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K Y B E R N E T I K A — V O L U M E 16 (1980), NUMBER 1 

Optimum Stopping Rules on the Sequence 
of Statistically Dependent Vectors 

M l COCHLAR 

The paper deals with the problem of determining the optimum stopping rules on the sequence 
of statistically dependent vectors. The theory of optimum stopping rules on Markov sequences is 
used for a solution of this problem. For this purpose, there is a case of statistically dependent 
vectors transferred to the case of homogeneous Markov sequence in chapter 2. Then in chapter 3 
general equations determining the optimum stopping rule are developed. Chapter 4 deals with an 
application of the obtained theory to the problem of the sequential test of the finite number of 
hypotheses for statistically dependent observations. The complete solution of obtained equations 
for a special case of conditionally uniformly distributed observations is introduced in chapter 5. 

1. INTRODUCTION 

We shall deal with the following problem. The sequence xu x2, ... of statistically 
dependent random vectors is given, where x„ is an element of M-dimensional 
Euclidean space for every integer n > 0. Further for every integer n > 0 a random 
variable yn is given by the relation 

y„ = &•(*!. •••, x„) 

where g„ is a given function. We shall interpret the value y„ = g„(xl5 ..., x„) as 
a gain which we obtain by interrupting the process of observation the random 
vectors x ; in the «-th step. By a stopping rule T we shall understand some positive 
integer random variable which "does not depend on the future", i.e., an event 
{T = n} can depend only on events concerning the values xu ..., x„. (Exact defini
tions will be given later.) By the optimum stopping rule T* we shall then under
stand a stopping rule (if such a stopping rule exists) for which it holds 

M(yz,) = sup M(yz) 



where <€ is the set of all stopping rules for which M(yt) exists, M is the expected 
value. Our paper will deal with the problems of existence and description of the 
optimum stopping rules. 

Chapters 2 and 3 deal with the general solution of the mentioned problem using 
a theory of the optimum stopping rules on the Markov sequences. In chapters 4 and 5 
general results are applied to the problem of the sequential test of a finite number 
of disjoint hypotheses when observations are statistically dependent. 

Further we shall give exact definitions of concepts we shall use in the following 
chapters. Let 

N = {1,2,...} 

and let a measurable space (E„, 38„) be given for every n e N. We shall assume that 
it holds 

E„ = E, 38 „ = & 

for every neN, where E is M-dimensional Euclidean space (M > 0 is fixed) and 3$ 
is a c-algebra of Borel sets in E. For any ne N we shall denote 

E" = ] 1 Et = El X • • • X En 
US'S"} 

38" = ® Sit = 38 ̂  ® .. . ® 38n. 
{ i g ^ « } 

We shall define now a measurable space (Q, 8F) by the relations 

Q = Y\En = E, x E2 x ... 
N 

& = ®38n = 381 ® 382 ® .. . 
JV 

Let the vector x„ be defined on the space (Q, 3F) for every n e N by the relation 

x„(a>) = e„ for <x> = (e,, ..., e„, . . . ) , e ; e E; 

and analogously, let the n-tuple 3£n be given by the relation 

X„(a>) = ( e„ ..., e„) for co = ( e , , . . . , e„, ...) e ; e E;. 

It is clear that the vector x„ and the n-tuple %n, respectively, are J^/J1,, and ^\38n-
measurable transformations on (Q, 3F) with values in E„ and E", respectively. It 
holds Se„(<j>) = (x,(o)), ..., x„(co)). 

Let us assume that the joint probability density function w„($"„) of an n-tuple 3Cn 

is given and also the conditional probability density function w t |„(x„+ , , . . . , xn+k | SCn) 
of a fc-tuple (x„+ j , ..., x„+/t) is givem for an arbitrary k e N and for the given n-tuple 
9H„. Let us assume that functions w„ and wt|„ satisfy the conditions allowing to define 
transition probabilities. 

As a consequence of the Tulcea's theorem (see [1], chapter V., Corollary 2 of 
Theorem V.l.l), there exists one and only one probability measure P on the space 



(Q, 3F) induced by the mentioned probability density functions. Everywhere below, 
we shall interpret both vectors x„ and the n-tuple 9Cn as random elements defined 
on the basic probabilistic space (Q, $F, P). 

According to [1] we shall every set A for which it holds 

A = Y\B„ = (a) = (- j , ..., e„, ...) : e„ e Bn; n e N} Bn e 3Sn 
N 

denote as the measurable rectangle in Q, whilst we assume that the sets Bn differ 
from E„ only for the finite set of values ueJV, i.e. for every measurable rectangle A 
in Q there exists such nAeN that for all n > nA it holds Bn = En. For an arbitrary 
measurable rectangle A in Q then it holds (see [ l ]) 

P(A)= f d x . . . . I d x ^ w j x , , . . . , ^ ) . 

JBi J B„A 

Let an arbitrary set B" e 33" be given. The set 

B = B" x [ I Ek 
{k>n} 

will be called the measurable cylinder B in Q with the basis B". For every t e N let us 
define now J% <= ̂  as a sub-c-algebra of the a-algebra J*, which is created by all 
possible measurable cylinders with bases from 0 . Evidently it holds !Ft c 3FS for 
t :§ s;t,seN. 

Definition 1.1. The stopping rule T on the sequence {x„} is every integer random 
variable defined on (Q, #", P), with values in N, for which it holds 

(1.1) {co : T(CO) = n} e J*„ for every nsN . 

We shall define now a new random variable yn on the probability space (Q, J% P) 
for every neJVby the relation 

(1.2) yn(oj) = g„(;r„(co)), n 6 N 

where g„ is some given .^"-measurable function for every n e N. 
We shall introduce a notation f+ = max [f, 0], f~ = max [-f, 0], where f is an 

arbitrary real function. Everywhere below we shall assume that functions g„ satisfy 
the condition 

(1.3) M(sup g„+(^'„)) < oo 
neN 

where M is the expected value on (Q, 2F, P). 
Since it holds 

yt ^ supg„+(<T„), 
H6IV 



16 according to (1.2), for an arbitrary stopping rule x, it must hold, according to (1.3), 
for arbitrary T 

- o o ^ M(yt) ^ M(supg„+(,£"„)) < oo 
IIBN 

and thus there always exists M(yt) for an arbitrary stopping rule T, but it can hold 
M(yt) = - o o . 

