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KYBERNETIKA — V O L U M E 13 (1977), N U M B E R 5 

On the Identification of a Subclass of Finite 
State Channels and their Capacity 

BOHUMIL PATEK 

The paper deals with finite state channels with stationary distribution over the set of states. 
The capacity of a more general class of channels is defined and a converse to the coding theorem 
proved. In case the channel is a finite state type a coding theorem is proved. Finally the possibility 
of identification of such a channel is discussed. 

I. INTRODUCTION 

In what follows Z, X, Y are finite sets, alphabet of a source and input and output 
alphabets of a channel, respectively. The notation seZL, s = zxz2 ... zL and (w, v) e 
e(X x Y)N, (U, V) = (xix2 ... xN, yty2 ... yN) is used. We consider a block code as 
a transformation q> of ZL into XN. The rate of a block code is defined as 

R = — log \Z\ 
N ' ' 

(|A | denotes the cardinality of the set A). N is called block length. Let, further, SL be 
a probability measure on ZL and P#(u | u) the transition probability of v e YN given 
u e XN. The joint probability on (X x Y)N is then given by QN(u) PN(v | u), where 
QN = SL(P-K 

The decoding rule used is the maximum-likelihood one, i.e. a transformation ifi 
of YN into ZL fulfilling the restriction 

^(v) = s => PN(v | <p(s)) ^ PN(u | <p(s')) for all s' + s . 

The average error probability over the sequence of L digits is defined as 

W-T-S Z Z ^ p ^ - V ) ! ^ ) ) . 
L 1=1 s,s'eZL z.z'eZ 



Independently of block code cp and decoding rule \j/, <Pe> satisfies by [ l ] , expression 
(4.3.20), 

(1) <PC> log (|Z| - 1) + ^ « P e » ^ ~ H(SL) - i / (&, . P N ) , 

where H(SL) is the entropy of the source L-tuples seZL and /((?# • PN) is the average 
mutual information between the input N-tuples u e XN and the output N-tuples 
v e YN having the joint probability distribution generated by QN and PN . Jf is 
defined as 

3tC(a) = - a log a - (1 - a) log (l - a ) , 0 <. a ^ 1 . 

If s e ZL enters the encoder, then the probability of decoding error is given by 

Pe(s)=- I P(V\CP(S)). 

For \X\ g» 2 there exists a code such that for all seZL 

(2) pe(s)^2(2\zL-iyYJ{YJ QN(u)pN(v\uy'«+°y+°, 
veY" ueXw 

where Q is arbitrarily chosen from the interval <0, 1>, ( [ l ] , Theorem 5.6.1 and 
Corollary 2 of Theorem 5.6.2). 

The finite state channel ([1], Section 4.6) is a channel with a generally infinite 
memory. It is characterized, apart of input and output sequences, by a sequence of 
states, which are assumed to be taken from a finite set. If the states are numbered 
by 1, 2, ..., m, the channel may be described statistically by an ensemble Jt con
taining \x\ x \Y\ transition probability matrices M(j> | x) of order m x m. Any 
ensemble Jl describes a finite state channel iff 

a) Mij(y\x) ^ 0 for all M e i 

b) £ f; MtJ(y | x) = 1 for all x eX, i = 1, 2, ..., | z | 
J-eV J = l 

obviously, the My(y | x)'s coincide with the one-dimensional transition probabilities 
in [ l ] . For any (M, V) = (M'M", v'v") the transition matrix M(u | u) is given by a 
recursive relation 

M(D I «) = M(»' | M') M(U" I M") . 

If the initial distribution over the set of states is represented by a vector % = 

= (nu n2,..., nm), £ nk o 1 then the transition probability P^y I u) for any iV is 
given by * = 1 

(3) P*(» | «) = 7iM(v | «)»;, 



356 where w is a column vector with all components equal to one. (If for some i ni = 1 
we use the notation P'N(v | «).) 

For a finite state channel we define the lower capacity 

C, = lim — max min l(QN P'N) 
jV^oo N QN i 

which appears in a coding theorem ([l], Theorem 5.9.2) and the upper capacity. 

Cu = lim — max max (l(QN P'N) 
iV->oo N QN i 

which appears in a converse of the coding theorem ([l], Theorem 4.6.2). This 
approach provides the upper and the lower bounds of the probability of error in
dependent of the state sequence. Nevertheless, in case Cf and Cu are not equal, none 
of them can be taken for a true capacity. 

