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K Y B E R N E T I K A — V O L U M E 12 (1976), N U M B E R 4 

Multiple Decoding Scheme and Bounds 
on the Probability of Error and Erasure 
over a Multiple Channel 

BHU DEV SHARMA, GURDIAL 

The output sequences may be partitioned into different subsets and different decoders may be 
operating on these subsets. This is the idea of multiple decoding. The paper contains multiple 
decoding schemes for multiple access channels by modification of Forney's maximum likelihood 
decoding scheme with erasures. Exponential bounds on the probability of error and erasure are 
obtained. 

1. INTRODUCTION 

Given a discrete channel with input X = (xu ..., xK) and output Y = (yit..., ys), 
with transition matrix {P(yjjxk)}, fe = 1, ...,K, j = 1 , . . . , / , Gallager [3] obtained 
an upper bound on the probability of decoding error in the form 

(1.1) P e ^ exp [-(N-QR + max E0(Q,P))~] , 0 ^ Q <> 1 , 

p 

where P e denotes the minimum probability of decoding error, N the length of code 
words, R the rate of transmission, p = {p(xk)}, k — 1 , . . . , K the input probability 
distribution and 

(1.2) E0(Q,p) = - In i (I P(xk) P
1 / ( 1 + «VA)) 1 + e 

j = i * = i 

To obtain this bound on the probability of decoding error for a code of size M, 
Gallager [3] used maximum likelihood decoding scheme. Forney [2] generalized 
this scheme to one called "maximum likelihood decoding with decoding erasures" 
so that having received an iV-sequence y it is read as an input JV-sequence xm iff 

(1.3) P(yjxm) > e" P(yjxm), for all m 4= rh , 1 = A = M , 

where /? is a nonnegative number and if no code word satisfies it, decoding erasure 
is inferred. 



Using above scheme, Forney [2] obtained bounds on the probability of erasure 
and probability of decoding error. 

From a practical and tactical point of view it is sometimes necessary to partition 
the set of output sequences into disjoint subsets and forward these for decoding to 
different decoders of different efficiencies just as the incoming mail is classified and 
handled at different parts of an establishment. Sharma and Gurdial [5] have handled 
this problem of "multiple decoding" for a discrete memoryless channel by partitioning 
the set of received sequences in two disjoint classes Ax and A2 and then defining 
different decoding schemes in terms of two values of the parameter /?. 

In recent years there has been interest in channels having multiple inputs/outputs 
(Cover [1]). For performance of multiple access channels the bounds over probability 
of error etc. have been found by maximum likelihood decoding scheme (Liao [4]). 
However there is no modification of these for erasures under the generalized maximum 
likelihood scheme (Forney [2]). In this paper we propose to undertake the problem 
of multiple decoding in a multiple access discrete channel. As a particular case it will 
cover the maximum likelihood decoding with erasure that could be applied to such 
channels. 

2. MULTIPLE DECODING SCHEME FOR MULTIPLE ACCESS 
CHANNELS 

Consider a multiple access channel with m independent sources in which each 
source sends a message i' chosen from a finite set { 1 , . . . , M1}, I = 1, ..., m. We 
assume that the messages chosen from the respective sets are equally likely, the 
sources are time synchronous and the messages of different sources are statistically 
independent. Also the encoders are independent and they map i1, ..., im into trans
mitting sequences x\u ..., x%, each with a block length N such that x\, = (x'(i), ... 
..., x'(N))i, is a function of il only and x'(t), t e { 1 , . . . , N) takes values from a finite 
alphabet {1, ..., J'}, I = 1 , . . . , m. We assume that the encoders are also time syn
chronous, each encoder sending one digit each unit of time. On the other hand 
the output corresponding to xji, ..., x™„ is denoted by y = (y(l), • • •> y(!V)) where 
y(t) takes a value from the finite alphabet {1. ..., J} . Further the channel is characteri
zed by the conditional probabilities P(yjx1, ..., xm) and we confine to the memory-
less case where 

P(ylx1,..,xm)=flP(y(t)lx1(t),...,xm(t)). 