Definition 1.2. The optimum stopping rule on the sequence {x„} is the stopping 
rule T* for which it holds (if there exists some stopping rule with such a property): 

(1.4) M(yt*) = sup M(yt) 

where ^ is the set of all stopping rules T on the sequence {x„}. 
Several works (see e.g. [2], [3]) deal with the problems of an existence and 

a construction of the optimum stopping rules for various concrete choices of func
tions g„. Reference [4] deals with an important special case when a sequence {x„, #"„, 
Px} is a homogeneous Markov sequence, where Px is a probability measure on (Q, $F) 
corresponding to the initial stage x. There is understood in [4] by the optimum stop
ping rule T* such a stopping rule, for which it holds: 

Mx(yt,) = sup Mx(yt) 

for all x e E, where Mx is the expected value on (Q, J*, Px). 
In this paper we shall solve the problem of an existence and a construction of the 

optimum stopping rule in the sense of the Definition 1.2 using the theory developed 
in [4]. For this reason, we shall transform the sequence {x„, 2Fn} to a homogeneous 
Markov sequence {%~, ?F~', P^~} i n the next chapter. 

2. TRANSFORMATION OF THE SEQUENCE OF THE GENERALLY 
STATISTICALLY DEPENDENT VECTORS 
TO THE HOMOGENEOUS MARKOV SEQUENCE 

The following lemma will be an entry point for the next discussions. 

Lemma 2.1. Let the arbitrary fixed n e N and 3C e E" be given. Then the only 
probability measure PnX exists on (Q, 2F), the value of which is given on an arbitrary 
measurable rectangle \\Bt by the relation 

N 

(2.1) 

P»ATlBt) = M # ) 1" dx„ + 1 . . . f dx„ + r w„ + r |„(x„+ 1 , ..., x„ + r | "J) 
N JB„+, Un+T 



where IB„ is the indicator of the set B" = [ B, and Tis a positive integer so large 
{ I g t S ' i } 

that it holds Bn + t = E„ + , for all t > T. It holds 

(2.2) 

J P„,3<dco') Y((o') = dx„+ l ... dx„ + r w„ + r i„(x„+1, ...,xm+T\X) Y(xlt... 
J Si JE„+I J £„ + T 

•••, * „ + T) 

for £F = ( x , , . . . . x„) and for any nonnegative real random variable Y on (Q, #"), 
depending only on coordinates with indexes not exceeding the value n + T In 
addition, an integral 

PnA(d(o') Y(co') 

is a ^"-measurable function of SC for every nonnegative real random variable Y 
on (Q, J^). 

Proof. We obtain the assertion of Lemma 2.1 immediately from Tulcea's theorem 
(see [1], chapter V., Theorem V.l.l) if we replace transition probabilities of [1] by 
corresponding conditional densities wk|„ and if we put the measurable space (E0, J^0) 
of [1] equal to the measurable space (E", 38"). Spaces (E(, J2",) of [ l ] are equal to 
(E„ + „^„ + ,)for teN. 

For next discussions we shall use the following property of the probability mea
sure P„tSC. 

Lemma 2.2. For an arbitrary n <L f, n, t e N and for a nonnegative real random 
variable y i t holds 

(2.3) f PnAM) * > ' ) = [ PnAdco') [ PMI)(da>") Y(co"). 
J a J n J si 

For an arbitrary n e N, a nonnegative real random variable Y and a nonnegative 
^-measurable real random variable Z it holds 

(2.4) | P„tX(dco') y(cu') Z(co') = Z(x„ ..., x„) | Pn^(da)') Y(o)') 
Jo J n 

for SC = (x., ..., x„). 

The proof is analogous to the proof of Corollary 1 to Theorem V.LI in [ l ] . 

Lemma 2.3. For an arbitrary n g t; n, t e N and for an arbitrary B e J* it holds 

(2-5) Pn,x(B | Ft) = P,,XtW(B) Pn.x a.s. 



18 Proof. We must prove that for an arbitrary A e 3Ft it holds 

(2.6) PnA(A nB)=[ Pt,Xt(a)1(B) P„iX(dco'). 

Let us define a nonnegative real random variable Y(co) = 1^(0) LJ(<B) where IA is 
a ^-measurable indicator of a set A and lB is a immeasurable indicator of a set B 
According to the relation (2.3) it now holds 

(2.7) PnA(A nB)= f Pn,x(dco') Y(co') = 

= f PntX(dco') f PtAt(<ol)(dco") lA(co") lB(co") . 
J a J Q 

According to (2.4) the inner integral on the right side satisfies the equation 

f Pt,Xt(al(dco")lA(co")lB(co") = lA(e[,..., e't) | PttXt((or)(Aco") lB(co") = 

= IA(e'u ..., e't) PtAc(<a.)(B) for co' = (e^, ..., e't, ...) . 

After a substitution into (2.7) we obtain 

PnA(A nB)=[ P„tX(dco') lA(e[,..., e't) Pt,*t(^(B) = 
Jn 

= f Pn>x(dco')PtAt(<al)(B) 

By this Lemma 2.3 is proved. 
We shall now prove an auxiliary assertion which we shall use in our next discus

sions. Let be given measurable spaces (Qn, Jfn) for every neN, where Qn is some 
nonempty set and J/n is a c-algebra of subsets Q„. Denote Q' the set of all possible 
pairs (n, z) such that z e Qn for neN. Further we shall denote 

(n, An) = {(n, z)eQ' :zeAn} c Q', 

(n,0) = 0 

for an arbitrary n e N, A„ a Qn. Then it holds 

Lemma 2.4. Let Ji' be a system of all possible subsets M of the set Q' such that 
it holds 

M = U (n, A„) 
N 

where A„ e J/„ for every n e N (some of sets A„ can be empty). Then Ji' is a-algebra. 



