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KYBERNETIKA — VOLUME 16 (1980), NUMBER 1

Optimum Stopping Rules on the Sequence
of Statistically Dependent Vectors

Jiki CoCHLAR

The paper deals with the problem of determining the optimum stopping rules on the sequence
of statistically dependent vectors. The theory of optimum stopping rules on Markov sequznces is
used for a solution of this problem. For this purpose, there is a case of statistically dependent
vectors transferred to the case of homogeneous Markov sequence in chapter 2. Then in chapter 3
general equations determining the optimum stopping rule are developed. Chapter 4 deals with an
application of the obtained theory to the problem of the sequential test of the finite number of
hypotheses for statistically dependent observations. The complete solution of obtained equations
for a special case of conditionally uniformly distributed observations is introduced in chapter 5.

1. INTRODUCTION

We shall deal with the following problem. The sequence X, x,, ... of statistically
dependent random vectors is given, where x, is an element of M-dimensional
Euclidean space for every integer n > 0. Further for every integer n > 0 a random
variable y, is given by the relation

B 2 8K )

where g, is a given function. We shall interpret the value y, = g(x,, ..., X,) as
a gain which we obtain by interrupting the process of observation the random
vectors x; in the n-th step. By a stopping rule ¢ we shall understand some positive
integer random variable which “does not depend on the future”, i.e., an event
{tr = n} can depend only on events concerning the values x,, ..., X,. (Exact defini-
tions will be given later.) By the optimum stopping rule t* we shall then under-
stand a stopping rule (if such a stopping rule exists) for which it holds

M(y.) = su£ M(y.)
TE
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where % is the set of all stopping rules for which M(y,) exists, M is the expected
value. Our paper will deal with the problems of existence and description of the
optimum stopping rules.

Chapters 2 and 3 deal with the general solution of the mentioned problem using
a theory of the optimum stopping rules on the Markov sequences. In chapters 4 and 5
general results are applied to the problem of the sequential test of a finite number
of disjoint hypotheses when observations are statistically dependent.

Further we shall give exact definitions of concepts we shall use in the following
chapters. Let

N={1,2.]}

and let a measurable space (E,,, ﬂ,,) be given for every n e N. We shall assume that
it holds
E. =2E, #,=9%

for every ne N, where E is M-dimensional Euclidean space (M > 0 is fixed) and #
is a g-algebra of Borel sets in E. For any n € N we shall denote

E'z2 [] E, 2E x..xE,

BESE

B= Q@ B=2%80..9%,.

RETED
We shall define now a measurable space (2, &) by the relations

Q 2T]E, 2E, XxE, x ...
N

F

i

B, =B, QB D ...
N

Let the vector x, be defined on the space (2, #) for every n € N by the relation
x(w)=e, for w=/(e,...,e,..), ek
and analogously, let the n-tuple &', be given by the relation
T0) = (e, ...,e,) for @={(e,...,e,...) eck;.

It is clear that the vector x, and the n-tuple &,, respectively, are #[4%, and F|%"-
measurable transformations on (@, #) with values in E, and E", respectively. It
holds Z(w) = (x,(w), ..., x,(»)).

Let us assume that the joint probability density function w,,(ﬁ”,,) of an n-tuple 2,
is given and also the conditional probability density function Wy (X4 1, -+, X4 | Z.)
of a k-tuple (X, 5, ..., X,.,) is givem for an arbitrary k € N and for the given n-tuple
Z,. Let us assume that functions w, and wy, satisfly the conditions allowing to define
transition probabilities.

As a consequence of the Tulcea’s theorem (see [1], chapter V., Corollary 2 of
Theorem V.1.1), there exists one and only one probability measure P on the space



(92, #) induced by the mentioned probability density functions. Everywhere below,
we shall interpret both vectors x, and the n-tuple 2, as random eclements defined
on the basic probabilistic space (Q, #, P).

According to [1] we shall every set 4 for which it holds

A=T]B, = {w=_(e,...e,..):e,eB;neN} B,
N

denote as the measurable rectangle in Q, whilst we assume that the sets B, differ
from E, only for the finite set of values n € N, i.e. for every measurable rectangle 4
in Q there exists such n e N that for all n > ny it holds B, = E,. For an arbitrary
measurable rectangle 4 in Q then it holds (sce [17)

P(A4) :J‘ dx, J dx, W, (%y, .. %,,) .
B B

n 4

Let an arbitrary set B" € %" be given. The set

B =B"x [] E
(k>n}
will be called the measurable cylinder B in Q with the basis B". For every t ¢ N let us
define now &, < & as a sub-g-algebra of the o-algebra &, which is created by all
possible measurable cylinders with bases from #*. Evidently it holds #, « & for
t<s;t,seN.

Definition 1.1. The stopping rule T on the sequence {xn} is every integer random
variable defined on (@, #, P), with values in N, for which it holds

(1.1) {w:t(w) =n}eF, forevery neN.

We shall define now a new random variable y, on the probability space (2, &, P)
for every n e N by the relation

(1.2) ylw) = g(Z,(w)), neN

where g, is some given #"-measurable function for every ne N.
We shall introduce a notation £* = max [f, 0], f~ = max [—f, 0], where f is an
arbitrary real function. Everywhere below we shall assume that functions g, satisfy
~ the condition

- (1.3) M(::\p g (Z,) <

where M is the expected value on (2, #, P).
Since it holds

y. £ sup g, (Z.)

neN

T
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according to (1.2), for an arbitrary stopping rule <, it must hold, according to (1.3),
for arbitrary
—o < M(y,) £ M(sup g, (Z,)) < o
neN

and thus there always exists M(y,) for an arbitrary stopping rule 7, but it can hold
M(y,) = — 0.

