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KYBERNETIKA — VOLUME 11 (1975), NUMBER 1 

A Note on £-rules in Context-Free Grammars 
JOZEF GRUSKA 

The importance of e-rules in context-free grammars (CFG's) is investigated. It is shown how 
much can £-rules simplify the description of a context-free language (CFL) and that one can not 
effectively construct the simplest £-free CFG for a given CFL. 

1. INTRODUCTION 

In general, context-free grammars (CFG's) contain e-rules. The purpose of this 
note is to explore both theoretical and "practical" importance of these rules for the 
description of context-free languages (CFL's). The main questions to be answered 
here are: How much can e-free rules simplify the description of CFL's? Can one 
determine the simplest e-free CFG to a given CFL? 

2. BASIC DEFINITIONS 

A CFG G is a quadruple G = <V, Z, P, <r> where V is a finite set of symbols, 
Z cz V and the elements of I (of V — Z) are called terminals (nonterminals), P is 
a finite set of rules of the form A -» a where A e V — Z and a e V*, a e V — Z is 
called the initial symbol of G. If A —> a is in P and w«, w2 are in V*, then we write 
wiAw2 => wxaw2. The relation =s> is the transitive and reflexive closure of => and we 
define L(G) = {w, a => w eZ*}. A language L is termed context-free if L = L(G) 
for a CFG G. The symbol e will denote the empty word. A CFG G is said to be e-free 
if G does not contain an e-rule, i.e. a rule of the form A —> e. 

3. ARE e-RULES NECESSARY? 

The answer to this question is well-known. It holds: 



Theorem 1. [1]. There is an effective method how to construct to a given CFG G 27 

an s-free CFG G' such that L(G') = L(G) - {e}. 

This theorem implies. 

Corollary, e-rules do not increase the generative power of CFG's and therefore, 
they are not necessary. 

Remark. Theorem 1 can be even strengthened by saying that if G is unambiguous, 
then G' can be constructed to be unambiguous, too [ l ] . 

4. DO e- RULES SIMPLIFY THE SIZE AND THE 
"UNDERSTANDING" OF THE DESCRIPTION OF CONTEXT-FREE 
LANGUAGES? 

In order to answer this question we have to introduce some criteria of complexity 
of CFG's. 

The criteria Var, Depth, Lev, Lev„ [2] and Ind [3] characterize in a way the 
intrinsic complexity of CFG's. For any of them, let us call it K, K(G) is an integer. 
The criterion K induces a criterion of complexity of CFL's which is also called K 
and defined as follows: K(L) = min {K(G); L(G) = L} for any CFL L. Thus, K(L) 
represents the intrinsic complexity of the description of L by CFG's or the difficulty 
of the understanding of L. Similarly we can define for a CFL L not containing e 
KC(L) = min {K(G); G is e-free and L(G) = L}. As far as the above criteria are 
concerned we have a result which is easy to verify going through a standard procedure 
of constructing an s-free grammar for L(G) — {e}, given a CFG G. 

Theorem 2. If K is one of the criteria Var, Lev, Lev„, Depth or Ind, then K(L) = 
= KE(L-{e}). 

This result may be interpreted as follows. 

Corollary, e-rules do not simplify the intrinsic complexity of the description of 
CFL's. 

Two more criteria of complexity of CFG's G = <V I, P, a} are studied in [2] 
. and [4]. They are Prod (G) = the number of rules of G and Symb (G) = £ Symb (p) 

peP 

where Symb (p) is the lenght of the right side of p increased by 2. These two criteria 
represent "the size of CFG's". As the folloving theorem indicates, with regard to the 
criterion Prod the use of e-rules can substantially simplify the description of CFL's. 

Theorem 3. For any integer n, there exists a CFL L„ such that Prod (L„) = 2 
and Prod, (L„ - {e}) ^ n. 



Proof . Let au a2, ... be an infinite sequence of distinct symbols. For any integer 
m let Gm be the grammar with two rules 

a -* aaxaa2 ... ama , a -> £ 

and let Lm = L(Gm). In order to prove the theorem it is sufficient to show that there 
is no integer K such that for any m Prod£ (Lm — {e}) £ K. The proof will be by 
contradiction but first we have to define some mappings. For any integer m, let 
cpm and cp* be mappings on Am = {a1, ..., am}* defined as follows. If x e Am, then 
cpm(x) is the word obtained from x by deleting the leftmost" occurence (if any) of the 
subword a1a2 ... am and cpm(x) = <pm'(x).* 

* \x\ denotes the length of the word x and <pm(x) = <pm(x), <p'm
+1(x) = <pm(<pm(x)) for i > \. 