Proof. Let M = [j (n, A„) be an element of J/'. We shall prove that also the 
JV 

complement of M, i.e. the set Q' \M, belongs to J/'. Evidently, it holds 

Q'\M = [j(n, B„), Bn = Q„\A„ for n e N . 
N 

Since A„ e Jtn, Q„ e Jt„, then also B„ e Jin for all neN and thus Q' \ M e J/'. 
Similarly we can prove that also disjunction and conjunction of an arbitrary at least 
countable system of sets from Jl' belong to Ji'. The Lemma 2.4 is then proved. 

We shall now define some new objects. Let E be the set of all possible pairs (n, S£), 
where neN, 9? e E". Further let 28~ be a system of subsets of E created by all possible 
sets B of the type 

B = U (n, B„) where B„ e 3&n for neN . 
N 

It is clear that 3)~ contains all one-point sets. According to Lemma 2.4, 83~ is a a-
algebra, thus (E, £8~) is a phase space. According to [4] p. 32, we assume by a phase 
space every measurable space, cr-algebra of which contains all one-point sets. 

Further let 5 = N X Q and let $F~ be the system of all such subsets A e Q that 
it holds 

A = U (n, A„) where A„ e & for neN . 
N 

According to Lemma 2.4, !F~ is a c-algebra and (Q, 2F~) is thus a measurable 
space. 

Let N0 & {0 ,1 , . . .} . For every t eN0 we shall define !F~ as a system of all such 
sets B c Q, that 

B={J(n,B„) where BneS~„ + t for neN. 
N 

It is evident that it holds 

3~7 <= # 7 <= #"~ for t -g s ; t,seN0 

Further, for (5 = (n, co) e Q and for every teN0, we define a random element 
SC~(&) on fi! with a value in (E, S8~) by the relation: 

(2.8) %~(<x>) =(t + n, S£t+n(to)). 

We shall show that it holds for every t e N0, C e J ~ : 

{& : %~(a>) eC}e&~ 

and thus the random process 9£~ is matched with the system {^7} °f c-algebras 
(definition of matching see [4], p. 15). It holds 

{& : x7(co) eC} = {(n, co) : (n + t, %n + t(co)) e C} = U (n, Bn) B„ c Q . 



20 If C = U («, en), C„ £ J"" (there can exist such n - s for which C„ = 0), then 
N 

B„ = {<u : %„ + ,(co) e Cn + ,} e ^„ + t 

and the statement is proved. 

Let us define a probability measure Px on the measurable space (Q, J~~) for an 
arbitrary 9C~ = (n, 3C) e E* by the relation 

(2.9) P^~(A) = -*„ *(4,) where A = [j (k, Ak)e ^~ . 
N 

It is easy to show that P~~(A) is really a probability measure and our definition is 
thus correct. We shall prove the following theorem: 

Theorem 2.1. The system X = (X~, &~, P~~) for / e JV0 and '3C~ e E is a homo
geneous Markov sequence with values in the phase space (E, 3$~). 

Proof. According to [4], cf. Def. 1, p. 32, the following conditions must be 
satisfied: 

1. P~~(A) must be a J1 ~-measurable function of 3C~ for every A e 2F~. 

2. For all SC~ e E, B e @~; s, t e N0 it must hold: 

PZ~(%7+s e B | &~) = P~~t(&) (3C~ e B) P~~ a.s. 

3. For every 9C~ e E it must hold P~~(3C~ = 3*~) = 1. 

4. For every t e N0 and w e Q there exists one and only one &' e Q such that it 
holds 

sc~(&') = ar ~s(<~>) 

for all s e N0. 

We shall verify validity of these conditions. 

1. According to relation (2.9) it holds 

P~~(A) = P„,a(A„) where A„ e #" . 

Let I^Jco) be an indicator of a set A„. Then it holds: 

P„,3(A„) = f PniX(d(D')lAn(co') 
Jn 

and according to Lemma 2.1, P„,X(A„) is a ^'''-measurable function of 3C. J~-mea-
surability of PX~(A) then follows immediately from the definition of a c-algebra Sft~. 



2. According to the definition of a conditional probability we must prove that it -1 
holds for an arbitrary A e 3F~: 

(210) P~~({9C7+se B}nA)=( P7~t^(K e B) P~-(do)'). 

In agreement with the definition of the measure P^~, the integral on the right side of 
(2.10) is understood as an integral over the set A„ according the measure P„jX where 
9C~ = (n, 9C) and A = U (K Ak) e &7• It holds (see also [1], section 1 of chapter 
III.) 

PZ~({%7+1&) e B} n A) = Pn>x({x7+l&) e *}<„, n A„) 

where for an arbitrary r c Q w e define 

T(n) = {co E Q : (n, co) e T} . 

It evidently holds A,n) = A„ e 3F„+V Further 

{9C7+s(co) e B}ln) = {co : Xt+s+„(co) e Bt+s+n} 

for B = U (k, Bk), Bk e if* for k e N. According to the Lemma 2.3, it holds 
N 

Pn,x({9Ct + s+neBt+s+„} nA„)=[ Pt+„,Xt+n^)({9:t+„ + se Bt+,,+s}) P,uX(dco') 

and thus according to the definition of the measure P,~~ 

P7~(K+X&) eB}nA)=[ P^~t(ffl)(C e B) i£~(d<3') 
J A 

by which the condition 2 is checked. 

3) According to Lemma 2.1 and definition of P^~, it holds for 3C~ = (n, 9C): 

P7~(9C7 = 3c~) = P„JX({X7(&) = a™}w) = p„>jr(^„ = x) = 1. 