II. CAPACITY 

We shall be concerned with a communication channel whose statistical description 
is built by a system P of transition probabilities PN satisfying for all N and for all 
(«, v) e (X x Y)N the conditions 

(4) a) YPN+i(vy\ux) = PN(v\u), 
yeY 

b) YJPN+i(yv\xu) = PN(v\u). 
yeY 

For such a channel we define the capacity as 

C = lim — CN , 
JV^OO N 

where 
CN = mnxl(QNPN). 

QN 

Before proving the plausibility of the definition we give here without mentioning 
the proof the following statement, (see [ l ] , Appendix 4A). 

Lemma 1. If {«„}"= i is a bounded sequence of real numbers and for all 1 :S n < N 
is 

^ n N — n 
« , * - - . + — < . , -

then 
lim aN = sup aN . 



Lemma 2. 
C = sup CN . 

N 

Proof. Let us takeN = n + J, (u, v) = (utu2, vtv2), («,, p.) e(X x Y)", (w2, t>2)e 
e (X x Y)' and QW(M) = g„(«i) 6i(«2)>

 w h e r e <2« a n d 2 J permit to achieve C„ 
and C,, respectively. Then, using (4), we can write 

NCN ^ nCn + IC1-YJ Z QN(U) PN(V I u) . 
ueX" VEY" 

( Z QN(«) -»«(» | «)) I>i | «i) ^ ( e j I "2) 
1 , U6X" 

^ I") ( Z a.(«i) P-(»I i "1)) ( Z e,(«2) p,(»21 M2)) ' 
ujeX" uzeX> 

The third expression on the right hand side can be upperbounded by zero using the 
inequality log z ;g z — 1, (z > 0). In this way we have 

NCN ^ ?iC„ + IC1. 

Lemma 1 completes the proof. 

Suppose for this moment that the source is a stationary stochastic process, i.e. the 
system S of probabilities Sj, fulfills for all L and s e ZL the compatibility condition 

YSL+t(zs) = SL(S). 
ZEZ 

Then (l/L) H(SL) is nonincreasing with L ( [ l ] , Theorem 3.5. l) and thus the following 
limit exists 

Hoo(S) = lim - H(SL). 
L-XD L 

Theorem 1. If the source is a stationary stochastic process and the channel satisfies 
conditions a) and b)*), then 

<pe> log (\z\ - 1) + ye((pey) ;> HJS) - - ^ c . 
R 

This statement provides a converse of the coding theorem. In fact, if S^'s are equi-
probable distributions, HjS) reaches its maximum log \z\ and the right hand side 
of the inequality is positive for any R > C and thus prevents <Pe> from being 
arbitrarily small. 

Let us now pay our attention to a finite state channel with stationary distribution 
vector over its states %, i.e. 

% Z M(y I x) = 71 for all xeX . 
yer 

*) Let us remark that such a channel need not be a finite state one. 



3 5 8 In this case PN's satisfy conditions a) and b) and thus they represent a channel 
belonging to the subclass we are restricted to (in what follows index n will be omitted). 

Theorem 2. For a finite state channel with stationary distribution over its states 
n = (nt, n2, ..., nm) let us denote 

a = min nk , 
k 

nk*0 

EN(e, QN) = - ~; log E [ S QN(u) PA.V | u)^ +«y +°, 
N veY* ucX" 

FN(Q) = ^ + max EN(Q, QN) , 
N QN 

Fx(e) = ]imFN(Q), 

Er(R) = max [Fm(g) - QR] . 
ogegi 

Then for an arbitrary e > 0 there exists a positive integer N(s) such that for any N ^ 
> N(s) and L there exists a code <pNiR for which Pe(s) S exp [—N(Er(R) — ej] for 
all s e ZL. If R < C then the error exponent Er(R) is positive and decreasing with R. 

In order to prove the theorem the folloving lemmas are needed: 

Lemma 3. 

Pn + l(v1V1 | M.II3) S - P.(»i | «l) P,(«2 | "2) 

a 

for all n, I and (uu vt) e (X x Y)", (M2, t>2) e (X, Y)'. 