Definition 1.2. The optimum stopping rule on the sequence {x,} is the stopping
rule t* for which it holds (if there exists some stopping rule with such a property):

(1.9) M(y.) = sug M(y,)

where € is the set of all stopping rules 7 on the sequence {x,}.

Several works (see e.g. [2], [3]) deal with the problems of an existence and
a construction of the optimum stopping rules for various concrete choices of func-
tions g,. Reference [4] deals with an important special case when a sequence {x,, #,,
P,} is a homogeneous Markov sequence, where P, is a probability measure on (Q, F)
corresponding to the initial stage x. There is understood in [4] by the optimum stop-
ping rule 7* such a stopping rule, for which it holds:

My..) = sup MJ(y)

for all x € E, where M, is the expected value on (2, #, P,).

In this paper we shall solve the problem of an existence and a construction of the
optimum stopping rule in the sense of the Definition 1.2 using the theory developed
in [4]. For this reason, we shall transform the sequence {x,,, 547,,} to a homogeneous
Markov sequence {Z;, #, , P3~} in the next chapter.

2. TRANSFORMATION OF THE SEQUENCE OF THE GENERALLY
STATISTICALLY DEPENDENT VECTORS
TO THE HOMOGENEOUS MARKOV SEQUENCE

The following lemma will be an entry point for the next discussions.

Lemma 2.1. Let the arbitrary fixed ne N and & e E" be given. Then the only
probability measure P, 4 exists on (€2, ), the value of which is given on an arbitrary
measurable rectangle [ [B, by the relation

N

@.1)

Pn.er(HBr) = IB"(%)J‘ dx, .y j\ dX, 41 Wy T|n(xn+15 coos Xpgr l 3[)
N Bu+s Ba T



where I, is the indicator of the set B = [] B, and T'is a positive integer so large
{1515n)

that it holds B,., = E, ., for all t > T. It holds
(22)

f P,.,gr(dw') Y(w') = '[ dx, ‘[ dx, ¢ \V,nr;n(x,.»,., ceo Xyar | 3{) Y(xp---
Q Enss EnsT

v Xy17)

for & = (x“ ..., x,) and for any nonnegative real random variable Y on (Q, .7),
depending only on coordinates with indexes not exceeding the value n + T. In
addition, an integral

[ Putaon) v

is a #"-measurable function of % for every nonnegative real random variable Y
on {Q, F).

Proof. We obtain the assertion of Lemma 2.1 immediately from Tulcea’s theorem
(see [1], chapter V., Theorem V.1.1) if we replace transition probabilities of [1] by
corresponding conditional densities wy,, and if we put the measurable space (EO, Fo)
of [1] equal to the measurable space (E", #"). Spaces (E,, #,) of [1] are equal to
(Eqs1» Busy) for teN.

For next discussions we shall use the following property of the probability mea-
sure P, 4.

Lemma 2.2. For an arbitrary n < f; n, te N and for a nonnegative real random
variable Yit holds

(23) L P, o(do’) Y(0) = j

P,,J(dm’)J‘ Pry o (d0”) Y(a") .
Q o

For an arbitrary n e N, a nonnegative real random variable Y and a nonnegative
& ~measurable real random variable Z it holds

(24) j P, o(dw) V(o) Z() = Z(x,..... %) f Pafde) V()

for &' = (xy,..., X,).

The proof is analogous to the proof of Corollary 1 to Theorem V.1.1 in [1].

Lemma 2.3. For an arbitrary n < t; n, t e N and for an arbitrary B e & it holds

(2'5) Pn,ﬂi’(B l g'-r) = P:,m(w)(B) P,y as.

17



Proof. We must prove that for an arbitrary 4 e &, it holds
(2.6) Poad 0 B) = [ Prgor(B) Py oder)
Ja

Let us define a nonnegative real random variable Y(w) = I(w) I(w) where 1, is
a & -measurable indicator of a set A and I is a #-measurable indicator of a set B
According to the relation (2.3) it now holds

27) P,a(AnB) = f P, 2(do) Y(o') =

2

- j R j Prirgod) L) o).

According to (2.4) the inner integral on the right side satisfies the equation

f Py g on(der”) L(@") Ip(0") = Ty(el, ..., &) f P g (o (d0") Iy(w") =
2 2
=1,e},...€) P qg,0y(B) for o =(ef, ... e,...).

After a substitution into (2.7) we obtain

Poo(d nB)= f Py (') Ly(€}. ... €) Prg cory(B) =
o .
- f P, 2(d) Pz, (B)
A

By this Lemma 2.3 is proved.
We shall now prove an auxiliary assertion which we shall use in our next discus-

sions. Let be given measurable spaces (22, .#,) for every ne N, where @, is some
nonempty set and .#, is a o-algebra of subsets Q,. Denote Q' the set of all possible
pairs (n, z) such that z € Q, for n € N. Further we shall denote

(mA4)z2{n)eQ  zed,} c @,
(n9) =¢

for an arbitrary n e N, 4, < ,. Then it holds

Lemma 2.4, Let ./’ be a system of all possible subsets M of the set Q' such that

it holds
M=(nA4,)
N

where A, € 4, for every n e N (some of sets A, can be empty). Then .4’ is o-algebra,



Proof. Let M = [J (n, 4,) be an element of .#'. We shall prove that also the
N
complement of M, i.e. the set Q' \ M, belongs to .#’. Evidently, it holds

Q\M={(nB), B,=2, A, for neN.
N

Since A, € M,, Q,e M#, then also B,e #, for all neN and thus Q'\Me 4.
Similarly we can prove that also disjunction and conjunction of an arbitrary at least
countable system of sets from .#’ belong to .#'. The Lemma 2.4 is then proved.