Taking a priori probability vector Qk of a sequence of length k with source indepen
dence the bound over the probability of error for such a multiple access channel 
has been obtained by Liao [4]. In obtaining bound on the probability of decoding 
error Liao [4] used maximum likelihood decoding scheme according to which 



a received sequence y is read as (x\u ..., xmm) if 

(2.1) P(yjx\i, ..., x$) > P(yjx\l,..., x?m) , for all ( i 1 , . . . , im) * (i1, ..., f") , 

H i ' | M ' , / = 1, ..., m. 

For purposes of mathematical analysis it shall be sufficient to confine to the case 
m =2. 

As a first step it may be pointed out that modification of the scheme (2.1) on the 
lines of Forney [2] will be to decode a received sequence y into (x\,, x2

2) iff 

(2.2) P(ylx\l,x
2
2)>e^P(yjx\i,x

2
2), for all (i1, i2) * (f1, i2), 

1 S il ^ M', I = 1,2 

and to infer erasure if no pair (x\,, x2
2) satisfies it, where P is a non-negative number. 

Further (refer Liao [4]) if i1, i2 are the messages transmitted, then on the basis 
of scheme in (2.2) there can be decoding error if anyone of the following three dis
joint events occurs: 

(2.3) P(yjx\i, 4 ) > e" P(yjx\u x2
2) , for some i1 * i1 

(2.4) P(yjx\>, 4 ) > e* P(ylxl> XP) . f o r s o m e i2 * i2 

(2.5) P(ylx\>, x%) > e" P(yjx\u x%) , for some i1 # i1 and i2 * i2 . 

The results under this scheme can be obtained directly from a more general situa
tion in which the set of output sequences is partitioned into certain number of dis
joint subsets which are subjected to different decoding schemes. 

For purposes of study it is again sufficient to consider partitioning of the set of 
output sequences into two disjoint subsets A\ and A2 of received sequences so that 
Ax v A2 is the set of all received sequences and to adopt for decoding what may be 
termed as a "double decoding scheme" defined as follows: 

A received sequence y e At is decoded into the input pair sequence (x,\, x2
2) iff 

(2.6) P(ylx\„ x2
2) > efi> P(yjx\1, x2

2) , i = 1, 2 , for all (i\ i2) + ( i \ i 2 ) , 

1 = i' = Ml, I = 1,2, 

where /?,-, i = 1, 2 are two fixed nonnegative numbers and if no input pair(xj,, x2
2) 

satisfies (2.6) for y e Ah then an erasure is inferred. (This may be followed by a repeat 
order.) 

The scheme in (2.6) for an i (i = 1, 2) can now be partitioned into three disjoint 
error events on the lines (2.2) was partitioned into (2.3), (2.4) and (2.5). 

Further a little consideration will show (cf. Forney [2]) that the event of erasure 
when (x\i, x2

2) is sent and y is received is covered in the set determined by condition 

(2.7) P(yjx\i, 4 ) = e>' P(y\x\u 4 ) , for some (f1, f2) * (i1, i2) , 

i = l , 2 , l = i' = Ml, 1 = 1,2. 



21* And considering the three ways in which (il, f2) 4= (i1, i2) the scheme (2.7) can 
also be partitioned into three events which together cover the erasure event. 

3. AN UPPER BOUND ON THE PROBABILITY OF DECODING 
ERROR AND ERASURE 

We shall keep the notations very near to those adopted by Forney [2], so let 
P(i',f2)x a n d ^V.Pje denote respectively the probabilities of erasure and decoding 
error associated with a transmitted pair sequence (x),, x%). An erasure will be made 
if for a received sequence y e A; no input pair sequence satisfies (2.6), i = 1, 2. On 
the other hand a decoding error will be made if y e A; is received such that (2.6) is 
satisfied for some (i1, i2) #= (i1, i2) in any of three possible ways. We then have 

(3.i) - W > - - £ lP(yl*i»*i>)<p^My) 

and 

(3.2) P ( iM> = H P(.y/4, 4 ) *.(..,..„(.v) 

where 

(3.3) * . . , „ , £ ) - | J if equation (2.6) remains unsatisfied for all (i1, i2) , 

otherwise 

and 

,„ .\ , , s f 1 if equation (2.6) is satisfied for some (l1, i2) 4= (i1, i2) , -
(3.4) tfv.^eOO » i tu . 

I 0 otherwise . 