Proof, a) At first let us suppose that nk is positive for all fc. Then 

PN(vlV2 j M,M2) = £ E E "* Mlv(t'l I Ml) M^(P2 I "2) ^ 
it== 1 y=i ; = i 

= E E Tnk Hkj(vi I «i) - «, My,(i;2 I M2) = 
* = i j = i ;=i a 

= - E ( E «* I V * . I «,)) ( E 7T, MyJ(». I «3)) ^ - P ,K I «l) p-fa IM2) . 
a ; = i k=\ i=i a 

b) If nk = 0 for some fc = ku k2,..., kr, r < m then the stationarity of n implies 

0 = nk = Y, nt Mik(v I u) for all (w, v) . 
> = i 

Hence if nt #= 0 then Mik(v j M) = 0 for all (u, v) and fc = fcj, fc2,..., kr. It means 
the columns ku k2,..., fc, do not contribute to the value of elements in rows cor-



responding to nonvanishing V s . Therefore omitting zero components in % and 359 
striking off fcrth rows and columns, i = 1, 2, ..., r, we obtain a finite state channel 
which fulfills the assumption in a), generates the same PN(v | u) and has the same a. 

Lemma 4. 

(6) lim FN(Q) = sup FN(Q) . 
W-*co N 

In addition for 0 ^ Q S 1 it converges uniformly and the limit Fm(g) is uniformly 
continuous. 

Proof. Let us choose N = n + I, (u,v) = (utu2,vtv2), (ul,v1)e(Xx Y)n, 
(u2,v2)e(Xx Y)1 and QN(u) = Q„(ut) Q,(u2) where distributions Q„ and Qx 

permit to achieve maxima of E„(Q, Q„) and E,(Q, Qt) respectively. Then 

FM ^ ^ + EN(Q, QN) 

and 

e x p f - J V E ^ ) ] ^ £ I d 'LQn(ul)Qi(u2)PN(vlv2\Ulu2y^^Y+<'. 
OC v,eY» i>2ei" uisX" u2eX' 

Using Lemma 3 and taking logarithms we obtain 

In order to be able to apply Lemma 1 we show that FN(Q) is bounded uniformly with 
respect to N. 

From Holder's inequality it follows that { £ QN(u) PN(v | u ) 1 / ( 1 + e ) } 1 + e is a non-
increasing function of Q and so ueX 

8E(Q, QN) 

3Q 

is nonnegative. Furthermore, if Q3 = XQL + (1 — X) Q2 then also 

ll~±Q-±+(i-X)l-±^-=l 
1 + 03 1 + 0 3 

and from Holder's inequality we obtain 

{ £ QN(U) p(v | M ) 1 / ( 1 + - > } 1 + " = { £ (o»(i+-)/(i+«> pN(v i u / / ( i + «3>) . 
ueXN UEXN 

-(eN(tO(1"A)(1+C2>/(1+e3)IJiv(t) I M)(1-A)/(1+">} :g ( £ QN(u)PN(v I „)»/(l+«i)V(-+eO . 
UEXN 

• ( £ Q»P w (» |«) x / ( 1 + t e ) ) ( 1 " w l + , ' l ) • 



360 Using the same inequality once more yields 

E{ I e»pw(H«)1/<1+e3)}1+M^{ E ( I e»E^|«)1 / ( 1 + e i ))1 + e ,} ;--
VEYN ueXN reXN «eXN ' 

• { I ( i e > ) I M H » ) 1 / ( 1 + e 2 ) r e 2 r A 

veYN ueXN 

and hence 
EN{Q3, QN) ^ I EN(QU QN) + (1 - A) Eff(<?2, gN) 

which establishes that EN(Q, QN) is convex n in g e <0, 1>. Carrying out the dif
ferentiation we have 

(7) ^ 1 ^ 1 - £-(&--*,). 
SQ |e = o N 

Due to the monotonicity and convexity of EN(Q, QN) and equation (7) there si 

ozaE>to>Q*)zu>g\x\ 

and for 0 g e t ^ e2 = 1 t n e n 

o g Ew(e2) - FN(QI) s (Q2 - eOlog |z | . 

Hence it follows that for 0 g Q g 1, Ejv(e) is bounded uniformly with respect to At. 
Thus using Lemma 1 we have (6). The uniform convergence and uniform continuity 
follow from the bounded slope of Ejv(e) for each At. 