We shall now define some new objects. Let £ be the set of all possible pairs (n, Q"),
where n e N, & € E". Further let #” be a system of subscts of £ created by all possible
sets B of the type

B={)(n,B,) where B,e%" for neN.
N
Tt is clear that #~ contains all one-point sets. According to Lemma 2.4, 4~ is a o-
algebra, thus (£, #7) is a phase space. According to [4] p. 32, we assume by a phase
space every measurable space, g-algebra of which contains all one-point sets.

Further let @ = N x Q and let &~ be the system of all such subsets 4 € & that

it holds
A=U(n, A4,) where A4,eF for neN.
N
According to Lemma 2.4, #~ is a g-algebra and (&, #~) is thus a measurable
space.

Let Ny = {0,1,...}. For every t e N, we shall define #, as a system of all such

sets B < @, that

B =) (n,B,) where B,e#,,, for neN.
N

It is evident that it holds

~

Fr cF,cF" for t<s; t,seN,

Further, for @ = (n, w)e @ and for every te N,, we define a random element
%, (®) on @ with a value in (E, #~) by the relation:

(2.8) (@) = (t + n, Top(0))
‘We shall show that it holds for every te Ny, Ce #™:
{o:27(@)eCle s

and thus the random process % is matched with the system {#}} of c-algebras
(definition of matching see [4], p. 15). It holds

{:X7(@eCl ={no):(n+t, . (0)eC} = Lﬁ(u, B) B, = Q.

19
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If C = U (n, C.), C, € #" (there can exist such n—s for which C, = 0), then
N

B, = {w : %n+r(w)5 Cn+l} € Fpts

and the statement is proved.

Let us define a probability measure Pz on the measurable space (3, # ) for an
arbitrary 2~ = (n, Z) e E by the relation

(2.9) Py (A) 2 P, 4(4,) where 4=\ (k,A)eZF".
N

Tt is easy to show that Py~(A) is really a probability measure and our definition is
thus correct. We shall prove the following theorem:

Theorem 2.1. The system X = (27, #; , Py~) for te N, and 2~ € £ is a homo-
geneous Markov sequence with values in the phase space (£, #7).

Proof. According to [4], cf. Def. 1, p. 32, the following conditions must be
satisfied:

1. Py~(A4) must be a #~-measurable function of &'~ for every A€ F .

2. Forall #~ e E, Be #™; 5,te N, it must hold:
PF(%7.,€B| #,) = Py- s (2, €B) Pg- as.

3. For every #~ e E it must hold P}(%; =27) = 1.

4. For every te N, and & e 3 there exists one and only one & € (2 such that it
holds
a(®) = 2 (@)
for all se N,.
We shall verify validity of these conditions.

1. According to relation (2.9) it holds
Py-(4) = P,,(A4,) where A,e% .
Let I, (w) be an indicator of a set 4,. Then it holds:
Posld) = | Poaldo) 1o (o)
2

and according to Lemma 2.1, PM,(A,,) is a #"-measurable function of . #~-mea-
surability of Py~(4) then follows immediately from the definition of a o-algebra 2.



2. According to the definition of a conditional probability we must prove that it 21
holds for an arbitrary 4 € &, :

(2.10) P7-({27,€B} 0 A) = f Py~ (%2 € B) Pg~(do') .

In agreement with the definition of the measure P -, the integral on the right side of
(2.10) is understood as an integral over the set A4, according the measure P, , where
2~ = (n, &) and 4 = U (k, A,) € #, . It holds (see also [1], section 1 of chapter
1) N

Pr-({Z72 (@) € B} 0 A) = P, ({27, (0) € B}y 0 A4,)

where for an arbitrary I' = § we define

Iy z{weQ:(n,0)el}.
It evidently holds A4, = A4, e #,,. Further

{%;5(5’) € B}ln) = {w : ‘yrt+s+n((0) € By isin}
for B = | (k, B), B, € #* for k € N. According to the Lemma 2.3, it holds
N
Pn,fl({‘%lr+s+n € Br+s+n} N An) = J P:+n,fr“,‘(m')({3{r+n+s € Bt+n+s}) P,,_w(dw’)
An

and thus according to the definition of the measure Pj..

(a5 @) e B 0 A) = [ P ofas e B) Fi-(ad)

JA
by which the condition 2 is checked.
3) According to Lemma 2.1 and definition of P, it holds for £~ = (n, Z):

Pr(25 =27) = P, o({25(®) = 4™ }) = Poal®, = ) = 1.

1

4. According to the definition, it holds for & = (n, w) and & = (1, @’)
g:rr(‘:’) =(s+1+mn Be"ﬁﬁn(co)) = (S + ‘Tﬁn'(w,)) = %:((b,) :
This equation is valid for & = (t + n, w); so condition 4 is verified and the proof
of Theorem 2.1 is finished.

