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K Y B E R N E T I K A — V O L U M E 33 ( 1 9 9 7 ) , N U M B E R 2, P A G E S 1 3 3 - 1 5 9 

A S Y M P T O T I C RESULTS IN P A R A M E T E R ESTIMATION 
FOR GIBBS R A N D O M FIELDS3 

M A R T I N J A N Ž U R A 

Both the maximum likelihood estimate and a class of the maximum pseudo-likelihood 
estimates for parameters of Gibbs random fields are introduced, and their asymptotic prop
erties, namely the consistency, the asymptotic normality, and the asymptotic efficiency, are 
studied, as well as the interrelations between the particular estimators and their respective 
properties. 

1. INTRODUCTION 

The statistical inference for Gibbs distributions has been recently widely studied 
because of its relevance for image processing and spatial statistics. The Gibbs dis
tributions were originally used in frame of statistical physics to describe the equilib
rium states of large systems. For the "statistical" purposes they seem to be rather 
justified since they obey both the physical experience and the intuitive mathematical 
assumption of maximum entropy and local dependence structure. They can be also 
understood as an infinite-dimensional generalization of the usual exponential family 
of distributions or the log-linear models for contingency tables data. 

A natural parametrization, given by the system of interactions (the potential) 
which underlies every Gibbs distribution, turns the problem of identification to 
a s tandard parameter estimation problem. Parameter estimation for Gibbs dis
tributions is usually based on the "maximum likelihood" (ML) approach, and its 
"maximum entropy" or "minimum distance" modifications (cf. e. g. Geman and 
Geman [6], Gidas [10], Younes [26], Janzura [17] for the general case, and Kunsch 
[21], Janzura [18] for the special Gaussian case). The ML estimate is theoreti
cally well understood, its consistency (see above and for the special Ising model 
case also Janzura [16]) can be proved in general, while inside the uniqueness region 
(with no phase transitions) also the asymptotic normality and efficiency is proven 
(cf. Gidas [10], Janzura [17]). Unfortunately, the numerical feasibility of the ML 
method is strongly limited, therefore its implementation is rather intricate, and only 

xThe research is supported by the Grant Agency of the Czech Republic under Grant No. 
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is the appropriate normalizing constant. 
A r.f. fj, is called Gibbs with respect to a potential U G U, we write // £ G(U), if 

its family of finite-dimensional conditional distributions is given by the specification 
IT7, i .e. / i £ G(U) iff fi(xA\B(T \ A)) = Uu

A(xA\-) a .s . holds for every A G k(T) 
and xA G XA. (Here by p,(xA\B(T\ A)) we mean the conditional probability of the 
"set" xA G B(A) under the <7-algebra B(T\ A).) 

3. PARAMETER FAMILY 

On the Banach space (U, \\ • ||) there is an equivalence relation generated by the 
specifications. For U, U G U we shall write U fa U (saying the potentials are 
equivalent) if the corresponding specifications Uu, Tlu are equal. Thanks to basic 
properties of conditional distributions we can observe that U « U iff for some 
A G k(T) there exists a function pA : XT\A —* TZ satisfying 

PA(XT\A) = FA(xA\xT\A) - FA(xA\xT\A) 

for every x G XT, i .e. FU
A - F% G CT\A. 

Potentials U1,..., UN G U are said to be mutually non-equivalent if their linear 
combination can be equivalent to the zero potential 0 = {Oy = 0}vek(T) only if it 
is the zero one, i .e. 

N 

if 2_] c» Ul & 0 then C\ = ...Cjy = 0. 
i=l 

Hence 
J2C^A\-\-)^CT\CT\A 

for every fixed A G k(T) and nonzero ( c i , . . . , C]v)T G R . 
Let us mention tha t the mutual non-equivalence is the regularity (identifiability) 

condition here , which is a bit more complicated due to the infinite dimensional 
space XT. This can be also seen from the preceding claim which is a generalization 
of the standard regularity condition requiring simply a linearly independent basis in 
exponential families. 

For the sake of brevity we denote FA = (FA,..., F%)T where we write Fl
A instead 

of F A ' for every A G k(T) and i = 1 , . . . ,N. Let us realize tha t for every U G Ur 

with fixed r > 0, we have FA(-\-) G CdA, where 

dA = A U U v-
VnJ4^(J,diam(V)<r 

Similarly, we denote g = (g1, • • •, 9 ) where 

7
j(x)= E \V\~luU*v) 

Vek(T;0) 

for every x G XT and j = 1, . • •, N• 
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Now, suppose we are given a fixed collection lJ1,..., UN £ UT of mutually non-
equivalent potentials of some fixed finite range r > 0. 

Let us denote by £ = Lin-flJ1,. . ., UN} the finite dimensional subspace of U 
spanned by 

u\...,uNeur. 
Thus, there is a one-to-one correspondence between the potential U £ £ and the 
specification Uu generated by U. 

Moreover, there is the well-known isomorphism $ : £ —* 71 between the N-
dimensional Banach space £ and the N-dimensional Euclidean space, i.e. 