4. According to the definition, it holds for & = (n, co) and co' = (n1, co') 

%7+,(&) = (s + t + n, 9Cs + t + n(coj) = (s + n', Xs+n{co')) = 9C~(cd') . 

This equation is valid for co' = (t + n, co); so condition 4 is verified and the proof 
of Theorem 2.1 is finished. 

Theorem 2.1 solves the problem of a transformation of the sequence of statistically 
dependent vectors x„, n e N to the homogeneous Markov sequence SC~, t e N0. 
It is easy to show that the system X = (X„ CFt, P„jX) is a nonhomogeneous Markov 
sequence. We can get our system X = (#"~, CF~, P~x~) from this sequence by 
the method, described in [5], chapter 4. 



3. THE OPTIMUM STOPPING RULE ON A SEQUENCE 
OF STATISTICALLY DEPENDENT VECTORS 

Using the results of the preceding chapter, we shall now transform our task, 
formulated in chapter 1, to the problem of the optimum stopping rule on the homo
geneous Markov sequence. 

Definition 3.1. The stopping rule on the homogeneous Markov sequence % = 
= (S£7, &7 •> P&~), - e No is every integer random variable f, defined on (Q, J«r~) 
with values in N0, for which it holds for an arbitrary t e N0 

{to : x(cd) = t] e S~7 • 

Let us define random variables y, by the relation 

(3.1) yt(co) = g ~ ( C ( « ) ) 

for all t eN0 on the space (Q, 3F~), where %~(S£~) = %„(9£) for an arbitrary 3C~ = 
= (n,3C)e£. It evidently holds 

(3.2) yt(co) - yn+t(co) for to = (n, to) e Q , teN0, neN. 

Definition 3.2. The optimum stopping rule on a homogeneous Markov sequence 
X = (S£7, &7- P7c~) (f° r a given function g) is a stopping rule f* on Jc, for which 
it holds for all 3C~ e E 

(3.3) MZ~(h<) = sup MZ~(y~) 
z-<€~ 

where c€~ is the set of all stopping rules x on %, for which there exists the mean 
value M£~(y-) on (Q, &~, P%~). 

In Definitions 3.1 and 3.2 there we have narrowed general concepts of the stopping 
rule and the optimum stopping rule, used in [4], chap. II, to our concrete case of 
Markov sequenced and a function of a gain g~, which is defined by the relation (3.1). 

It follows from the definition of a probability measure Px~ and from the relation 
(3.2) that for °I~ = (n, 3C) and an arbitrary xe(£~ 

(3.4) 

M#~(y-) = /v (dcu ' ) h(&-)(~o') = yn+tnim-)((o') P„Adc0') = Mn,x(y„+-^ 
J a Jn 

where x„(co) = x(co) for to = (n, to). 
MnSC is the expected value on the space (Q, !F, P,uSC). It follows from the 

relations (3.2) and (3.4) that supremum on the right side of the equation (3.3) is 
given by the relation 

(3.5) sup M%~(y~) = sup MniSe(yn + ,n) for 3C~ = (n, 3C)eE 
xs<e~ t„s«„ 



where T„ is an integer random variable defined for neJVon (Q, !F, Pn&), with values 23 
from N0, for which it holds for every s eN0 

(3.6) {co-.Tn(a) = s}e^n + s 

and (£n is the of all possible T„ with the property (3.6) for which Mn^(yn + J exists 
for every 3C e E". 

Let us assume for a moment, that there exists the optimum stopping rule f* on dC~ 
in the sense of our Definition 3.2. It is clear from relations (3.3) till (3.5) that then 
for every ne N there exists T* e <ga given by the relation 

(3.7) T„*(CO) = T*(<5) for to = (n, to) 

for which it holds for all 3C e E" 

(3.8) MnA(y„ + Tnt) = sup M„>a-(y„ + tJ . 
r„s«"n 

According to Corollary 2 of Theorem V . H in [ l ] and in accordance with properties 
of a conditional mean value it holds for arbitrary T„ e %„ 

(3-9) M ( A + J = M(MnMnil0)(yn+J). 

We get then from relations (3.8) and (3.9) for n = 1 and an arbitrary TX e (^1 

(3A0) M(j/1+ t l .) = M(Muxai0)(y1+zJ) = 

= f M ] ; T l ( r o , )(y 1 + r i0I J( d c o ' ) = [ ^ . ^ ( - o C j ' i + J - ^ d w O = M ( ^ i + t l ) -
J o . J n 

There exists a one-one correspondence between the sets ^ and ^ using relations 
T = tj + 1 for T e # , Tj e r#j. Then it follows from this correspondence and from the 
relation (3TO) 

(3.11) M(yi +ZJ = sup M(yt) = M(yJ . 

It is clear from (3.11) that if the optimum stopping rule f* in the sense of Definition 
3.2 exists then the optimum stopping rule T* on the sequence {x„} in the sense of 
Definition 1.2 also exists and it is given by the relation 

(3.12) T*(CO) = T?(fl)) + 1 . 

Relations (3.7) and (3.12) and the corresponding discussions then enable us to use 
the theory of optimum stopping rules on Markov sequences, developed in chapter II 
of [4], for a solution of our problem. 

Let us denote 

(3.13) %(%) = sup M„A(yn + J for n e N , % e E" 



(3.14) s = sup M(yx) 

It follows from relations (3.9) till (3.11) 

(3.15) S = M(s1(£'1)) = I s,(.f,) w , ( f , ) d,f, . 
J El 

The following theorem holds: 

Theorem 3.1. Let the gain, corresponding to the stopping of observations in a step 
neN, be given by the relation 

yM = &(«>)) 

where g„ is a ^"'-measurable function for every neN and let it hold 

(3.16) M(sup g„Ҷ<Г„)) < oo . 

