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KYBERNETIKA —VOLUME 13:(1977), NUMBER 2

Constrained Least Squares Control

VLADIMIR KUCERA

This short paper is to generalize the algebraic approach to the least squares control of discrete

linear constant systems. The generalization consists in including the quadratic norm of the
control sequence into minimization.

PROBLEM FORMULATION

Let F be an arbitrary subfield of the ficld of complex numbers. Denote F{z™'}

the domain of causal rational functions over F, i.e., the set of rational functions
admitting the representation

1) A=op + oz + a2+ ..., oeF

and denote F*{z"l} the domain of stable rational functions over F, i.e., the set
of elements (1) for which the sequence {a, o, o, ...} converges to zero in F. The
quadratic norm [A| of an 4 € F*{z '} is defined by

@ 41 =5,

i

Ing ]

X0,

where &; stands for the complex conjugate of a;. Defining

A=y + Gz + 822 + ...
(Ay = 0ag, theterm of Aatz°,
we can write (2) as the following inner product
® 4l = ¢y

The set of elements (1) with only a finite number of nonzero coefficients forms



the domain F[z '] of polynomials in z™* over F. A polynomial a € F[z7!] is said to be
causal if 1/a € F{z'} and it is said to be stable if 1/a e F*{z™'}. We write da to
denote the degree of a € F[z™']; by convention, 60 = — 0. The symbol (a, b) is
used for the greatest common divisor of polynomials a, b & F[z~'].

Given an aeF{z™'], a = 0, then the pair of polynomials a*, a~ e F[z7'] is
called the factorization of a if a = a*a™ and a* is a stable polynomial of largest
possible degree. If further

a=dy+ ozt + . F oz,

we denote
4) a=dg+ 0z + + &,2"

d@=a,+ &_1z"" + + 8z =z
and
(5) a* =a’ta” .
Ziejmg plati
(6) da = a*a*.

Now consider a discrete linear constant system & characterized by the input/output
equation

™ Y=SsU,

where SeF{z™'}, S # 0, is the transfer function of &. The problem of interest is
to design a discrete linear constant controller %, which realizes the feedback control
law

(3) U=RE, E=W-~-Y

with ReF{z™'} being the transfer function of # and WeF{z '}, W % 0, being
a given reference input, such that the feedback system (7), (8) is stable, both error
E and control U are stable rational functions, and the weighted sum of quadratic
norms ||AE[* + |uU|?, 4, p€F, is minimized.

In order that the systems can be fully described by their transfer functions, we
assume that 9’ and # are minimal realizations of S and R, respectively. We sacrify
no generality by this assumption as far as the control problem is concerned.

The problem formulated above will be referred to as the constrained least squares
(CLS) problem to contrast the least squares control problem [1, 3, 4] in which only
|E|? is.to be minimized. Such a problem becomes evidently a special case of the
CLS problem for A = 1, u = 0.
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SOLUTION OF THE CLS PROBLEM

Write S = bfa, where a, b e F[z~1] are coprime polynomials and similarly W =
= g[p, where p, ge F[z™'] are coprime polynomials. Let do, pg be coprime poly-
nomials such that

a_ 9
P Pe
and denote
©) dd = djipa + biib,

8d* =n, b=m.
(10) Theorem. The CLS problem has a solution if and only if the equation
(11) bM + aN = 1
has a solution M, N e F*{z"'} with 1/N e {z™"} such that
(12) U=aMW, E=aNW
are stable rational functions and M admits the form

—_ %
d*q*d(;

>

(13) M

where X, ¥, € F[z7!] is a solution of the equation
(14) 27"d*x + pagy = Iz "bq*ay

satisfying dy, < 0z~ ™d*.
The optimal controller is given by
M

(15) R = v

and the minimized sum of quadratic norms becomes
2 2 YoYo woy GEpA

+ uU|? = (222 + (WA —=— W ).
I ”” “ < 74 > < d >

Proof. The feedback system (7), (8) is stable [2, 3] if and only if there exist stable
rational functions M, N with 1/N causal satisfying the equation (11); any controller
of the form R = M|N then stabilizes the system. Our problem is to find the specific
form of M and N which yields the optimal controller.

Suppose that both error E and control U are stable rational functions, then

AE

(16)




(17) IAE|? + |uU? = <EXAEY + <UauU>

by (3) and the sum of quadratic norms can be minimized by manipulating the sum
of inner products in (17).
Write
E=W-Ky,W, U=Ky W

and define E* and U* by

(18) E* = W* — KyyW*, U* = Ky W%,
where

W = L

pag
Then
Bop 0,y gt

g 49 q 4o
and
(19) EE = E*E*, UU = U*T*
hold true.

In a stable feedback system [2, 3] Ky;y = bM and Ky,y = aM. Then (18) takes
the form

E* = W* — bMW*, U* = aMW*
and

(20) E*TAE* + U*puU* =
= W*IAW* — W*IAbMW* — W*MbIiW* +
+ W*MBIABMW* + W*MajpaMW* = W*IAW* —
— W*IAbMW* — W*MBIAW* + W*MddMW* =

= (% IAW* — d*MW ) (% JAWw* — d*MW*) + WHIAW* — W*J Z:%% AWE,
Since
bz
ax g
by (4)and (9), and
blAb _ djipa

T akd dra*
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by (6) and (9), we obtain

= e ~ — . djpa .
(1) E*JIiE* 4+ U*pU* = 0Q + W*Zﬁ IWE,
where
LIS VP LY *g-
@) PR TR
z7"d*pag pag

The last term in (21) is independent of M (and hence of R). As a result, the expres-
sion (E*A2E*) + (U*apU*) or, which is the same by (18), the expression (EAZE> +
+ (UppU) attains its minimum for the same controller as the inner product (00>
does.