Theorem 2.1 solves the problem of a transformation of the sequence of statistically
dependent vectors x,, neN to the homogeneous Markov sequence 2, , t € No.
It is easy to show that the system X = (&, #,, P, #) is a nonhomogeneous Markov
sequence. We can get our system X = (LJZ,N, F, , P g~} from this sequence by
the method, described in [5], chapter 4.
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3. THE OPTIMUM STOPPING RULE ON A SEQUENCE
OF STATISTICALLY DEPENDENT VECTORS

Using the results of the preceding chapter, we shall now transform our task,
formulated in chapter 1, to the problem of the optimum stopping rule on the homo-
geneous Markov sequence.

Definition 3.1. The stopping rule on the homogeneous Markov sequence X =
= (7, #;, Py-), te N, is every integer random variable %, defined on (&, )
with values in N, for which it holds for an arbitrary t € N,

{0:%@) =t} e #7 .
Let us define random variables j, by the relation
G.1) 7(@) = g (27 (@)

for all t € N, on the space (3, #~), where g™(2~) = g(%) for an arbitrary ¥~ =
= (n, Z) € E. It evidently holds

(3-2) (@) = yur{w) for &= (n,w)ed, teN,, neN.

Definition 3.2. The optimum stopping rule on a homogencous Markov sequence
X = (27,7, Py-) (for a given function g) is a stopping rule * on X, for which
it holds for all #~ € E

(33) My~(5x) = sup My-()

where ¢~ is the set of all stopping rules ¥ on X, for which there exists the mean
value My ~(7;) on (3, #~, Py-).

In Definitions 3.1 and 3.2 there we have narrowed general concepts of the stopping
rule and the optimum stopping rule, used in [4], chap. II, to our concrete case of
Markov sequence X and a function of a gain g™, which is defined by the relation (3.1).

It follows from the definition of a probability measure Py~ and from the relation
(3.2) that for ~ = (n, ) and an arbitrary f e €~

(3.4)
M-(5;) = J‘~Pa~r~(d‘7”) Fean(@) = J‘n Yot @ @) Py o(dw) = M, 1(Vn+s,)

Q
where 1,(w) = #(®) for & = (n, ®).

M, o is the expected value on the space (Q, #,P,,). It follows from the
relations (3.2) and (3.4) that supremum on the right side of the equation (3.3) is
given by the relation
(3.5) sup My-(5) = sup M, 4(y,..) for 4~ =(n,%)eE

e~

tusn



where 7, is an integer random variable defined for n € N on (Q, #, P, z), with values
from N, for which it holds for every se N,

(36) {o:1fw) =s}eF,.,

and &, is the of all possible 7, with the property (3.6) for which M, a(y,.,) exists
for every & € E".

Let us assume for a moment, that there exists the optimum stopping rule 7 on 2~
in the sense of our Definition 3.2. It is clear from relations (3.3) till (3.5) that then
for every n e N there exists 7F € %, given by the relation

(37) o) = (@) for & = (n, w)
for which it holds for all 2" & E*
(3'8) Mni’((ynﬂn') = sup Mn,.?!"(ym#-r,,) .

Tn€bn

According to Corollary 2 of Theorem V.1.1 in [1] and in accordance with properties
of a conditional mean value it holds for arbitrary 7, € €,

(3'9) M(-y”"‘"n) = M(Mn-ﬂfn(w)(yn*fn)) .
We get then from relations (3.8) and (3.9) for n = 1 and an arbitraty 7, € %,
(3.10) M(1ses) = MM, gV 1100) =

=j M| 01 40,2) P(de') 3f M, g on(Viee) P(A0) = M(y4.,) -
2 Q

There exists a one-one correspondence between the sets ¥ and %, using relations
T =1, + 1forte¥, 1, €%, Then it follows from this correspondence and from the
relation (3.10)

(3.11) My, o) = sugp M(y,) = M(y,.).

It is clear from (3.11) that if the optimum stopping rule ¥* in the sense of Definition
3.2 exists then the optimum stopping rule v* on the sequence {x,} in the sense of
Definition 1.2 also exists and it is given by the relation

(3.12) ™(w) = ti(w) + 1.

Relations (3.7) and (3.12) and the corresponding discussions then enable us to use
the theory of optimum stopping rules on Markov sequences, developed in chapter IT
of [4], for a solution of our problem.

Let us denote
(3.13) $(%) = sup M, ¢(y,4.,) for neN, ZecE"

Tn€%n

23



(3.14) § = sup M(y,)
I

It follows from relations (3.9) till (3.11)

(3.15) § = M(s\(2) =J’ $(2)) wi(@) 47, -
E
The following theorem holds:

Theorem 3.1. Let the gain, corresponding to the stopping of observations in a step
ne N, be given by the relation

yi{w) = g% (w))
where g, is a #"-measurable function for every n € N and let it hold

(3.16) M(sup g) (Z,) < .
neN

Then it holds

(3-17) Sn(‘%.n) = max [gn(%n); M, o (5us1(Z0s1))]
(3.18) s{Z,) = lim lim lim Q"g(a, b, Z,)]
b—war—wkrow
where
(3.19) b gx,) > b
gla, b, Z,) 21 8(Z,) a=g(®)=h
1:1 8(%,) < a

fora £0, b = 0and QF is the k-th power of an operator Q defined by the relation

(3.20) o[f(Z.)] = max [fZ.); M, . (Ls (Z0s1))] -

The proof is very easy, since except of the notations, our theorem 3.1 is equivalent
with statements 3 and 4 of Theorem 7 in chapter IT of work [4], applied to the Markov
sequence X = (27, #; , Pz~). For a transformation to our notation we have used
relations (3.4) and (3.13). There is needed in the above mentioned Theorem 7 to hold
for functions g, for every ne N and 7', € E"