P roof of the theorem. We shall proceed analogically to [1], Section 5.9. 
According to (2) one can find a code such that for all 0 ^ Q g 1 

Pe(s) g 2(2|Z|- - iy min £ { £ 0 » EA.(, | «)-'« + < ^ +* ^ 
QN DEFM ueXw 

g 4a | z | L e im in £ { £ Q^u) P^t; | u ) 1 / ( 1 + e ) } 1 + G g 
« QN VEYN UEA'N 

<S exp | " - A t ( - e R + FN(Q) - l o g ^ l . 

Lemma 4 confirms the existence of N(E) such that for At ^ At(e) and all 0 ^ g ^ 1 

At 

This implies 

Pe(s) g exp [ - A ( e R + FW(Q) - e)] . 

Finally maximizing E <„(£>) — e R over all 0 ^ g g 1 we obtain (5). 



Let us now suppose that CN - R = 8 > 0. By a simple substitution we ascertain 
that Ejv(0, QN) = 0. Because of (7) and the continuity of 

8EN(Q, QN) 

8Q 

there must exist Q0 such that for all 0 :g Q g Q0 

rnaxEДß, ÖІV) ž Є ( Cfř - - ) 

and therefore 

F^)^K + f + ^ . 

FN(e) - QR is thus positive for sufficiently large N and so behaves Fw(g) — gK. 
Because of vanishing for Q = 0, Fm(g) — gR achieves its maximum in the interval 
0 ^ g = 1 f° r some positive Q and then FW(Q) — QR is a decreasing function of R. 
This makes the proof complete. 

Theorem 2 together with Theorem 1 show the plausibility of C as capacity. In case 
the communication channel is a finite state type the upper and the lower capaci
ties always exist but C is definable only if n is stationary. For different stationary 
7t's, if any, C may also differ (we shall use an upper index). Nevertheless, the follow
ing inequality holds always. 

Theorem 3. If n is a stationary distribution over the states of a finite state channel 
then 

(8) Cu £ C" ,> C,. 

Proof. CN could be written in the form 

JVC* = max £ X I g > ) I > l " K lQg F T T T T ^ j n + 

eN i=i «rf* B6r» X Qiv(") IW I ") 
\ u e X N 

inH«K lo»nH«) 
+ 

nH») £ Z G N ( U ) P ^ | H ) K 
i = l «eX» 

Upper and lower bounding every summand we obtain 

NCK
N ^ NCU + 0 + log m 

NCN ^ NC, - log m - 0 . 

Limiting N -* oo yields the statement being investigated. 



Remark. In inequalities (8) the sign of equality need not be valid. Let us for 
instance consider two different finite state channels given by transition matrices 
M'(j; | x), M2(y | x) and having stationary distributions over the set of states nx, n2 

and capacities C1 = Cul = C#1, C2 = Cu2 = C, 2, Cj 4= C2 respectively. (For 
an example of such a channel see [1], Figure 4.6.1.) If we compose another channel 
taking 

M(y\x) = (M^\^\/ , V n = (f « * V 0 = g o = l 
0 M2(>; I x)J \(l -m)n 

then it is obviously a finite state channel with stationary distribution % over its states 
and has a capacity Cn satisfying 

C, = min (Cj, C2) < C < max (C., C2) = Cu for all co e (0, l ) . 

III. ON THE POSSIBILITY OF CHANNEL IDENTIFICATION 

Let us consider the class of channels introduced in Section II by conditions a) 
and b). In order to be able to estimate by input-output experiments the set P of transi
tion probabilities of such a channel it is reasonable to assume that P is fully deter
mined by a finite set of transition probabilities {Plk(vk \ uk)}

h
k=1. 

In the sequel we shall assume that this is achieved by the existence of a linea-
recurrence relation of the form 

ft 
c) P„ + l(vv' I uu') = £ Pn + lk(vvk I uuk) bk(v' | «'), 

* = i 

where (u, v)e(X x Y)", (u , v') e e (X x Y)' and {(uk, vk)}'k=1 is a fixed set of 
input-output sequences of finite lengths lk, respectively. (This recurrence relation is 
an analogy to that one used in [3], for linearly dependent processes.) 

