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KYBERNETIKA ČÍSLO 6, ROČNÍK 5/1969 

Solution of Simple Logical Problems 
by Colouring Graphs 

JAROSLAV SEDIVY 

This method was invented as an application of graph theory and presented in a primordial 
form at the International Congress of Mathematicians held in Moscow, 1966. Later on, the 
didactical utilization of the method was developed and some papers concerning these questions 
were published by author in Czechoslovak and foreign journal for teachers. That work suggested 
some generalizations of the method as well as some simplifications of it. This paper gives a con
cise information on the mathematical and logical core of the graphical method in its present form. 

1. INTRODUCTION 

The symbolic logic knows different methods for solving such logical problems as 
testing the validity of arguments, establishing the truth-values of some propositions 
etc. Textbooks of logic show the application of the truth-table analysis, logical trees, 
punch-cards, propositional calculus or Boolean algebra. In this paper, the application 
of graphs will be explained, the core of the matter consists in graphical representation 
of a binary relation-defined in a finite set of propositions. The truth-values of these 
propositions are represented by colours of the vertices, the rules for colouring the 
vertices express the rules of logical inference in the language of the graph theory. 
No special knowledge of graph theory is required, because of the construction of 
a graph is merely needed. 

2. GRAPHICAL REPRESENTATION O F SETS OF PROPOSITIONS 

In this paper, the sign tv (x) denotes the truth-value of the proposition x, the 
signs x, x & y, x v y, x => y, x <=> y denote the negation not x, conjunction x and y, 
disjunction x or y, implication if x, then y and equivalence x if and only if y, re
spectively. The construction of the graphs will be described as the first step in solving 
the following problem: 



Problem 1. Given a condition tv (p1 & p2 & ... & pn) = 1, where each proposition 
Pi is constructed from some of the basic propositions blt b2, ...,bk by using the 
logical connectives mentioned above. The question we face, then, is to establish 
the tv(& . ) , tv ( f t a ) , . . . , tv (* t ) . 

Example 1. Given tv [(a v b) & (b v c) & (c<=> d) & (d v e) & (e => a) & (e => dj] = 
= 1. Establish the tv (a), tv (b), tv (c), tv (d) and tv (e). 

Example 2. Given tv [(a => 3)& (b => c)& (a & c => d)& (b& c => a & d)& 
& (a & b => c)] = 1. Establish the tv (a), tv (b), tv (c) and tv (d). 

Let us take for granted that all propositions pt are put down in one of the forms 
x, x, x v y, x => y, where x, y are the propositions with the least number of logical 
connectives as possible. The collection of all these propositions x, y is the key set 
for our method and will be called the fundamental set Sf of propositions (with regard 
to the given problem). In the example 1 we find the set Sfi

l = {a, b, c, d, e, a, b, c], 
whereas in example 2 we find Sf2 = {a, b, c, d, a& c, E& c, a& d,d& b, c). 

Let us denote the set of all propositions pt by the letter $P and concentrate our 
attention to the connection between the sets ^ and S* x S" (cartesian product of 
the set ¥ with itself). All disjunctions or implications included in 0> are constructed 
from ordered pairs of elements of the fundamental set Sf. The collection of all p{ 

which are disjunctions may be regarded as a binary relation 3) defined in the set S", as 
follows: 

3) = {(x, y)e S" x S" ; x v j is a true proposition included in SP\ . 

The collection of all p which are implications may be regarded as a binary relation 
/ defined in Sf as follows: 

# = {(x, v) e S" x S? ; x => y is a true proposition included in SP\ . 

Obviously, it will be useful to take into consideration the union-set £? u f of both 
binary relations defined above. 

Fig. 1. 

As soon as we have obtained a binary relation defined in a finite set ¥ we can 
design an advantageous graphical representation of it. The elements of the set ¥ 
will be represented by vertices of the graph (small circles on the fig. 1). Every element 
x v y of the symmetric binary relation 3> will be represented by one edge xy of the 



graph, i.e. by a simple curve connecting the vertices x, y (see fig. 1). Every element 
x => y of the relation # will be represented by a directed edge of the graph, i.e. by 
an edge x~y provided with an arrow directed from the vertex x to the vertex y (see 
fig. 1). 