The output sequences, whose maximum number is JN, are partitioned into two 
disjoint subsets A, and A2. It is always possible to work on the basis of proportion 
in which these are divided. Thus let XxJ

N and X2J
N with A, + k2 = 1, 0 ^ A, g 1, 

be the number of received sequences in A, and A2 respectively. A decoder, which 
operates on sequences in A;, i = 1, 2, has to decode each received sequence .veA,-
into a pair of input sequences (j-ji, JT2

2) and as such it possesses a pair of decoding 
rates (cf. Liao [4]) which we denote by (Ru, P2 ;), i = 1, 2, such that 

(3.5) M' ^ ( V T " , i = 1, 2 , J = 1, 2 . 

In a following theorem, we shall obtain estimates as upper bounds over the pro
babilities of erasure and error for a multiple (two sources) access channel having 
multiple (double) decoding. These are obtained under random coding argument. 
Before coming to the theorem, we define a few terms which will make our presenta
tion precise: 



Let 

(3.6) El
0{

2(Rn) = max [- .?}*„ In J + El'fal Qk)] , 
Ck'.o-Sei'gl 

E2
0{

l(Ri2) = max [-.?2R.2lnJ + Eof(e2,ek-)], 
Ck',ogei2-Si 

£0 ;2(Rn + Ri2) = max [-Qi(Rn + R12) In J + El
0f(Qi, Qk)~] , 

Qk'.osat^i 
where 

(3.7) Etf(8i, Qk) - - -L in £ z e2(*2) Ee 1 ^ 1 ) P 1 " 1 * " ^ / * 1 . ^XT" 1 -
X ye/li i 2 x1 

- W . &•) - - ~ in I E e'M Ee2(*2) P W + , V - *2)]'+"1 -
X J>6.4i X1 X2 

£o;2(^,a-) - - -L in i E.lG1(*1)GV)- ,1 / (1+"0'/*1.«a)]1+"-
A 3>e/4, x 1 x 2 

Theorem. For a multiple (two sources) access discrete memoryless channel there 
exists a code of length N and a multiple (double) parameter /? (/?! and /?2) which 
works on disjoint subsets of output sequences (containing a fraction A. and A2; 
A. + A2 = 1, 0 ^ A. ^ 1 of maximum number of output sequences respectively) 
such that the average erasure probability Pr(x) and the average error probability 
Pr(E) satisfy 

(3.8) Pr(X) < [ £ (A ;f
1(R">R" K»2(P)-] F\^ + 

; = i 

+ [£(^;)e,2(R'2)R'2-K2/1(/5;)]^!;2) + [ £ (Af)
(fii(R"+Ri2)(Ril+Ri2))X,'2(i5i)] F ^ , . , 

; = i ; = i 

and 

(3.9) Pr(E) < [ l (A,.)fiil(R")Ri' (^1/2(/3,))-1] Ftf„ + 
< = i 

+ [f(^«i(*«>*"(xa/10»<))-1]Ffl.1.,») + 
; = i 

+ [ | : ( l i ) e , ( R , , + « , 2 ) ( « i , + i i , 2 , ( x l , 2 ( ^ ) ) - l ] F l , 2 i 2 ) j 

; = i 

where 

(3.10) K-/-^ - exp [ A ^ H l • ^ W = -P T ^ 4 H 1 ' 
Li + fliWJ L--+ei(.*u)J 

^ Ll + <?;(*;i + *;2)J 



(3.11) J ^ n , = m a x [e-NE^Rll), e-
NE°*R^] , 

Ғ(

2/,V) = m * x [e" ; ) ] , 
F(Vt

2.2) = max [«-«-»«•*»+*.->, e-^o2(«2,+R22)-j ? 

^ ( R . i ) be the Q] which maximizes E^Rn), similarly for others. 

Proof. Having sent (xji, x%) the expressions for P(li,.2)x and P(.i,.2)e are as deter
mined in (3.1) and (3.2). 

Now consider the following characteristic functions 

(3-12) 

and 

1 if P(yjxl, x%) ^ e" P(ylxl, x%), 

<p'mKi^(y) - \ s o m e ( f l , i2) * (i1, i2), ye Ai' 

0 otherwise 

' l if P(yjxl,x^) = ep'P(yjx]hx%), 

(3.13) -Akii.P)^) = | some (f1, i2) * (i1, i2), ^ e i f , 

0 otherwise, 

i = 1, 2. 