Decompose the first term on the right-hand side of (22) as follows

z7"biig*ay oy + x
zTmd*

pag

=""d*pay

Then the polynomials x, y satisfy equation (14).
Rearranging the terms we get

Q= ma*’ +V,
where
@) ve ¥ amls
pae pPao

and, therefore,

o ao - () () (E))- i) o

Any solution of the polynomial equation (14) can be written [1] as

pag

25) X=xq+ — -2
( o (: ”‘t]*, Pﬂo)
z7md*
(26) Y=o = 1,
’ (z7"d*, pag)
where
(27) Oyg < 0z~ ™d*

and t € F[z7'] is an arbitrary polynomial.



Note that

Yo\ _ Fo _-@mae-avo)
zTmd* d*

is divisible by the polynomial z™* due to inequality (27), and hence

Yo N[t - Yo \y\ _
() e =0 (o)) =

Thus expression (24) on substituting from (26) reduces to

@ PR
00> = <<iy°d*) (;%:3;» * <<V - (z*ma’:fp;z(’fj) <V - (z*"‘d‘%;ﬁ)\) '

_ The first term on the right-hand side of {28) cannot be affected by any choice
of M (and hence of R). The best we can do to minimize {QQ> is to set

L S
(z7™d*, pag) )

In view of (23) it amounts to

- d*Mﬁ I ven
pao pag (z "d*, Pao)
However,
X t _ X

pa;  (z""d% pay) pag

due to (25), and hence M must satisfy relation (13) to yield an optimal controller.
If, further,
U = KyW = aMW,

E = Ky, ;W = aNW

are stable rational functions, our original assumption related to (17) is satisfied and
the controller (15) is indeed optimal.
Expression (16) is a direct consequence of (21), (28) and (6). 0

(29) Remark. For A = 1, u = 0 we have the least squares control minimizing the
quadratic norm || E[%. Then d = b and since

b = - mWF-
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as seen from (4) and (5), equation (14) reads
27mpt 27 Mb Ty + pagy = z7"b b q*dy

and &y, < éz7™b*. Setting x = £, y = z~"b*§, this equation is equivalent to the
equation

(30) b~R + pagp = b q*a,

for polynomials £, § with 89, < 0b~, reported in [1]. m}
(31) Remark. For 2 = 0, p = 1 we have the least effort control, i.e., one which
minimizes the quadratic norm |U||%. Then d = a and equation (14) reduces to

32 z7"@*x 4+ pagyv = 0.

If, moreover, both a and p are stable polynomials, then a* = a, a; = 1 and equa-

tion (31) yields x, = 0, yo = 0. Thus R = 0, i.e., no control is the optimal strategy.

(33) Example. Consider the CLS problem with 4 = 1, g = /2 for the system with
transfer function

and the reference input
e
We first compute
gipa + blb = (1 —2)J22(1 —z7 )+ zz7" =
=(1-2z)(1 —2:7")

and hence
d=1-=2"4, d¥= -2+ 27!

n=1, m = 1.
Equation (14) then becomes
=22 x+ (1 -z )y=2z""
and yields

~1
Xo = —1, yo=2z""1.

Using relation (13) in conjunction with equation (11) we compute

M= , N=



and (12) implies

Since the four rational functions are stable and 1/N is causal, the problem has a solu-
tion. The optimal controller is given by (15) as

R =05
and the minimized norm criterion follows by (16)
JE + 2 Ul =g+ 3=2.

(34) Example. Consider the minimum effort control problem for the system with
transfer function

and the reference input

Equation (32) becomes

1 =22"")x+ (1 =051 =227y =

and yields the solution
xo=(1—-05z""1
-1

Yo= —2Z T

for any number 7. Using (13) and (11) we compute

M=(l—0.52"')1’ N (Z‘1 —2)2—:'»‘(1 —0.52")1:

(zt =22 (z7' = 2P (1 —2:71)

Since both M and N must be stable rational functions, the numerator on N must be
divisible by 1 — 227!, Hence T must satisfy the equation

(z' =2 -1 =05z ")r=(1-2z"Yw
for some polynomial v. It follows

T=6, v=4-—2z""

13
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and, in turn,

Thus the optimal controller (14) is given as
R =15
and the minimized effort equals

v

2=12. 0

(35) Example. Consider the least squares control problem for the system with
transfer function

and the reference input

Then equation (30)

has the solution

Tt follows from (13) and (11) that
M=1, N=0.

Both M and N are stable, but 1/N is not a causal rational function. Therefore, there
exists no causal controller (15) and our problem has no solution. O

CONCLUDING REMARKS

This paper has generalized the algebraic approach to the solution of least squares
control problems. The objective is to minimize the weighted sum of quadratic norms
of both error and control sequences, the weights being arbitrary nonnegative num-
bers.



This approach compares favorably with the classical solution of Wiener in that
no restrictions on S and W are imposed. Note that Theorem (10) allows for unstable
systems as well as unstable reference inputs. Moreover, the synthesis procedure is
reduced to solving a polynomial equation (14), which is computationally attractive.

(Received August 4, 1976.)
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