Besides the disjunctions x v y and implications x => y, the set 0 = {pu p2,..., 
..., p„} might include the propositions of the types x, x, where x e Sf. If pt = x or 
Pj = x, then the proposition x is an element of the set Sf and as such it is represented 
by a vertex of the graph. From the condition tv (pt & p2 & ... & p„) = 1 we can 
deduce that tv (x) = 1, resp. tv (x) = 0. The truth-value of a proposition xeSf 
may be marked by colour of the corresponding vertex. Because of the two-valued 
logic, we need two colours only. In this paper, we shall use a doubled circle for 
representing any true proposition xe Sf and a black circle for representing any 
false proposition xeS. From this reason, we shall work with a little strange co
lours of vertices — double, black. 

Following the construction described above, we represent the elements of the set 
9* by vertices of the graph and the elements of 0> by edges of the same graph or by 
colours of the vertices drawn before. The arrangement of the vertices is very important, 
therefore some remarks concerning this question will be made. 

Each fundamental set of proposition may be embraced in a so called complete 
fundamental set of proposition. These sets form a certain hierarchy as it is obvious 
from their definition (the bu b2, ..., bk are the basic propositions): 

^0 = {bub2,...,bk},] 
J ^ = #"0u {x;xeJ%,}, 
&% = ^i u {x & y, x e #". & y e J ^ } , 
J^3 = # \ , u {z; z e &2} , etc. 

It is evident that the set £r,
1 mentioned above is a subset of the set &y provided 

#"0 = {a, b, c, d, e}. The figure 1 has shown a convenient graph representing the 
set J ^ — the vertices of the graph are situated on two parallel lines with the pairs 
x, x accross. The fig. 2a illustrates the manner in which graphs of the set !F2 will 
be represented. The elements of the set 9\ included in SF2 are situated on the main 
diagonal of a matrix scheme in order bu b2,..., bk, bk, ..., b~2, bu where the pairs 
bt, bf lie symmetrically in regard to the other diagonal. Each conjunction x & y is 
represented by one small circle situated below the main diagonal in intersection of 
the row and column containing the vertex x or y. When the vertices on the main 
diagonal are designated by letters, we can easily say which conjunction is represented 
by any other vertex. It means that these other vertices need not be designated at all. 

The fig. 2b depicts a convenient scheme of graphical representation of the set 
^ 3 . The trigonal graph of the set !F2 included in #"3 is completed by vertices si
tuated above the main diagonal in intersections of rows and columns of the under
lying matrix scheme. Each new vertex lying in the same row or column as the vertices 



504 x, y represents the negation of conjunction x & y. In this manner the negation of 
propositions is always connected with some symmetry in the graph. Each vertex 
situated on the main diagonal of the square graph may be comprehended as the 
representative of the conjunction x & x; in regard to the equality tv (x & x) = tv (x) 
we use the symbol x only. 

Q», 

Fig. 2. 
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The simple logical problems mentioned in the title of this paper may be character
ized as problems with such fundamental sets of propositions which are subsets of 
the complete fundamental sets J"^, J 2^, ,^2

 o r &3- Having constructed the graph of 
the sets !? and 3P, we can solve the given problem by colouring vertices of this graph. 

3. PROCEDURE OF THE GRAPH COLOURING 

Let us start with the problem formulated in example 
positions concerned with its solution: 

and recall the sets of pro-

set of all proposition p; 

set of all basic propositons 
fundamental set of propositions 

. . 0> = {a V b, 5 V c,cod,d\/ e, e •• 
c=>d}, 

..@= {a,b,c,d,e} , 
.. Sř = {a, b, c, d, e, a, b, c} . 

The graph (5 constructed on the fig. 1 may be regarded as a structure on which we 
can formulate a problem isomorphic to the given problem. The transformation of 
the original problem into the new one may be described by rows of a vocabulary seen 
below. After recalling the correspondence of objects we shall transform the simple 
rules of inference into the rules for colouring the graph ©: 

proposition x 6 Sf 
true disjunction (x V y) e 0> 
true implication (x => y) £ 0> 
true proposition 1 6 ^ 
false proposition x e Sf 
to establish tv (x) 

vertex i e @ 
edge xy e @ 
edge xy e @ 
doubled vertex x e ® 
black vertex x e © 
to establish colour of x 