It can be seen (cf. Forney [2]) that <Pi(.i>i2)x(>') = 1 whenever <pi(jlj.2,x(y) = 1 
and »/>£(£i,ii)e(j7) = 1 whenever ^i{ii ji)e(y) = 1. Thus the events of erasure and error 
are contained respectively in the supports of these functions. Further considering 
the three ways in which (f1, f2) # (i1, i2) (refer (2.6)) we may write for i = 1, 2: 

(3-14) 

and 

(3-15) 

where 

(3-16) 

(3.17) 

•?ío«..->«G») = <p'il!?My) + 9'ifl'My) + Viliky) 

f^My) -KtfMy) + *'&%&) + ^;2
i2)e(j), 

(PҚП,І^(У) = 

< / Í 2 / I , ; > ) X ( / ) = 

1 if P(ylxll,x%) = e^P(ylxli,x%), 

some z1 4= i1, >>eA(-, 

0 otherwise , 

1 if P(ylx\i,xl)^e<s'P(y\x\i,xl), 

some i2 4= iz,yeAt, 

0 otherwise , 



(3.18) 

(3.19) 

(3.20) 

(3.21) 

ф'кV'2.i-)-Ö') = 

KČMy) = 

KPMy) = 

KtMy) = 

1 if P{y\x\i,x
2

i2)^e'"P(y\x\hx
22), 

some f1 4= i1 and i2 4= i2,y e M, 

0 otherwise , 

[I if p ( j / 4 , 4 ) ^ ' I W , 4 ) . 
some i1 4= il,yeAt, 

0 otherwise, 

' 1 if. P(>>/4, 4 ) > e"' P(y\x\h 4 ) , 

some i2 4= i2,yeAt, 

0 otherwise, 

i if p(^/4,4)^^'p(,./4,4), 
some i1 4= i1 and i2 4= i2,yeAt, 

0 otherwise . 

In the notations adopted above and earlier the incorrect sources are indicated 
by the numerator and the correct sources by the denominator of the superscript. 

By applying the random coding argument, the expectation of the probability 
of erasure, denoted by a bar above, over the ensemble of all possible transmitted 
sequences is upperbounded by 

(3.22) p ( i M J ) x ^ i £ E Yp(y,4,4)^^/4,4)^^^(^4,4), 
i = l yeAi x'jl *2ja 

some f1 4= il\i\ i2, 4 , x2

2, y] + 

+ Pr[P(j>/4, 4 ) ^ e"' P(yjx\t, 4 ) , some i2 4= i2\i\ i2, 4 , x%, y]) + 

+ Pr[P(y\x\h 4 ) S e"; P(y\x\h 4 ) , some f1 4= i 1 and 

f2 +-i2li\i2, x^x^y]]. 

And the expectation of the probability of decoding error P(;i,j2)e over the ensemble 
of all possible transmitted sequences is upperbounded by 

(3.23) P a , , i 2 ) e ^ E E E Z P(^, 4 , 4 ) l > [ P ( j , / 4 , * 2
2) ^ e*< P(y\x\t, 4 ) , 

i = l yeAi * ' ii x 2
i 2

 V ' * ' 

some f1 4= i1/'1, i2, *1>, x%, y] + 

+ Pr[P(y\x\h 4 ) g: e-< P( j ,/4, 4 ) , some i2 4= i2/*1, i \ ,{., x
2

2 , >-] + 

+ Pr[P(y, x\h x?2) ^ e"< P(y\x\i, x%) , some f1 4= i 1 and f* + pj^ ,'2 > 

*J>,x?.,y]]. 



220 Now let us assume that the sequences of length N are time independent block 
by block, each block of length K' and identically distributed. Let the a priori pro
bability of the sequence of length K' of ith block be denoted by 6'(*'(0)> l = L 2> 
then 

(3.24) e'(*') = ne ' (* ' ( 0 ) . 1 = 1,2, 
i = l 

so that if corresponding output and input sequences of length K' are also denoted 
by y, x1, x2 then using (3.24) and following the same steps as in Liao [4] we have 