(3.21) M, o (sup 874 (%40) < 0.
teNg

According to the Corollary 2 of Theorem V.1.1 of [1], M, 4,.,(Y) is the everywhere
defined variant of the conditional mean value JVI(Y[ &) for an arbitrary nonnegative
random variable Y. If it holds M(Y) < co, then according to the Radon-Nikodym’s



theorem (see e.g. [1], Theorem 1V.1.4 of chapter 1V), M(Y| #,) is a finite random
variable on the space (@, #,, P). Since it holds

0 < sup gy, (2,.,) < sup g5 (%,)
neN

teNo

relation (3.21) follows from (3.16) and the proof of Theorem 3.1 is completed.

Theorem 3.2. Let g, satisfy condition (3.16) and let

(3.22) = inf {n :s,(2,) = g(Z.)} -
neN

Then 7* is the optimum stopping rule on the sequence {x,} if it holds for every
neN, & € E" either

1. P, o(t* < ) =1 or

2. limg,, (#,+.) = —0 P,y as.
1=

Proof. Theorem 3.2 is a transcription of statements 3 and 4 of Theorem 8 in
chapter II of work [4] and proof is thus easy. A substitution of the assumption (3.21)
used in Theorem 8 of [4] by the assumption (3.16) is explained in the proof of our
Theorem 3.1.

Theorems 3.1 and 3.2 solve our problem formulated in chapter 1. The statements
contained in our Theorems 3.1 and 3.2 are in fact equivalent to the results of section 3
of [3]. Since we utilize the theory of optimum stopping rule on Markov sequences
[4], we can define a cost s5,(2) for an arbitrary (not random!) Z e E" by the relation
(3.13) in difference from a relation

S % () = ess sup M(p,se| F)

which is used in other notation in [3].
Comparing to [2], in our results we need not assume the existence of an expansion

[ D e A U

with some assumed properties of components. But our equation (3.18) is more complex
then equations (24) and (51) which have the similar sense in [2] as (3.18) has in
our work.

25
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4. SEQUENTIAL TEST OF THE FINITE NUMBER OF DISJOINT
HYPOTHESES FOR STATISTICALLY DEPENDENT OBSERVATIONS

In this chapter we shall apply the results of the previous chapter to the problem
of determining the optimum sequential test of H mutually disjoint hypotheses (H > 1,
fixed). To transfer this problem to the problem of optimum stopping rules we shall
use the method described in [6] »

Let # = {1,2,..., H} be a set of hypotheses (a set of nature states) and let &7 =
= {1,2,..., H} be a set of possible decisions of a statistician. Further let be given
a matrix of looses L, elements L;; of it represent a loss of the statistician if i € #
is a true hypothesis and je o is a decision of the statistician. We shall assume
0 < Lj<oofori=*j and L; =0 for ie s, je /. The statistician selects his
decisions je «/ as a result of an observation of vectors x, sequentially for n =
=1,2,.... We assume that the cost, which the statistician will pay in the n-th step
due to the observation of x,, is equal to ¢,(%,) = 0, ie. it depends-on the whole
course of observations of &, = (x,,..., x,) until the n-th step. The process of
statistician’s observations terminates by selecting a decision.

Let d be a rule of a terminal decision, i.e., an arbitrary function on (E, .'%'”)
with values in 27, for which it holds for every a ¢ &7

(4.1 {(n, %) E:d(n, Z) = a} e B~ .
Definition 4.1. By the sequential test of a set of hypotheses # we shall understand
every pair (d, t) where d is an arbitrary rule of a terminal decision and r is an arbitrary

stopping rule on a sequence {x,}, if the statistician selects a decision a = d(n, Z(»))
then and only then, if (@) = n.

H
Letn = ('n, ..., x), 'n 2 0, ¥ ‘n = 1 be a priori probability distribution on #,
i=1

on which we assume that it exists and it is given. Further let "W,‘(E{,,), ie#H,neN
be the probability density of n-tuple &, when the hypothesis i is true. We define the
probability density w, by the relation

n
4.2) wAZ) =Y ‘n'w,(%,) for neN, Z,eE".
i=1

Analogously, let "Wy, (%,+ 1 - o X, 14 ] Z,) be the conditional probability density
of a k-tuple (x,,ﬂ, ... X,+;) When the n-tuple &, is given and when the hypothesis
i€ s is true. We define

(4‘3) Wk|n(x,.+1, oo Xygp | 3{") =

H
= L m) M 1 Xori| ) koneN; Z,eE'; xek,



where (%) = (‘n(%,), ..., *n(%.)) be a posteriori probability distribution on #
when n-tuple &, is given. It holds

wAZ)

(49) () = 4
Tt ()

neN,; iesd; Z,ecE".

We shall assume that densities ‘w, and ‘w,,, respectively, exist and they are given
for all i € # and every k, ne N.

Further let P;,(d, 7) be the probability of decision j € = of the sequential test (d, 7)
if the true hypothesis is i € #. For the probability P;(d, t) it holds

@5) Pl 7) = P(U {0 ) = . d 7,(0) = 1)

where ‘P is a probability measure on the space (@, 7) for every i € . This measure
is given by the same method as that P in chapter 1, only w, and w,, will be replaced
by 'w, and ‘wy,,, respectively.