Let us now assume that there exists an integer K such that for any m there exists 
an e-free CFG Gm generating Lm — {E} with no useless nonterminals and Prod (Gm) ^ 
^ K. Since Lm = {x: x eAm , (p*(x) = e}, the following assertion holds for any 
nonterminal A of Gm 

(*) if A => xt , A =5> x2 , xax2 e Am , then ( ^ ( x ^ = cp*(x2) . 

(In the rest of this proof we will make an implicit use of this fact several times.) 
Now let Cm = {x; x e Lm and |x| ^ 2m}. In what follows we will modify in several 

steps the grammar Gm in such a way that at any stage the resulting grammar will 
generate a subset of Lm which contains Cm. 

Step A. Remove from Gm all rules which contain a nonterminal more then twice. 
By (*) such rules cannot be used in any derivation of words of Cm. The resulting 
grammar, say G'm, has at most K rules and at most 2K nonterminals in any rule. 

The step B will be carried out for every nonterminal but the initial symbol of G'm 

and therefore less than K times. 

Step B. (i) If the chosen nonterminal, say C, has no rule of the form C —> uCv, 
then remove all rules with C on left side and in the remaining rules make all possible 
replacements of C's by its right sides. 

(ii) Let C have a rule of the form C -» uCv. Let Bc — {x; C => x in the grammar 
under consideration, and x can be derived from C in at most two steps and in each 
step a "C-rule" is used i.e. a rule C -> y}. Remove all rules with C on left side and 
in the remaining rules make all possible replacements of C's by words from Bc. 

After finishing the step B we get a grammar, say Gm, with the only one nonterminal, 
say a. Since the grammar G'm has at most K rules and each rule has at most 2K 
nonterminals, there exists an increasing function / : such that G"m has at most ft(K) 
rules. If x e Cm, then in G"m either t r -»x or a => a => x for some a. Thus, for any 
m, G"m derives at most fl(K) words of the length less or equal to 2m and therefore 



for sufficiently large m Cm <£ L(G^) what contradicts the construction of G',",,. Hence, 
the K with the assumed property cannot exist and thereby the theorem is proved. 

On the other hand a quite different situation is with the criterion Symb and, as 
the following theorem indicates, with respect to this criterion e-rules do not simplify 
the description of CFL's too much. 

Theorem 4. Symb£ (L - {e}) ^ 10 Symb (L)for any CFL L. 

Proof . Let G = (V, I, P, <r> be a minimal grammar for L with respect to the 
criterion Symb. Let E = {A: A e V — I, A =5- e}. Let us remove all e-rules from G 
and let G' be the resulting grammar. In the next step each rule A -> a of G' will be 
replaced by a set cp(A -> a) of new rules and the resulting grammar will be termed G". 
The sets q>(A -> a) are determined as follows 

(i) Let a have no occurence of a symbol in E. Then 

<p(A -> a) = {A -» a} . 

(ii) Let a contain a symbol in £ and also a symbol not in E. In this case a can be 
expressed in the form 

(t) a = ulalu2a2 . . . uk akuk+1 where fc = 1, U;_(V — IT)* if 1 _» i _£ fc + 1, 
uy 4= e if 2 'g j _i fc and, moreover, for 1 ^ i ^ fc, a, has one of the forms 
aFY, Fxa or F1aF2 where aeV — E and F . , F 2

 a r e in -?*• 

(The decomposition (|) is not unique but it does not matter in what follows.) 
On the base of the decomposition (f), the set q>(A -* a) is determined as follows. It 
contains 

(1) A rule A -* ulAlu2A2 ... Akuk+l where At are new distinct symbols not in V 
and not used in the construction of q>(B -> 0) for other rules B -> /? in P; 

(2) For each i, 1 "S i _ fc, the set St of rules which is determined as follows: 

If a, = aF, F = Ft ... Fh Fk e E, 1 = k ^ I, then Sf contains the following 
rules (jR1; ..., R,_! are again new distinct symbols not used outside the set Sf) 

R1 r-» a, Rt -> „FX , 

R2 ""̂  Rl, R2 ~~* !^lr2 • 

R,_! -> R;_2> ^ 1 - 1 -* R ; - 2 I r i - l 

If af = Fa or a( = FaF', F, F' are in E*, then the set 5, is constructed in a similar 
way. In any case it holds 

Symb {<p(A -> a)} ^ 7 Symb (A -> a) 



30 (iii) Let a e E* and a = E1E2 ... Ek. In this case the set cp(A —> a) will contain 
the rules 

A -» El5 A -+JS1R2, A -> R2, 

R2 - * E2, R2 -» E2R3, R2 -> R3 

Rk-i ~+ Ek-u Rk-i ~* Ek-YEk, Rk_t -»• Et 

where again R2, ..., Rfc_i are new nonterminals not used in other parts of the con
struction of the sets S ;. From this construction it follows immediately that 

Symb {<p(A -* a)} = 10 Symb (A -> a) . 