Then it holds 

(3-17) s„(<Г„) = max [g„(.f„); M„;.r„(s„ + 1(íГп+1))] 

(3.18) s„(.f „) = lim lim lim Qk[gn(a, Ъ, X„)] 
И»a--æ*-»oo 

where 

(3-19) f ь g„(ár„) > ь 
g„(a, b, Ж„) = g„(íГ„) a й g„(íГ„) = b 

l a gn(X„) < a 

for a <. 0, ft ^ 0 and g* is the fe-th power of an operator Q defined by the relation 

(3.20) 2[f„(.f„)] = max [f„(^„); MH jJf„+ 1(^„+,))] . 

The proof is very easy, since except of the notations, our theorem 3.1 is equivalent 
with statements 3 and 4 of Theorem 7 in chapter II of work [4], applied to the Markov 
sequence X = (2C~, 3F~, P&~)- For a transformation to our notation we have used 
relations (3.4) and (3.13). There is needed in the above mentioned Theorem 7 to hold 
for functions g„ for every neN and X„ e E" 

(3.21) M„>a.(supg„+

+.(3r„ + t)) < co . 

According to the Corollary 2 of Theorem V.l.l of [1], MllJtn(C0>(Y) is the everywhere 
defined variant of the conditional mean value M(Y | Ĵ "„) for an arbitrary nonnegative 
random variable Y If it holds M(Y) < co, then according to the Radon-Nikodym's 



theorem (see e.g. [1], Theorem IV.L4 of chapter IV), M(Y\ iF„) is a finite random 
variable on the space (Q, <Fn, P). Since it holds 

0 = supg„+
+((^„ + t ) ^ supg+(3f„) 

leNo neN 

relation (3.21) follows from (3.16) and the proof of Theorem 3.1 is completed. 

Theorem 3.2. Let g„ satisfy condition (3.16) and let 

(3.22) ?* = inf{«:s„( . f„) = g„ ( r „ ) } . 
neN 

Then T* is the optimum stopping rule on the sequence {x,,} if it holds for every 
neN, % eE" either 

1. P„tSC(x* < oo) = 1 or 

2. lim g„ + t(̂ T„ + ,) = - o o PnX a.s. 

Proof. Theorem 3.2 is a transcription of statements 3 and 4 of Theorem 8 in 
chapter II of work [4] and proof is thus easy. A substitution of the assumption (3.21) 
used in Theorem 8 of [4] by the assumption (3.16) is explained in the proof of our 
Theorem 3.1. 

Theorems 3.1 and 3.2 solve our problem formulated in chapter 1. The statements 
contained in our Theorems 3.1 and 3.2 are in fact equivalent to the results of section 3 
of [3]. Since we utilize the theory of optimum stopping rule on Markov sequences 
[4], we can define a cost s„(^') for an arbitrary (not random!) 9C e E" by the relation 
(3.13) in difference from a relation 

s„(^„(co)) = ess sup M(y„ + Z \ &„) 
te«„ 

which is used in other notation in [3]. 
Comparing to [2], in our results we need not assume the existence of an expansion 

with some assumed properties of components. But our equation (3.18) is more complex 
then equations (24) and (51) which have the similar sense in [2] as (3.18) has in 
our work. 



4. SEQUENTIAL TEST OF THE FINITE NUMBER OF DISJOINT 
HYPOTHESES FOR STATISTICALLY DEPENDENT OBSERVATIONS 

In this chapter we shall apply the results of the previous chapter to the problem 
of determining the optimum sequential test of H mutually disjoint hypotheses (H > 1, 
fixed). To transfer this problem to the problem of optimum stopping rules we shall 
use the method described in [6]. 

Let j f = {1, 2 , . . . , H} be a set of hypotheses (a set of nature states) and let s4 = 
= {1, 2, ..., H} be a set of possible decisions of a statistician. Further let be given 
a matrix of looses L, elements Ly of it represent a loss of the statistician if i e JC 
is a true hypothesis and j e s>i is a decision of the statistician. We shall assume 
0 < L y < oo for i 4= j , and Lh = 0 for i e &, j e stf. The statistician selects his 
decisions j e stf as a result of an observation of vectors x„ sequentially for n = 
= 1, 2, ... . We assume that the cost, which the statistician will pay in the n-th step 
due to the observation of x„, is equal to cn(SEn) 2; 0, i.e. it depends on the whole 
course of observations of 9Cn = (x , , . . . , x„) until the n-th step. The process of 
statistician's observations terminates by selecting a decision. 

Let d be a rule of a terminal decision, i.e., an arbitrary function on (E, 3S~) 
with values in srf, for which it holds for every a e sd 

(4.1) {(n, X) e E: d(n, SC) = a] e ®~ . 

Definition 4.1. By the sequential test of a set of hypotheses 2f? we shall understand 
every pair (d, T) where d is an arbitrary rule of a terminal decision and -r is an arbitrary 
stopping rule on a sequence {x„}, if the statistician selects a decision a = d(n, 9S„(o))) 
then and only then, if T(C») = n. 

H 

Let TC = (17t,..., Hn), 'n ^ 0 , £ l% = 1 be a priori probability distribution on &, 
i = i 

on which we assume that it exists and it is given. Further let 'w„(ST„), i e ffl, n e N 
be the probability density of n-tuple 9C„ when the hypothesis i is true. We define the 
probability density w„ by the relation 

B 

(4.2) w„(f„) = X ln iw„(^„) for neN , 9Cn e E". 
i = l 

Analogously, let 'w^|„(x„ + 1 , . . . , xn+k I 9Sn) be the conditional probability density 
of a fe-tuple (x„ + 1, ..., xn+k) when the n-tuple 9Cn is given and when the hypothesis 
i e 2/C is true. We define 

(4-3) wfc|„(x„ + 1 , . . . , x „ + i i | i r „ ) = 
H 

= Z''7r»(^n)Xi„(x« + !»•••. x„+/< | «".) KneN; 3CneEn; xteEt 



where n„(%„) = (lnn(%n),...,
 ann(%n)) be a posteriori probability distribution on 2/f 27 

when n-tuple 1n is given. It holds 

(4.4) <nn(a-„) = J i y M L n s N . i e # . oIne En _ 

X kn kv?n(%n) 
k = i 

We shall assume that densities 'w„ and 'wt|„, respectively, exist and they are given 
for all i e 2tf and every k,neN. 