By the risk of the statistician, we shall assume a value r(r, d, ) for which it holds

4.6) r(r, d, 7) =§1 _}ip,.j(d, )Ly n + MY )

k=1

where ‘M is the expected value on the probability space (@, &, ‘P) for i e .
Let A be the set of all possible sequentiat tests (d, t), for which r(r, d, 1) is defined
for every = by the relation (4.6). Let us denote

7 o(m) = inf r(r, d, 7).

(d.)eA

Definition 4.2. We shall say that the sequential test (d*,*)€ A is optimum in
Bayesian sense, if it holds

(4.8) o(r) =1, d*, ).

It is known (sce e.g. [6]) that there exists such a rule of the terminal decision d*
that it holds for every (d, 1) e A

(4.9) i(m, d*, 7) < 1(n, d, 7).

This rule is defined by the relation (for ne N, 2 € E"):

u "
(4.10)  d*m, &) 2 min[j: Y Ly ‘(%) £ Y Ly 'm(%) forall keo/]
Jest i=1 i=1
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Let a % ,-measurable random variable y, be now given on (2, &, P) for every
n e N by the relation

n

(4.11) 2(@) = A% @) 2 —h(m(Z,(0)) - § a(Zo))
where

(4.12) h(t) = min [fLij 1]

jest Q=
H
forevery t = ("t,..., "), it 20, Y it = 1.
=1

It is evident from the Definition 4.2 and from the relations (4.9) till (4.12) that
the problem of determining the Bayes optimum sequential test is equivalent to
determining such a stopping rule ¢*, for which it holds

(4.13) M(y.) = sup M(y,)

where M is the expected value on the space (2, &, P). We can easy show that it
holds
(4.14) M(supy;) =0 <o

neN
and thus € is the set of all possible stopping rules on the sequence {x,,} in a sense of
Definition 1.1.

Definition 4.3. The stopping rule 7*, for which it (4.13) holds, will be called the
Bayes optimum stopping rule.

Remark 4.1. It is evident from the previous discussions that the sequential test
(d, f) € A is the Bayes optimum test then and only then, if it holds d = d* and T = ¥,
where d* is the rule of the terminal decision given by (4.10) and t* is the Bayes opti-
mum stopping rule.

According to results of the preceding chapter we can now formulate Theorem 4.1,
which together with Remark 4.1 will solve the problem of determining the Bayes opti-
mum sequential test in the sense of Definition 4.2.

Theorem 4.1. Let () be defined for all n e N and further let be
(4.15) h(n) > o(m)

where g(n) is defined below by the relation (4.22) and for every ne N, %, € E” let
¢,(Z,) be a #"-measurable function, 0 £ ¢,(%,) < oo and let

t
(4.16) lim Y ¢(Zyw)) = +0 P, g, as.
t=o0 k=1



Then it holds for the Bayes optimum stopping rule 29

(4.17) o = inf {n : 1,(2,) = h(r.(Z,))} .

neN

The next relations hold for the function r,(Z,) for every ne N, &, € E"

(4-18) ru(*yrn) = min [h(rl:,,(.’l"n)); M:.%,.(rnn(grnﬂ) + Cn+1(g{n+l))]
(4.19) r,(%,) = lim lim 0'[G,(a, )]

where for a > 0 it holds

h(n(Z,) for h(n(Z,) + Y 2 < a
(4.20) G,a, 2,) = { ” k=t
a— Y ¢{Z,) in the other cases

k=1

and Q" is the t-th power of the operator § defined by the relation
(4.21) Q[fn(‘(%ﬂn)] = min [fn(wn); 1Wn,a”"(ﬂ.+z(%n+1) + cn+l(g‘n+l))] .

The following relation holds for the risk o(r)

(4.22) ofr) = f JCCARRENRACALE.

Proof. If the condition (4.15) is not satisfied, then the least risk brings a deciding
without observations, i.e. selecting a decision d* according to a priori distribution 7.
This case is not interesting from the point of view of practical applications, thus we
shall not deal with it any more.

According to the fact that it holds for an arbitrary n € N and & € E"

0 < h(n,(2)) < max L;; < o0
ij

from the relation (4.16), it follows the validity of the condition 2 of our Theorem
3.2. The relation (4.14) guarantees the satisfaction of the condition (3.16) from Theo-
rem 3.1 and then the statements (4.17) and (4.18) are cvident consequences of
Theorems 3.1 and 3.2 taking into account substitution of a function s,,(;“l",,) by a func-
tion 1,(%,) according to the relation

n
(4.23) (%) = —s,(Z,) —-k; () -
Relations (4.19) and (4.20) follow from (3.18), (3.19) and from the fact that y,(2) < 0
for all 2 € E". Relation (4.21) is a consequence of (4.23) and (3.20) and the relation
(4.22) follows from (4.23) and (3.15). The proof of Theorem 4.1 is completed.
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Remark 4.2. Besides the relation (4.16) let it hold for allne N and all Z, € E*
(4.24) (%) £ C, < ©

where C,, is some finite positive constant for every n € N. Then it immediately follows
from (4.19) and (4.20) that

(4.25) r(#,) = lim O'Th(m,(Z.)] -

Remark 4.3. Let there exist such #n € N and &, € E" that
(4~26) M;,f,.'(cw 1(3rn+x)) = 0.
Then it is clear from relations (4.17) and (4.18) that for all w € Q' = Q it holds
(4.27) 1*(&)) <hn

where Q' = {w: Z,(0) = Z,} + 0.