1. Each proposition x e Sf has exactly one 
truth-value. 

2. The proposition x e Sf has another truth-
value than the proposition x 6 Sf. 

3. If the disjunction x V y is true and one of 
the propositions x, y is false, then the other 
is true. 

4. If an implication x => y is true and the pro
position x is true, then the proposition y is 
true. 

5. If an implication x => y is true and the pro
position y is false, then the proposition x is 
false. 

1. Each vertex x has exactly one colour. 

2. The vertex x has another colour than the 
vertex x. 

3. If one of the vertices connected by the edge 
xy is black, then the other is doubled. 

4. If a directed edge xy has doubled initial 
vertex x then its terminal vertex y is also 
doubled. 

5. If a directed edge xy has a black terminal 
vertex y, then its initial vertex x is also 
black. 

To start colouring the graph we must know the colour of some vertex. Given 
colour of no vertex we shall choose the colour of the vertex a, but we must remember 
both possibilities for this choice. Let us suppose that the vertex a is doubled (see 
fig. 3a) and take steps based on the rules 1 — 5. Applying the rule 2, we blacken the 
vertex a; following the rule 3, we double the vertex b etc. After a few steps we get 
the state depicted on the fig. 3a — the two-coloured vertex e. This fact is in contra
diction with the rule 1 and hence the presumption made about the colour of the 
vertex a is disproved. 

Having pictured a new graph we mark the black colour of the vertex a (fig. 3b) 
and apply the rules 1 — 5 again. In this case it is easy to colour the vertices e, d, c, 
c, b, b, a, d, e subsequently and gain the result as seen on the figure. No contra
diction may be found, therefore the solution of the original problem is as follows: 
tv (a) = tv (b) = 0, tv (c) = tv (d) = 1, tv (e) = 0. 

Ш Ш~© O O 
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Fig. 3. 
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Let us solve the problem given in example 2. The following sets will participate 
in its solution: 

set of all propositions pt 

set of all basic propositions 
fundamental set of propositions 

,ø> = {a=>d,b=> c, a&c=> d, Ђ&c^> a&d, d&b=>c} 
. ЗS = {a, b, c, d} 
. SЃ = {a, b, c, d,Ћ,Ђ,č,Ђ, a & c, a & d,ľi &b,Ђ & c] 

The graphical representation of the sets Sf and 8P is shown on the fig. 4 together 
with the chosen truth-value of the proposition a, tv (a) = 1. For colouring this 
triangular graph the afore-said rules may be used, but they are not sufficient. It is 



necessary to join some rules concerning the role of conjunctions in the logical in
ference and transform these rules into the rules for colouring the graph. For this 
purpose we shall use a few new terms. 

A vertex of the triangular graph is said to be a diagonal vertex iff it is situated on 
the main diagonal of the scheme, otherwise it is said to be a subdiagonal vertex. 
The diagonal vertices x, y are said to be projections of the subdiagonal vertex x & y. 
Using these words we can write: 

6. The conjunction x & y is true iff both pro
positions x, y axe. true. 

7. If a conjunction x & y is false and one of 
the propositions x, y is true, then the other 
is false. 

8. If the proposition x is false, then every con
junction x & y is false. 

6. The subdiagonal vertex is doubled iff both 
its projections are doubled. 

7. If a subdiagonal vertex is black and one of 
its projections is doubled, then the other 
is black. 

8. If a diagonal vertex is black, then all sub-
diagonal vertices situated in the same row 
or column are black, too. 

The figure 4 shows the result of colouring the graph by application of the rules 
1 — 8. The procedure may be marked briefly in the following comprehensible way: 

Choice: a doubled, 4: d doubled, 2: d black, 5: a& c black, 7: c black, 5: b black, 
2: b, c doubled, 8: a & d, c&B, b&d black. All vertices of the graph are coloured 
and no contradiction may be found, thus, we have got one solution of the given 
problem: tv (a) = 1, tv (b) = tv (c) = tv (d) = 0. 

Fig. 4. 

Supposing tv (a) = 0 we could apply the rules 2,8 and 5 and mark tv(a) = 1, 
tv (a&c) = 0, tv (a & d) = 0 and tv (c&b) = 0, but further no other rule may 
be applied. Whenever we cannot apply the rules 1 — 8 for colouring the graph, we 
must choose colour of some vertex and remember the other possibility of the choice. 
In such cases it is usually necessary to draw a duplicate of the considered graph 
(with yet achieved state of its colouring, of course) and mark different colours of 
the discussed vertex on these two graphs. Then, the colouring procedure may be 
continued. In this way two other solutions of the problem may be found. 