(3.25) P(il,i2)x ^n^(M1 - l)fli' J"*1"1*''1* E E Q V ) x 
i = l yeAi x2 

x \ZQ1(x1)P1Kl+e'l)(ylx1,x2)]l+Bif+ n£(M2 - !)»'V»'2/(1+"2> x 
x1 i = l 

x E Zf i 1 ( - , ) [ I f i 2 ( . 1 )p 1 ( 1 + " , , (y / - 1 . - i ) ] 1 + , | , + 
j - e X , x> x 2 

+ » E [ ( M l - i) (M2 - i)]ei e"iffi/(1 +ei) x 
i = l 

xZEEe'McjV)^ 1 ' '^ 1^ 2)] 1^ 1 

J>S^, X1 X2 

and 

(3.26) P(i,,/2)e ^ n X ( M l - i f e-"iei'/(1+ffi,) x 
i = l 

x E E[Ee1(*1)p1/(1+ff 'I)(j/*1,*2)]1+<"1 + 
j-e^i x2 x1 

+ » £ ( M 2 - i)8<
2

e-"
iei2/(i+ei2)x l e ' M E e ^ 2 ) ! 5 " " ' " 2 ^ 1 , * 2 ) ] 1 ' 8 ' + 

i = 1 ys^ i xi x 2 

+ « E K M l - 1 ) ( M ' - l)]eie-" iCi/(1+8i) x 
i = l 

x E [E Eex*1) e2(*2) p^^'V/* 1 , *2)]1+e<. 
ye^i x1 x2 

These in view of (3.5), (3.6), (3.10) and (3.7), give 

(3.27) V P ) , ^ E(^)ei '(JJi,)Ri '^1/2(/5i)]exp[-iV£y i
2R1,)] + 

i = l 

+ [EWCi2('!i2)Ri2-K2/1(i3i)]exp[-iVE2i1(Ri2)] + 
i = l 

+ [E(^.)(c'(R"+J!i2)KRiI+iii2)-K1'2(/8i)] exp [-NEtf(Rn + *„)] 



and 221 

(3.28) p-(il,p)e < [g(xpH*n)*u ( K - / - ^ ) ) - - ] exp [-N £$'.'(*,.)] + 

+ [i(A,yrt*^n(«2/1(i9ri]cxp[-N.ESi1(lla)] + 
> = i 

+ [i(^R"*R^R"+R^(Kl 2(P))-1] exp [ - N E 0 ; 2 ( P , , + Ri2)] . 

The results (3.8) and (3.9) of the theorem now follow from (3.27) and (3.28) with the 
help of (3.11). 

Remarks. It is clear from the definition of EQ{2(Q\, Qk) that the function E0;
2(e,-, Qk) 

is non-negative for Q\ | 0 , i = 1, 2. Similarly for EI[\Q2, Qk) and E0;
2(gi, Qk) 

for i = 1, 2, are also non-negative. 

Particular Cases 

Case 1. When ^ = fl2 = 0, then the double decoding scheme reduces to ordinary 
maximum likelihood decoding scheme and the bound on the probability of error 
for Q\ = Q\ = Q1, Q2 = Q2 = Q2 and Qt = Q2 = Q reduces to bound given in Liao 

Case 2. When one of the Xt say A2 = 0 then the partitioning is absent and the 
bounds given by (3.8) and (3.9) give 

(3.29) Pr(X) < K^(P,) F 1 / ^ + K2'\^) F2/^ + K1-2^) F 1 ^ 

and 

(3.30) Pr(E) < (K^p,))-1 F ^ , + (K2^))^ Ffr\P) + ( X 1 - ^ ) ) " 1 Vfoi • 

These are in fact results for multiple access channels corresponding to a modified 
maximum likelihood decoding scheme with erasures depending on parameter /?.. 

Case 3. When ji^ and /?2 are both different from zero and J 1 = J2 = J. Denoting 
the classical rate of the /th source by R', we have 

(3.31) M'=(JN)R', 1 = 1,2 

so that (3.31) together with (3.5) yields 

P 1 ^ Rn . 

P 2 ^ P i 2 , i = 1, 2 . 



222 Thus the components of the decoding rate pairs do not exceed the components 

of classical rate pair. 

Case 4. For classical channels i.e. one with a single source the bounds given by 

(3.9) and (3.10) reduce to bounds obtained by Sharma and Gurdial [5] for such 

channels under double decoding scheme with erasures. 

(Received August 4, 1975.) 
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