-L. e x p J_J______=_ll") = 
B- i |_a = i \ 2a m a ( amci J / J 
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= lí-.n2«..-£,lî"-^4 H-4 
a = 1 t "=1 в«« J £p("(m|x;) 

/>(t)(m ! x„) 
.11 i U M — ^ j V„ * ' > , vn — -

which is maximized by 

(6.9) a^!) = 1 | |xM - cma\ p
(t\m | x„); « - 1, 2,..., d ; 

B E P ( V | X „ ) n = 1 

for any fixed vector cm e Rd. Further if 

(6-10) xilX^xhx^...^xiNX 

is the order of numbers xia, x2a, • •., xNa then the optimal vector c(„f +1} may be defined 
by inequalities 

(6.11) 4?a
+1> = xikX ; k *ZpV(n | x...) < * £ p«(m | *.) 5. £ p < > \ xtj}. 

J = l B = l J = l 

c) Uniform mixture 

We define multivariate uniform probability density by Eq. 

xeRd 

{bma - amx) J ' bma > ama ; am, bm e Rd 

where q>(£ | ama, bma) is characteristic function of the interval (anx, bma) 

, x , ' / l ; ^e<am„ftma> 
6.13) <p(£ a m a , 0 = < 

\ 0; ^ <ama, O 
The corresponding weighted likelihood function 

(6.12) / ( x | . „ Ь . ) . ń [ 5 ' f e l ' ' - - ~ ï 

.̂.ь,) = î , .nГп^^f'l = 
»-- L«-i fø---0 J 

ZPw(m|*.) 

d " r?(,)tm I x ) 
= X {- ln(fcma - amx) + £ „„ln<Kx„a|flma, bma)}; vn = - / ^ *' 

is maximized by 

(6.15) a,(l+1)= min {x„a} ; 6<f(,
+ 1> = max {x„J . 

n:p<')(m[x„)>0 n :pW(m[x„)>0 

Note that in case of uniform mixture the property (3.U) undesirably increases the 
meaning of initial parameters. Roughly speaking the solution obtained will not differ 
very much from the initial parameters. 
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d) Bernoulli mixture 

Consider a discrete mixture the components of which are multivariate Bernoulli 
distributions 

4 

(6.16) f(x | em) = n %(i - O1-*"; ^e(o.i); o = ema g 1 

defined on the set of <i-dimensional binary vectors. The corresponding weighted 
likelihood function is given by 

(6.i7) se(em)« i vK in [ n e;(i - O 1 "x" _ = 
n = l a = l 

= I {[ I V j 1" A_ + [1 - Z V j In (1 - UJ : _ = ? ( ' "J • 
I P < > | X £ ) 

; = I 

Using Theorem 5.1 or directly Lemma 4.1 we obtain the following explicit form 
of the relation (3.8) 

(6.18) C + X) = - | xnx. jf>\m | x„); a = 1, 2 , . . . , d . 

Y » | x „ ) n = 1 

7. CONCLUSION 

General iterative procedure considered in the present paper proved to be a feasible 
method for obtaining m.-l. estimates for finite mixtures of various types. Computa
tional properties of this procedure have been tested practically by several authors 
with satisfactory results (cf. [28], [61], [47], [21]). In this connection there is a fre
quently discussed problem of multiple solutions. Analyzing a particular set of data 
one can find all the local maxima of likelihood function by repeating the computa
tion from enough different starting points. Usually the over-all maximum is used 
to determine the best solution ([4], [61]) but other rules may be preferable when the 
sample size is small (cf. [3]). Note that related problem of the proper choice of initial 
values need not be as crucial as sometimes supposed (cf. [14], [61]) since the iterative 
process converges to a local maximum nearly always. 

Recall that the number of components M is not estimated by the iterative procedure. 
In the practically important approximation problems (cf. Remark 1.1) there is 
a possibility to delete "superfluous" components in the course of computation. 
A question arises if appropriate tests could be developed for this purpose possibly 
in a way suggested by Theorem 5.L 
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