The rules 1 — 8 and the additional rule for the choice of colour of one vertex are 
sufficient for colouring the square graphs (see fig. 2b). This fact enables us to solve 
all simple logical problems of the type 1 (see the section 2 of this paper). 

4. GRAPHICAL ALGORITHM FOR SOLVING SIMPLE ZEBRAS 

A problem ending by the question "Who is breeding the zebra?" was published 
in many magazines all over the world. The name of this animal is often used for 
denoting problems similar to the above-mentioned famous one. Let us remember 
the main features of the mentioned problem without quoting its long text which 
gives some information about properties of five men living in five houses. These 
men differ each from other in nationality, favourite drink, sport, bred animal etc; 
every man has, of course, exactly one nationality, favourite drink, favourite sport, is 
breeding exactly one animal etc. The data are formulated in a little special way, 
for example by the following sentences: "The man drinking milk breeds a cat. The 
athlete is a French. The German does not drink wine". The solver's task lies in 
determinating all properties of the particular men as far as their nationalities, fa
vourite drinks etc. are concerned. 

The above examples of the "zebra" conditions show that a pair of men's pro
perties occur in every simple sentence. Having denoted the set of five men by the 
letter Sf, we could formulate the sentence "The athlete is a French" as follows: 
"There exists a man X e Sf that is an athlete and a French simultaneously". Generally 
speaking, the "zebra" problems may be taken for problems concerning the set of 
all propositions expressed in the form "There exists a man X e Sf that has the 
properties £, and ^ simultaneously", where £, ^ are the elements of a set of proper
ties. 

To simplify the definition of the "zebras" we shall introduce some symbols. The 
letter Sf will denote a finite set of n persons, objects etc., the letters 0>x, 0>2, ...,dPm 

will denote disjoint sets of properties of the elements xe Sf, 0>t = {ptl, pi2,..., pin}. 
The basic proposition "There exists an element x e Sf that has the properties £, >y" 
will be denoted by the symbol [£, ij], where £,eSPb ^ e0>}\ i,j = I, 2,•,..., m. The 
set of all basic propositions [£, ^] will be denoted by the letter 31. 

The zebra of the type m x n will be defined as a logical problem concerning a set 
Sf = {xu x2, ..., x„] and a system {0>x, ef>2, ..., &>„] of sets of properties of xeSf. 
Given a set ST of propositions constructed from the basic propositions [£, ^] by means 
of logical connectives, we have to determine the truth-values of all elements of 36 
so that the three following conditions are satisfied: 

(1) All propositions included in 2T are true. 
(2) For every £ e SP-^, 1 ;£ i ^ m, and every j , 1 g j g m and j =# j , there exists 

exactly one ^ e 0>}, so that tv [£, •/] =- 1. 
(3) £, ^ are elements of a set 0>t (i = 1, 2 , . . . , m), then tv [£,, ^] = 0 for all E, # r\, 

and tv [£, tf] = 1 for all £ = ^ 



A zebra will be called the simple zebra iff all propositions included in 9~ are 
propositions [£, rf], their negations or disjunctions, implications and equivalences 
constructed from two propositions [£, rf], [<!;', >;'] only. The procedure of the graphical 
solution of simple zebras will be shown in solving the following problem. 

Problem 2 . Given four persons and three sets of their properties: 0>
l = {au a2, 

a3, a4}, 0>2 = {bu b2, b3, fo4} and 0>3 = {cu c2, c3, c4}. Every man has exactly 
one property included in 0>

l as well as in 0>2, 0>3. Determine all properties of each 
of these persons provided the following propositions are true: [a4 , c j , [bu c3] , 
[au c4] , [a3 , b2], [a2, c3] v [a4, c2], [bu c2] v [b3, cf], [a3 , b3] => [a2, c j . 

Fig. 5. 
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Let us show the graphical solution of this simple zebra. First, we have to draw 
a graph which could represent the set of all propositions [£, rf], where ^^,e0>1 u 
u 0>2 u 0>3. The presence of a conjunction in the formulation of the proposition 
[£, ^] suggests the using of a triangular graph (see fig. 5). The conditions (2) and (3) 
involved in the definition of zebras call for an outstanding representation of particular 
sets of properties. Therefore, the diagonal vertices will represent the elements of 
0>u 0*2 a n d ^*3 in s u c h a waY that aU elements of one 0>i (i = 1, 2, 3), will be separated 
from others by lines. The horizontal and vertical lines shape square and triangular 
fields in the graph, these fields playing an important role in colouring the graph. 