Further let Pu(d, T) be the probability of decision j e J of the sequential test (d, i) 
if the true hypothesis is i e 3tf. For the probability Pu(d, T) it holds 

(4.5) Pu(d, T) = T ( U {« : T(CO) = fe, d(fc, .*») = j}) 
fc=i 

where lP is a probability measure on the space (Q, $>) for every i e Jf. This measure 
is given by the same method as that P in chapter 1, only w„ and wt|„ will be replaced 
by 'w„ and ;w t|„, respectively. 

By the risk of the statistician, we shall assume a value r(7t, d, T) for which it holds 

(4.6) r(7C. d, x) = £ I Pu(d, T) LU >n + lM( £ ck(<Zk)) 
> = i y = i (t=i 

where 'M is the expected value on the probability space (O, #", T ) for i e 34?. 
Let A be the set of all possible sequential tests (d, T), for which r(TC, d, r) is defined 

for every TC by the relation (4.6). Let us denote 

(4.7) g(n) = inf r(jt, d, T) . 
(d,t)eA 

Definition 4.2. We shall say that the sequential test (d*, T*) e A is optimum in 
Bayesian sense, if it holds 

(4.8) g(n) = r(TC, d*, T*) . 

It is known (see e.g. [6]) that there exists such a rule of the terminal decision d* 
that it holds for every (d, T) e A 

(4.9) r(7r, d*, T) S T(TU, d, T) . 

This rule is defined by the relation (for neN,9C e E"): 

(4.10) d*(n, SC) = min [;: £ Lu %(%) ^ £ Lik \,(S:) for all k e d~] 



Let a ^-measurable random variable y„ be now given on (Q, J% P) for every 
n e N by the relation 

(4.11) yn(w) = ? „ ( £ » ) = -h(Kn(Vn(a>))) - £ c * ( ; f » ) 
fc=i 

where 

(4.12) h(t)fimin[£V'] 
jeji? i = l 

H 

for every t = (lt,..., wr), ''/ ^ 0, £ *f = 1. 
; = i 

It is evident from the Definition 4.2 and from the relations (4.9) till (4.12) that 
the problem of determining the Bayes optimum sequential test is equivalent to 
determining such a stopping rule T*, for which it holds 

(4.13) M(ytt) > sup M(yt) 
tell 

where M is the expected value on the space (Q, !F, P). We can easy show that it 
holds 

(4.14) M(sup >>,+ ) = 0 < oo 
neN 

and thus <& is the set of all possible stopping rules on the sequence {x,,} in a sense of 
Definition 1.1. 

Definition 4.3. The stopping rule T*, for which it (4.13) holds, will be called the 
Bayes optimum stopping rule. 

Remark 4.1. It is evident from the previous discussions that the sequential test 
(d, T) e A is the Bayes optimum test then and only then, if it holds d = d* and T = T*, 
where d* is the rule of the terminal decision given by (4.10) and T* is the Bayes opti
mum stopping rule. 

According to results of the preceding chapter we can now formulate Theorem 4.1, 
which together with Remark 4.1 will solve the problem of determining the Bayes opti
mum sequential test in the sense of Definition 4.2. 

Theorem 4.1. Let Tt„(5T„) be defined for all neN and further let be 

(4.15) h(rc) > Q(K) 

where Q(TZ) is defined below by the relation (4.22) and for every neN, 3C„eE" let 
c„(&„) be a ^"-measurable function, 0 ^ cn(3£n) g oo and let 

t 

(4.16) lim X ck(%k(<x>)) = +oo PnSn a.s. 



Then it holds for the Bayes optimum stopping rule 

(4.17) z* = inf {n : r„(<r„) = h(nn(3C„))} . 
neN 

The next relations hold for the function rn(&„) for every neN, 3C„ e E" 

(4.18) r„(T„) = min [h(7t„(^„)); M„,^(rn+ ,(^M + 1) + cn + 1(<T„ + 1))] 

(4.19) r„(,T„) = lim lim Q'[Gn(a, «"„)] 

where for a > 0 it holds 

h(jr„(a-„)) for h ( n „ ( 0 ) + f c t ( ^ ) < a 
(4.20) G„(fl,iT„) = J „ t = 1 

' a - £ ct($"t) in the other cases 
k= I 

and Q' is the i-th power of the operator Q defined by the relation 

(4.21) Q[f„0r„)] = min [f„(%„); M„>5r„(f„ + 1 ( ^ + , ) + c„ + ,(<* „+,))] . 

The following relation holds for the risk g(n) 

(4.22) e(n) = f (r.(<r.) + c.(ir.)) w^f,) d£F, . 

Proof. If the condition (4.15) is not satisfied, then the least risk brings a deciding 
without observations, i.e. selecting a decision d* according to a priori distribution %. 
This case is not interesting from the point of view of practical applications, thus we 
shall not deal with it any more. 

According to the fact that it holds for an arbitrary neN and 3C e E" 

0 <; h(7r„(^)) < max L y < <x> 
ij 

from the relation (4.16), it follows the validity of the condition 2 of our Theorem 
3.2. The relation (4.14) guarantees the satisfaction of the condition (3.16) from Theo
rem 3.1 and then the statements (4.17) and (4.18) are evident consequences of 
Theorems 3.1 and 3.2 taking into account substitution of a function s„(5T„) by a func
tion T„(3C„) according to the relation 

(4.23) r„(^r„)= - s „ 0 r „ ) - J ck(3Sk). 
* = i 

Relations (4.19) and (4.20) follow from (3.18), (3.19) and from the fact that y„(&) ^ 0 
for all SC e E". Relation (4.21) is a consequence of (4.23) and (3.20) and the relation 
(4.22) follows from (4.23) and (3.15). The proof of Theorem 4.1 is completed. 