Summarizing (i) to (ii) we get the inequality Symb (G") = 10 Symb (G). However, 
the grammar G" generates the language L(G) — {e} as it is easy to see from the above 
constructions and therefore Symb e (L — {e}) ^ 10 Symb (L) completing the proof. 

Corollary. The use of e-rules can essentially decrease the number of rules but not 
too much the total number of symbols in the rules. 

Example. In order to illustrate the above technique of removing of e rules, let us 
consider the grammar with two rules a ~* aa^ ... aa„a, a -> e with ax, ..., a„ being 
distinct symbols. The use of standard technique for removing of e-rules yields a 
grammar with 2" + 1 rules. On the other hand the use of the technique of the preceding 
theorem results in a grammar with 2n + 1 rules. 

5. UNDECIDABILITY 

By Theorem 1 to a given CFG G one can effectively construct an e-free grammar 
generating the language L(G) — {e}. Can we effectively find the simplest grammar 
with this property? The two theorems of this section show that the answer is negative 
if Prod and Symb are considered to be the criteria of complexity. 

Theorem 5. There is no effective method to construct to a given CFG G, an e-free 
CFG G' generating the language L(G) — {e} and such that Prod (G') = 
= Prod, (L(G) - {s}). 

Proof. Let x = (x . , . . . , x„) and y = (yt,..., >>„) be arbitrary n-tuples of non
empty words over the alphabet {a, b}. By [ l ] , one can effectively construct, given x 
and y, a CFG generating the language 

LXiy = {a, b,c}*- L(x) n L(y) - {s} 
where 

L(x) = {ba'k ... baiicxil ...xik; 1 = i} ^ n, 1 S J = k} 

L(y) = {baik ... bailcyh ...yik; 1 $ i} g n, 1 g j £ k} . 



For any x and y ({a, b, c} u {a, b, c} . {a, b, c}) a Lxy and therefore any s-free 
grammar generating Lxy has to contain the rules 

(f) A - * a, B -• b, C -» c 

for some nonterminals A, B, C and at least one nonterminal rule. Hence Prod£ (Lxy) > 
>. 4. If L(x) n L(y) = 0, then the language Lxy is generated by the grammar with 
the rules 

(ff) a -* aa, a -» a , a -+ b, a -» c 

and therefore Prod . (L,„) = 4. Let us assume that L(x) n L(y) =f= 0 and that there 
exists a grammar G' for L^>y with four rules. Since G' has to have three rules of the 
form (f) and all two-symbol words in {a, b, c}* are also in Lxy, the fourth rule of G' 
would have to be 5 -» 55 but then G' does not generate Lxy. Hence Prod£(Lxy) > 4 
if L(x) n L(y) 4= 0- Now the theorem follows from the undecidability of Post's 
correspondence problem. 

Let us now return once more to the foregoing proof. If L(x) n L(y) = 0, then 
(ft) implies Symb£ (Lxy) S 13. If L(x) n L(y) =f= 0, then Prod, (Lx<y) > 4 and there
fore Symb£ (Lxy) >, 15. Hence we can again apply Post's correspondence theorem 
and derive our last result. 

Theorem 6. There is no effective way to construct to a given CFG G, e-fre CFG 
G' such that L(G') = L(G) - {e} and Symb£ (L(G) - {e}) = Symb (G'). 

Remark. For every n let G„ be a CFG with the rules a -* (EYE2)
n, Ei -» E^a^e, E2 -* 

-* E2a2\ s. Then Symb (G„) = 2n + 14. Let G"„ be a grammar constructed from G„ 
using the technique of Theorem 4. Then Symb (G"„) = 20« + 4, L(G'„) = L(G„) - {e} 
and for every Q > 0, Symb (G'̂ ) > (10 — Q) Symb (Gn) for sufficiently large n. On 
the other hand the open problem is whether there exists a K < 10 such that Symb£ 

((L) - {s}) < K Symb (L) for any CFL L. 

(Received June 28, 1971.) 
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