Now, the set 3d of all propositions [£, n] is represented by vertices of the graph: 
the diagonal vertices represent the propositions [£,, £] which are true, whereas the 
other vertices situated in the triangular fields represent false propositions (see the 
last condition involved in the definition of zebras). The subdiagonal vertices may be 
coloured or connected by edges in order to represent the given true propositions 
(elements of 3"~) in the way described in the preceding sections of this paper. Fig. 5 
shows the graphical representation of our simple zebra. 

The colouring of the graph will be performed on the base of rules 1 — 5, but without 
any application of the rules 6 — 8 which refer to the case when the vertices represent 
the conjunctions £ & n really. In our case, the vertices represent the propositions 
[£, rf], thus other rules must be used for colouring them. It is easy to see that the 
condition (2) may be expressed in the two following rules: 

I. 7/ a vertex situated in a square field of the graph is doubled, then all vertices 
of this field lying in the same row or column with that doubled one, are black. 

II. If all vertices of a row or column contained in a square field are black with 
the exception of one vertex only, then this remaining vertex must be doubled. 

Applying the rule I we can colour the vertices in two rows and columns of the 
graph and obtain an occasion for using the rules 3 and 5 immediately. Thereafter, 
the rule I may be applied again, but some vertices remain uncoloured yet. The most 
important rule for colouring the zebra graphs will be derived only. 

Let us concentrate our attention to the rectangles sketched on the fig. 6a,b. The 
unordered 4-tuples of vertices (small circles) may be taken for vertices of a rectangle 
in the usual geometrical sense. The truth-values of the propositions [a, y], [a, 5], 
[P, y], [p, 8], resp.'[a, ft], [P, p], [a, 6], [p, 8], are to some extent mutually dependant. 
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The truthfulness of three propositions from the considered 4-tuple makes it 
sure that there exists an object xs 3£ which has all four, resp. three, properties 
simultaneously, i.e. all four considered propositions are true. In other words, sup
posing two from four considered propositions are true, we can assert that the re
maining two propositions have the same truth-value. The following rule will express 
thic fact in the language of graphs. 



III. Rectangle ' s rule . / / two of four vertices of a rectangle (with horizontal 
and vertical sides) are doubled, then the two remaining vertices have the same 
colour, i. e. both are doubled or both are black. 

This rule is mostly applied in the case depicted on the fig. 6b; supposing [a, /?] 
is doubled, we can vary the position of 6 and pass through the whole columns below 
a and j9. Doing so, we transfer the known colours from one column into the other; 
when /?, <5 belong to the same set 3>

i of properties, then the rule III gives the same 
results as the rule I. Of course, many occasions exist there for applying the rule III; 
the systematical use of it enables us to mark a considerable number of consequences 
of the given true propositions. 

The final state of the graph colouring should show that there exists a person having 
the properties au b2 and c2 simultaneously. Analogically, the triples of properties 
az> &i> c3> resp. a3, fo4, c4, resp. a4, b3, cu belong to a person mentioned in the 
text of the problem 2. These results may be read immediately from the four longest 
columns of the coloured graph. 

Obviously, the method described above appears to be more advantageous for 
solving the simple zebras of higher degrees, for example the zebras of type 6 x 6 , 
6 x 7, 8 x 8 etc. The conditions concerning the arrangement of the considered per
sons or objects are very popular in the zebra texts (the man X is sitting on the left 
side of the man Y, the man X is sitting face-to-face with the man Yetc). Such con
ditions may usually be expressed by means of a series of equivalences and negations 
and graphically represented, too. 

5. FINAL REMARKS 

The graphical method provides an accessible tool for solving simple logical pro
blems which are solvable in the frame of propositional logic. It is no need to use the 
symbolic language, the graphs may be drawn on the base of the text directly. The 
colouring of the graph is a more concrete activity for beginners than the truth-table 
analysis or the propositional calculus. For this reason, the graphical method is re
garded as a device for teaching the elements of logic. 