Conditions a) of Section II and c) imply that a compound sequence matrix H 
defined as 

H U = Pli + lj{Viv'j\UiU'j)> 

where {(uh f,-)}i = 1, {(uj,v'j)}h
j=1 are arbitrary sets of input-output sequences, has 

always the rank less then h. The maximum among the ranks of all possible compound 
sequence matrices that can be formed by taking various sets of (uh t>;) and (u'j, v'j) 
will be called the rank of the channel denoted by r. 

For the channel of finite rank, Carlyle's procedure ([2], Chapter I.C) for finding 
a pseudostochastic sequential machine generating P is applicable. This procedure is 
based on the following facts: 

1) For an arbitrary r-dimensional vector a, J] a( = 1, there exists an ensemble si 
; = i 

containing | x | x I Yl square matrices A(y I x) of order r which generates P, 



i.e. for any (u, v) «= (xu ..., xN, yu ..., yN) 

PN(v | u) = a A(u \u)t] , 

where 

A(u, u) = A(j/. | x j ... A(yw | xN). 

Moreover 

£ £ A u 0 ; I x ) = l f o r a11 x e X a n d i = 1, 2, ..., r . 
j e r j = i 

( j / , a) will be called generator of P. 

2) The knowledge of PN(v\u) for all (u, v)e(Xx Y)N, N = 1, 2 , . . . , 2r - 1 
suffices for all A(j> | x) to be evaluated as 

A ( ^ | x ) = Q - 1 H ( , - | x ) H - I Q , 

where H is given by {(«; \ tff)}'=1, {(wj, v'j)}j=1 for which u1; t^i, u[, v\ are empty 
sequences (such a choise can be always done), H(v | u) is defined by the formula 

Hu(v | u) = P^. + .̂ + i^^j ; ; . | utxu'j) 

and Q is an arbitrary regular matrix satisfying the restrictions 

Q u = a* 

j^Q.. = H „ for i = 1,2,..., r . 
J = I 

3) If ( J / , a) and (stf', a') are two generators of the same P then there exists a regular 

matrix G, £ G y = 1 for i = 1, 2 , . . . , r such that a = a'G and A(y \ x) = 

= G- 1 A'(_v | x) G for all (x, y) eX x Y 

4) If the channel is a finite state one with m states, then m = r. 

By the application of condition (4) to the generator obtained above we can write, 
denoting the i-th row of a matrix B by B,-. 

a £ A(y | x) = a Q - 1 X H(y | x) H " ' Q = £ H..(y | x) H ^ Q = 
ysY yeY yeY 

= H 1 . H 1 Q = Q1 . = a . 

The channel is then characterized by a generator (s£, a). Thus it appears formally 
to be a finite state channel with stationary distribution over the set of states up to 
the fact that the matrix elements need not be necessarily nonnegative. The statement 
3) gives a motive for trying to obtain a true finite state representation by taking some 
( j / , a) and searching a suitable transformation matrix G. The corresponding iterative 



method is to be found in [4]. In what follows we give an example of a channel whose 
generator cannot have nonnegative elements though the channel is a finite state one 
with stationary distribution over its set of states but in a number exceeding its rank. 
Consequently the question of identification of finite state channels with stationary 
distribution over the set of states is not completely answered in this way. Nevertheless 
the Carlyle's method gives a lower bound of the number of states of the channel and 
provides a simple algorithm by which transition probabilities PN(v | u) can be 
evaluated. 

Let us consider a binary channel whose transition probabilities are evaluated in 
this way: for any (u, v) = (x,,.. ., xN, yt,..., yN) we find v = yty2 ••• 9s where 

yt = ytXi + (1 - yt) (1 - x.), 
then 

p„(„|„).p„(*|n...i),<° - H i ' V w ' 
x $ otherwise 

The rank r of the channel is 2 and one of the potential generators is 

A(l | 1) = A(0|0) = (° _fj, A(0| 1) = A(l |0) = Q if} 
71= (1,0). 

If we notice that the trace of A(l [ 1) is negative we come, realizing the statement 3), 
to the conclusion that none of the generators has nonnegative elements. Nevertheless 
in this case we can deduce, inspecting the probability tree of PN(v | 11 ... 1), that the 
channel is a 3-state type with an equiprobable distribution over the set of states and 
transition matrices 

(\ 0 0\ /0 0 0' 
M(l | 1) = M(0 | 0) = I 0 0 1 , M(0 I 1) = M(l I 0) = 0 0 0 

\° 1 °J 
(Received March 9, 1977.) 
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