30 Remark 4.2. Besides the relation (4.16) let it hold for all neN and all SCn e E" 

(4.24) cn(SCn) < C „ < O D 

where C„ is some finite positive constant for every neN. Then it immediately follows 
from (4.19) and (4.20) that 

(4.25) T„(SCn) = lim 2'[h(7i„(^„))] . 
t->00 

Remark 4.3. Let there exist such neN and SC'n e E" that 

(4.26) MnAn,(cn+l(SCn+1)) = + 0 0 . 

Then it is clear from relations (4.17) and (4.18) that for all co e Q' c Q it holds 

(4.27) x*(co) £ n 

where Q' = {co: 3Cn(co) = 3Cn} =j= 0. 
Theorem 4.1 in principle solves the problem of Bayes optimum sequential test of 

a finite number of disjoint hypotheses for dependent observations under the assump
tion that a cost c for the n-th observation x„ (i.e. c = cn(SCn)) is a function of the 
n-tuple of observations 3Cn. The assumption (4.16) of Theorem 4.1 well coresponds 
to practical applications. The statement of Remark 4.3 enables us to analyse a case 
of so called "cutted" sequential tests, i.e. of tests, for which it holds P{x* <. n} = 1 
for some n. This case is very important in practice. 

The finding of the constructive methods for determining functions rn(SCn) for 
n = 1, 2 , . . . remains an open problem. A solution of this problem for some simple 
concrete example is introduced in the following chapter. The next works will deal 
with the general solution of this problem. 

5. SEQUENTIAL TEST OF TWO HYPOTHESES FOR CONDITIONALLY 
UNIFORM PROBABILITY DISTRIBUTION OF OBSERVATIONS 

We shall introduce an example of a sequential test of two hypotheses for con
ditionally uniform probability distribution of observations for an illustration of how 
to use statement of Theorem 4.1 for a construction of Bayes optimum sequential 
tests. Our example corresponds to the case H = 2, j f = (1, 2}. We shall assume that 
observation x„ for n e N is a real random variable, thus M = 1. 

Let au a2 be given fixed real constants for which it holds 0 < at < a2. Let us 
define sets 'L„ c: E" for i = 1, 2; n e N by the relation 

(5.1) %, = {(xu ..., x„) : \xt\ ^ ia ; , \x2 - x . | ^ iah ..., |x„ - xn_,\ 2: J-fl;} 

It evidently holds 1L„ c 2L„. 



i = 1, 2 

For the true hypothesis //; , i — 1, 2 let it hold 

[aj1 for |xj | _ \at 

for jxjj > \ax 

and for an arbitrary 3£n — (xx,..., x„) e 2L„ let it hold 

for |x„ + 1 — x„] _ \a{ 

31 

(5.2) "w^xO = { 
(0 

(5.3) •w11„(x„+1jar„) = <; ; ; i = i , 2 
0 for |x„+ 1 - x„| > i a 

lWi\JLx«+i | %n) is not defined if 3Cn e
 2L„ \ 1L„. 

Let us denote 

(5.4) 

Then 

тrп(âГ„) _: 'na(Sľ„) ; a = L 1 2 , ř> = L 2 1 

2тr„(âГ„) = 1 - тт„(íГ„) 

and 

(5.5) Hi) = min [at; b(\ - t)] for 0 _ ( _ 1 . 

Let us further assume that the cost of observation c„(^"„) is finite and constant, i.e. 

cn(SCn) - c> 0 , neN, iF„ e E". 

Our problem is to find the Bayes optimum sequential test of hypotheses Hu H2 

for the given value 7T of a priori probability that Hx is true. It holds 0 < % < 1. 
From relations (5.1) until (5.4) it follows for 3Cn e

 2L„ 

fp„ for %ne'Ln 

(5.6) nn(S£,) = 

where 

Pn = 

0 for 3C„e2Ln\
1Ln 

1 

1 + í f 
1 - 7Г 

, r1~aija2<\. 

The value of 7r„($r„) is not defined for „*„ ^ 2L„. We can easy show that according 
to (4.3) and (5.6) it holds for Wj|„ 

(5-7) w 1 | я (x я + 1 |<F„) = 

nn(ѓC„) , 1 - n,Џn) , | | . . 
_____ + « v _ _ f o r X n + i _ x i ^ i Я i 

1 - 7Г„(aГ„) 
for i a j < | x„ + 1 - x„| g \a2 

for i a 2 < | x„ + 1 - x„| 

where SC„ — (xu ..., x„) e 2L„. 



We shall prove that it holds in our example for the fc-th power Qk of the operator Q 

(5.8) ek[h(7r„(ir„))] - min [an„(&„); b(\ - 7t„(.f„)); 1a„(.f„); . . . ; fca„(iT„)] 

where 

i - l 
"«„(%„) = rfb(\ - nj&„)) + c(\ + X (rt„(ar„) + ^'(1 - nn(3£n)))) keN . 

We shall do the proof by induction. Let SC„ = (xx, ..., x„) e 2L„ and ,f„+ 1 = 
= (xu . . . , x„, x„+1). From (5.5) until (5.7) it follows that 

(5.9) M„,3,,(h(7r„+1(.f„+1))) = 

= f min [ann+^n+,); b(\ - 7Tn + ] ( ^ + 1 ) ) ] ( - - & ) + 

+ 1 ~ " " W ) dx„+ 1 = min [a7r„(a"„); -,&(l - n„(%„))] . 
a2 J 

After the substitution of (5.9) into (4.21) we obtain 

Q[h(n„(SCn))\ = min [a n„(%„); b(l - nn(SJn)); r\b(l - n„(%„)) + c] 

and it is proved the validity of (5.8) for k = 1. Let now (5.8) hold for some fc e N. 
Then for Q t + 1 we obtain 

(5+0) Q* + 1[h(;r„(.f„))] = Q[Qk[h(nn(^n))J] = 

= min [an„(3C„), b(\ - n„(2£„)); l<x„(%„); ...; ka„(^„); M„,Xn(mm [a 7r„+1(^„ + 1 ) ; 

fe(i - «.+ 1(arB+1));
 1a„+1(-f„+1); ...;'

;a„+1(^„+1)]) + c] . 