Of course, the method itself may be generalized in many ways. Some problems 
solvable in the frame of the logic of classes may be solved by graphs, too. The in
clusion of classes il a binary relation which is closely connected with implications; 
this fact enables us to make use of colouring suitable graphs. The method may be 
used in many-valued logics, too. The construction of electrical devices working on 
the base of the rules mentioned above seems to be quite justified. 

Nevertheless, the graphical method should be considered as an introductory 
method which has to prepare the users to the understanding the more powerfull 
methods. 

(Received February 28th, 1969.) 
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Řešení jednoduchých logických úloh pomocí vybarvování grafů 

JAROSLAV ŠEDIVÝ 

Některé logické úlohy lze řešit pomocí grafů, jež znázorňují binární relace defino
vané na konečných množinách výroků. Pravdivostní hodnoty výroků jsou vyjádře
ny barvou uzlů grafu; pravidla pro vybarvování grafu vyjadřují pravidla logického 
vyvozování založená na základních vlastnostech negací, disjunkcí, implikací a kon
junkcí výroků. 

V článku jsou řešeny dva typy problémů: 

1. Je dána pravdivá konjunkce px& p2 & ... & p„ výroků utvořených z několika 
základních výroků bx, b2, ...,bk pomocí logických spojek. Máme určit pravdivostní 
hodnoty výroků bx, b2, ..., bk. 

Výroky pt (i = 1, 2, ..., n) lze upravit tak, aby měly jednu z forem x, x, x v y, 
x => y, kde každý z výroků x, y obsahuje minimální počet logických spojek. Množina 
všech těchto výroků x, y je nazvána fundamentální množinou Sř, zatímco množina 
všech výroků p; je označena SP. Množiny výroků x v y, resp. x => y, obsažených 
v 5? lze považovat za binární relace 3, resp. ý', které jsou podmnožinami kartézského 
součinu Sř x Sř. Prvky relace 3 jsou znázorněny neorientovanými hranami, prvky 
relace ý orientovanými hranami grafu (5 = \Sř, 3) u ý\ Jsou-li prvky množiny Sř 
vyjádřeny pouze v jedné z forem u, u & v, u v v, u => v, u o v, kde u, v jsou základní 
výrobky nebo jejich negace, nazveme příslušnou logickou úlohu jednoduchou logic
kou úlohou. Algoritmus grafického řešení těchto úloh se skládá z osmi pravidel a 
z úmluvy o volbě pravdivostní hodnoty jednoho výroku v případě, že žádné z osmi 
pravidel nelze aplikovat. 

2. Zebra typu m x n je definována jako logický problém týkající se množiny 
2£ = {xi, x2,..., x„} a systému {SPX, 0>2, ..., &>,„} množin vlastností prvků x e i 



Je dána množina ST výroků, jež jsou sestrojeny ze základních výroků tvaru „existuje 
x e l , které má vlastnosti %, n" pomocí logických spojek. Máme určit pravdivostní 
hodnoty všech základních výroků (značených stručně ]_£,, nj) tak, aby byly splněny 
tyto podmínky: 

(1) Všechny prvky množiny ST jsou pravdivé výroky. 
(2) Ke každému č, e á3;, 1 á i š= m, a ke každému j , 1 g j g m a i # j , existuje 

právě jedno n e 0*}, tak, že výrok [̂ , r{] je pravdivý. 
(3) Jsou-li £, J? pj-u/cy řeze množiny 3P-, (i = 1, 2, ..., m), pafc irýro/c [£, ř/] p/aíí 

při i; = n a neplatí pro žádná dvě různá £, ?/. 

Za jednoduchou zebru je považována ta zebra, jejíž množina 2T obsahuje jen zá
kladní výroky, jejich negace a disjunkce, implikace a ekvivalence vytvořené ze zá
kladních výroků. Algoritmus pro řešení jednoduchých zeber zahrnuje pravidla 1 — 5, 
úmluvu o volbě a tři specifická pravidla I, II, III. Pravidlo III (obdélníkové pravidlo) 
se týká čtveřic výroků znázorněných na obr. 6a,b. 

Grafickou metodu lze zobecnit pro složitější úlohy, pro vícehodnotové logiky a 
bylo by možno modelovat její algoritmy elektrotechnicky. Její užitečnost však spo
čívá v názornosti řešení úloh, která přispívá k osvojení základních logických poznatků. 

Jaroslav Šedivý, Matematicko-fyzikální fakulta University Karlovy, Sokolovská 83, Praha 8. 
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