Theorem 4.1 in principle solves the problem of Bayes optimum sequential test of
a finite number of disjoint hypotheses for dependent observations under the assump-
tion that a cost ¢ for the n-th observation x, (i.e. ¢ = ¢,(%,)) is a function of the
n-tuple of observations Z,. The assumption (4.16) of Theorem 4.1 well coresponds
to practical applications. The statement of Remark 4.3 enables us to analyse a case
of so called “cutted” sequential tests,i.c. of tests, for which it holds P{t* < n} =1
for some n. This case is very important in practice.

The finding of the constructive methods for determining functions r,,(:%’,,) for
n =1,2,... remains an open problem. A solution of this problem for some simple
concrete example is introduced in the following chapter. The next works will deal
with the general solution of this problem.

5. SEQUENTIAL TEST OF TWO HYPOTHESES FOR CONDITIONALLY
UNIFORM PROBABILITY DISTRIBUTION OF OBSERVATIONS

We shall introduce an example of a sequential test of two hypotheses for con-
ditionally uniform probability distribution of observations for an illustration of how
to use statement of Theorem 4.1 for a construction of Bayes optimum sequential
tests. Our example corresponds to the case H = 2, # = {1, 2}. ‘We shall assume that
observation x, for n € N is a real random variable, thus M = 1.

Let ay, a, be given fixed real constants for which it holds 0 < a; < a,. Let us

define sets 'L, < E” for i = 1,2; ne N by the relation
(51)  Ly={(xp.0x, :|x1 < ja;, !Xz - xll S 3. |X, = Xnvll = '%ai}

It evidently holds 'L, = 2L,.



For the true hypothesis H,, i = 1, 2 let it hold 31

‘ art for |x| £ 1a,
(5.2) wy(xy) = { i=12
0

for ‘xd > ta;

and for an arbitrary Z,, = (x,, ..., x,) € °L, let it hold

ai—1 for |x,4q — xni = fa;

0 for |x,uq = X,|>1a

W 1(Xns 1 | Z,) is not defined if 2, € 2L,\ 'L,
Let us denote

I

(5'3) iwlln(xn+l l '%‘n)

(5.4) m(%) = '7(Z); a=Ly,, b=aLy
Then
T =1 = n{Z.)
and
(5-5) h(t) = min [at; (1 ~ )] for 0Kt =1,

Let us further assume that the cost of observation C,‘(.Q’,,) is finite and constant,i.e.
c(%,)=¢>0, neN, Z,cE".

Our problem is to find the Bayes optimum sequential test of hypotheses H,, H,
for the given value = of a priori probability that H, is true. It holds 0 < = < 1.
From relations (5.1) until (5.4) it follows for &, € °L,

(59) nz) = {

where

p, for &,e'L,
0 for %,e?L,\'L,

1

Py = ——, n=afa, <l1.

1+ "".1—_2
K3

The value of 7,(Z,) is not defined for 2, ¢ 2L,. We can easy show that according
to (4.3) and (5.6) it holds for w,,

{ (%) + 1—n(%,)

for lxn+1 - X,,‘ = %ul
ay

2
|

(67) il |20 = | 1= m() for 1a, < [syes = %,

= da,

{
l N
0 for %a, < |Xpeq — %

where 2, = (x,,..., x,) € °L,.
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We shall prove that it holds in our example for the k-th power 0" of the operator §
(58)  Oh(r@)] = min [an(2,); (L = m(Z,): '(,); - "o (2]
where

k-1
ko (Z,) = nb(l — m(Z,) + (I + Y (n(2,) + n'(l - 7{Z.) keN.
=1

We shall do the proof by induction. Let 2, = (x,,...,x,)e L, and &, =
= (X}, ..y Xy X4 )- From (5.5) until (5.7) it follows that

(5.9) Mo (b (%, ) =
:J‘ min [am,+ (Zor1)s (I = 7ps ((Z041))] (”L@_ﬂ T
[%n+1=xn| £3a; a,
+ 1= nﬂ) dx,+, = min [ar,(Z,); nb(l — T ZN] -

a,
After the substitution of (5.9) into (4.21) we obtain
Olh(n,(2.)] = min [a m(Z,); b1 — m,(Z,)); nb(1 ~ m(Z.)) + <]

and it is proved the validity of (5.8) for k = 1. Let now (5.8) hold for some keN.
Then for %! we obtain

(5.10) g ![h(n(#,)] = O[Q*[n(m(Z.)]] =
= min [an(Z,), b(1 — 7,(Z.); "l Z.); -3 *0(%,)s My, (min [a 1,4 i(Zs1) 5
b(U = 7pa (s ) s (@ )5 - Fetar (T )]) + €]
Let us determine the expected value M, 5, from the right side of (5.10)
(5.11) M, o (min [amy s ((Zos ) D1 = Ty ii(Zusr)) 5
Yty ((Zaw 1) -5 s ((Fanr)]) =

: T,
= J‘ min [am, o (Zos )i o s 1(Taar)] (JL') +
[Sns 1= 5nl £ 31 ay

+ 1 — n(Z,)
az

)dx.,ﬂ = min [an(Z.); nb(1 — 7(Z,); 20(X) = € -3
"“a,,(zl’") -c].

Substituting (5.11) into (5.10) and after an easy arrangement we obtain (5.8) for k + 1.
By this, the validity of (5.8) is proved for all k e N.