Let us determine the expected value M„ ^ from the right side of (5.10) 

(5.11) Mn,Xn(mm [a7tB+1(if„+1), b(l - 7r„ + 1(^„ + 1)) ; 

1a„+1(^„ + 1);...; ta„ + 1(r„ + 1)]) = 

=1 min [ a я . + 1( Гя + 1 ) ; ...; Ч + > ( ^ , + 1 )] - f ^ + 
l*»+l-*nlŚІ 

1 - тr„(£Г„) 
•Jdx„ + 1 = min [aiz„(a>„); t]b(l - n„(&„)); 2a„(X„) - c; . . . ; 

k + 1a„(3f„) - c] . 

Substituting (5.11) into (5.10) and after an easy arrangement we obtain (5.8) for k + 1. 
By this, the validity of (5.8) is proved for all fc e TV. 



We shall now show that for every n e N and 9En e
 2L„ there exists such k0 = 33 

= fct(n) e N that for all k = k0 it holds 

(5.12) Qk[h(nn(2C„))] = Qfco[h(ft„(<r„))] , feeiV , fc £ k0 . 

After an easy arrangement we can prove that the inequality 

(5.13) k + 1«n(Xn) =• \{%n) keN 

is equivalent to the inequality 

(5-14) A + ^ l - - — ^ — 
fc(l - i,) 

for ;f'„e 1L„. It follows from (5.6) that pn + i > pn, lim p„ = 1. It is thus clear that 

there must exist such k0 = k0{n) that (5.14) holds for all k 5: k0. For such k then 
also (5.13) holds which together with (5.8) proves the relation (5.12) for 3C„ e 1Ln. 
Since for 3Cn e

 2L„ \ lLn (5.12) holds for an arbitrary k0eN the proof of the validity 
(5.12) is completed. 

According (4.25) and using (5.12) we can write 

(5.i5) -„(«•„) = e M n , [ h W ^ ) ) ] . 

We shall prove that there exists such n0e N that it holds for all n ^ n0, ne N 

(5.16) r„(iT„) = h{n„{3C„)) SCn e
 2 L „ . 

It is clear from (5.5), (5.6), (5.8) and (5.15) that the equation (5.16) holds for every 
n0eN when &Sne

1Ln\
lLn. Then we shall continue the proof only for 2Cne

1Ln. 
Let us check, for which n e N ti holds 

(5.17) b(\ - p„) =
 1a„(^„) iT„6 'L„. 

Inequality (5.17) is equivalent to the inequality 

c 
(5.18) P„Ł Í -

Ь(l - I,) 

By the same manner, as in the discusion of (5.14), we can easy show that there exists 

such n0 that (5.17) holds for n S; n0. It follows from the discussion of (5.13) and 

(5.14) that for such n ^ n0 it holds 

(5.19) b(l - Pn) S \,(%n) XH e 1L„ 

also for an arbitrary keN. Relations (5.17) and (5.19) prove the validity of (5.16) 

for J „ e 1Ln and by this the proof of validity (5.16) is completed for all 3Cn e
 2L„. 



Taking into account Theorem 4.1 and Remark 4.2, we can summarize our discus

sions as follows: 

If the inequality 

r 
n •> I -

b(\ - n) 

holds, then the test without observations (d, 0) brings the least risk. This test selected 
decision d according to the relation 

(-1 for an > b(\ — n) 
d = \ 

12 for an < b(\ - K) . 

Everywhere below we shall assume that it holds 

c 
(5.20) n < 1 -

b(í - ц) 

We shall note that inequality (1 — tj) b > c follows from (5.20). In accordance with 
(5.18) let us define n0 by the relation 

(5.21) n0 ~ min n: p„> 1 . 
K > „ e „L K--*)J 
If it holds apno < b(l - pno), then the test without observations (2,0) reaches the 
least risk. This test always accepts H2. Let then (5.20) hold and simultaneously 

aPno > K1 ~ Pno) • 

Then the Bayes optimum sequential test (d*, T*) of hypotheses HUH2 is defined by 
the relations 

(5.22) T* = min \n0; inf {n: &„ e 2L„ \ lL„}~] 
nsN 

n for T* = n0 , 3Cno s xLn 

d* = 
(-2 for T* < n0 , °IZ* e 2L„ \ lLn 

Note, that the infimum of the empty set is defined to be + oo in (5.22). 
The Bayes optimum sequential test of hypotheses Hu H2 is thus a test which makes 

sequentially observations xu ..., xno. If it holds 3Cn = (xx, ..., x„) e 2L„ \ 1Ln for some 
n < n0, then the test is stopped, no more observation is made and H2 is accepted. 
If the test continued without stopping until the observation x„0 and simultaneously 
it holds 3Cna e

 1L„0, then the test also stops and Ht is accepted. 



Test (d*, T*), which we obtained for our concrete example by solution of (4.17) 
till (4.21), is in good agreement with our intuitive ideas about an "reasonable" 
testing of hypotheses H^ and H2. Note that it is „cutted" test, since T* ^ n0 always 
holds. This circumstance is not caused due to the dependence of the cost c on the 
serial number n and the n-tuple of observation SCn in the sense of Remark 4.3, but it 
is given directly by an essence of the problem, since H2 we can accept with a certainty 
for 9£n e

 2L„ \ 'Ln. 

(Received September 19, 1978.) 
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