We shall now show that for every ne N and %, € >L, there exists such k, =
= k,{n) e N that for all k = k, it holds

(5.12) 0'h(m,(2.)] = @*[h(n(2,)], keN, kZko.
After an easy arrangement we can prove that the inequality

(5.13) (X)) Z fe (7)) keN

is equivalent to the inequality

c
(5.14) pnzto
b(1 —n)
for &, € 'L, It follows from (5.6) that p,,, > p,, lim p, = . It is thus clear that
there must exist such ko = ko(n) that (5.14) holds for all k = k. For such k then
also (5.13) holds which together with (5.8) proves the relation (5.12) for &, € 'L,
Since for 2, € 2L, \ 'L, (5.12) holds for an arbitrary ko € N the proof of the validify
(5.12) is completed.
According (4.25) and using (5.12) we can write

(5.15) r(Z,) = 0°[h(n,(Z,))] -

We shall prove that there exists such ny € N that it holds for all n = ny, ne N

(5.16) r(Z,) = Wn(Z,)) Z,e’L,.

It is clear from (5.5), (5.6), (5.8) and (5.15) that the equation (5.16) holds for every
nye N when &, e?L,~\'L,. Then we shall continue the proof only for &, € 'L,
Let us check, for which n € N (i holds

5.17) bl = p) < 'aZ,) #,e'L,.
)

Inequality (5.17) is equivalent to the inequality
¢
b(1 =)’

By the same manner, as in the discusion of (5.14), we can easy show that there exists
such ng that (5.17) holds for n 2 n,. It follows from the discussion of (5.13) and
(5.14) that for such n > n, it holds

(5.18) pz1-

(5.19) bl = p) < *0(Z) Z,€'L,

also for an arbitrary k € N. Relations (5.17) and (5.19) prove the validity of (5.16)
for &, e 'L, and by this the proof of validity (5.16) is completed for all &, & °L,.
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Taking into account Theorem 4.1 and Remark 4.2, we can summarize our discus-
sions as follows:

If the inequality

ngl_;
b(1 — 1)

holds, then the test without observations (d, 0) brings the least risk. This test selected
decision d according to the relation

1 for am> b(1 —x)
d = {
2 for an £ b(l — 7).
Everywhere below we shall assume that it holds

b(t =)’

We shall note that inequality (1 — #) b > ¢ follows from (5.20). In accordance with
(5.18) let us define n, by the relation

(5.20) n<l—

[4
5.21 ng 2 minfn:ip, =21 — ———|.
G20 ’ ~[ b b(1 — n)]

If it holds ap,, = b(1 — p,,), then the test without observations (2,0) reaches the
least risk. This test always accepts H,. Let then (5.20) hold and simultancously

apy, > b(1 = p,).

Then the Bayes optimum sequential test (d*, 7*) of hypotheses H,, H, is defined by
the relations

(5.22) * = min [ny; ixtxf{n: Z,e?L,N'L}]
1 for ™ =ny, Z,e€'L,
a={

2 for ™ <ng, Z.e’L,N\'L,

Note, that the infimum of the empty set is defined to be +co in (5.22).

The Bayes optimum sequential test of hypotheses H,, H, is thus a test which makes
sequentially observations x,, ..., X, If it holds 4, = (x,, ..., x,) € 2L, \ 'L, for some
n £ n,, then the test is stopped, no more observation is made and H, is accepted.
If the test continued without stopping until the observation x,, and simultaneously
it holds &,, € 'L,,, then the test also stops and H| is accepted.

07



Test (d*, t*), which we obtained for our concrete example by solution of (4.17)
till (4.21), is in good agreement with our intuitive ideas about an “reasonable”
testing of hypotheses H, and H,. Note that it is ,,cutted” test, since 7% < n, always
holds. This circumstance is not caused due to the dependence of the cost ¢ on the
serial number n and the n-tuple of observation &, in the sense of Remark 4.3, but it
is given directly by an essence of the problem, since H, we can accept with a certainty
for &, €2L,\'L,.

(Received September 19, 1978.)

REFERENCES

{1] J. Neveu: Bases mathématiques du calcul des probabilités. Masson et Cie, Paris 1964.
[2] Y. S. Chow, H. Robbins: On optimal stopping rules. Zeitschr. fiir Wahrscheinlichkeitstheorie
u. verw. Geb. 2 (1963/64), 1, 33—49.

[3]1 G. W. Haggstrom: Optimal stopping and experimental design. Ann. of Math. Stat. 37 (1966),
1,7—29.

[4] A. H. lupsiep: CTaTHCTHYECKNH NOCTIea0BATE IbHEIA aHam3. M3panue sTopoe. Hayka, Mocksa
1976.

[5] E. B. dpmxan. OCHOBaHUSA TCOPHH MApKOBCKHX npoueccos. PU3MATI U3, Mocxsa 1959,

[6] J. Cochlar: Formulace problému sekvenéni detekce radioloka¢nich cilt v korelovaném
Sumu. Res. Rep. I1I-1-4/4-1, CVUT-EEL, Praha 1976.

Ing. Jifi Cochlar, CSc., katedra radioelektronickych zaFizeni a soustav elektrotechnické fakulty
CVUT (Czech. Technical University — Department of Radioeletronic Devices and Systems),
Suchbdtarova 2, 166 27 Praha 6. Czechoslovakia.

35



		webmaster@dml.cz
	2012-06-05T07:39:49+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