At 

<s>(u) = e = (el,...,eN)T enN iff u = ^ . l j 1 ' ec. 
i = l 

For every 9 = $(U) £ TlN we shall write Ue and G(9) instead of Uu and G(U), 
respectively, and we shall deal with the parameter family 

{Gi(9)}ee7lN, 

where Gi(9) is the class of stationary Gibbs r.fjs with respect to the potential 
U = $-1(9). 

Similarly, by GE(9) we denote the class of ergodic Gibbs r .f . 's . Let us recall tha t 
GE(9) = exGi(9), i.e. ergodic r.f . 's are the extremal measures in G[(9), and by the 
ergcdic decomposition theorem (cf. e.g. Theorem 14.10 in Georgii [8]), for every 
fjp £ Gi(9°) we obtain 

n°(n)= I u(Q)dP(u) 
JGB{6°) 

for every Q £ J71, where P is a uniquely defined probability measure on the set 
GE(9°) of the ergodic Gibbs r.f . 's with an appropriate cr-algebra. 

R e m a r k 3 . 1 . The problem of equivalence of the potentials can be easily avoided 
by considering only the so called "vacuum" potentials. A potential U £ U is a 
vacuum potential, we write U E Ub if for every A E k(T) it holds UA(%A) = 0 
whenever xt = b for some t £ A. Here b £ X is a fixed stated called vacuum. Then 
it can be easily observed tha t ( 7 ^ 0 means U = 0, i.e. the equivalence relation 
turns to the identity. For details cf. e.g. Dobrushin and Nahapetian [5]. 

R e m a r k 3.2. Note tha t there may exist non-stationary Gibbs r.f. 's with respect 
to a stationary potential U £U, i.e. G(U) \ Gj(U) ^ 0. This phenomenon is called 
the breakdown of symmetry and makes the general study of Gibbs r.f. 's even more 
intricate (cf. also Remark 6.4 below). 

4. EMPIRICAL RANDOM FIELDS 

Suppose a collection of da ta xwn £ XWn obtained from an observation region Wn £ 
k(T) to be generated by an unknown r.f. pi0 £ Gi(9°). We assume the observation 
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region Wn to be large enough to contain the lattice cube Vn = [—n,n]d fl T, i.e. 
WnDVn. 

Thus, we may define the empirical r.f. fin in a s tandard way, i.e. 

/ / d A i S = | V n | - 1 X ; / o r ť ( Ž J e r ) 
t£Vn 

for every bounded measurable / , where xn is the periodic continuation of xvn- (We 

understand the empirical r.f. /i£ to be defined for every x £ XT, being identical 

for all y £ P r o j ^ (£vn)-) This is the "stationary version" of the empirical r.f. since 

really l^r^1 = //£ for every t £ T, and it is uniquely defined. 

For deriving the second order properties we need the "unbiased version" //£ given 

by 

fdjln, = \Vn\-'Y;fOT^) 
J ±r\r ť€Vn 

for every / £ Cv with (J 1 G V (t + V) C Wn. We can see tha t the actual knowledge 
of xwn is sufficient in this case but the r.f. is not determined completely. On the 
other hand, the uniquely defined quantities f fdjj,1-, f £ Cv, are usually sufficient 
for our purposes. Moreover, since really 

J J'fdfi dn(x) = Jfdfi 

holds for every stat ionary r.f. /i, its name is fairly justified. 
Further, we observe 

Ífd^-I fd/in < l l/ЦoolKгГ |{ť Є Vn; (t + V)£ Vn}\ —> 0 for n - * oo. 

Therefore the two versions are asymptotically equivalent (uniformly for every x £ 

X*). 
The following lemma could be strengthened, but this version is fully satisfactory 

for our purposes. 

L e m m a 4 . 1 . For every collection / i , • • •, //v £ Cv, V £ k(T), it holds 

lim min max 
n-+oo џç.Gi( °)j = l,...,N 

Jfjdrt-Jfs dџ = 0 a.s. [nu] for every /i° £ G / (^ u ) . 

P r o o f . Let us denote 

Q = i x € XT; lim sup min max Jfilfi fjdfi >o k я n^oo neGi(e°)j = i,...,N 

Then u(Q) = 0 for every u £ GE(Q°) by the multidimensional ergodic theorem (cf. 
e. g. Theorem 14.A8 in Georgii [8]) which ensures for every j = 1 , . . . , N 

I fjd^n —> I fjdu a.s.[i/]. 

Thus /J0(f2) = 0 by the ergodic decomposition (cf. Section 3). • 
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Remark 4.2. It is worth mentioning that under the topology of local convergence 
(which here coincides with the usual weak topology - cf. e. g. Georgii [8] for details) 
Gi(9°) is a compact convex set and the map v i—• J f di/ is continuous. Therefore 
the minima in the preceding lemma are actually attained, although they are random 
elements depending on the particular x. 

5. SOME THERMODYNAMICS 

We denote by 
p(U)= lim \Vn\-

l\ogZ%n(xT\yn) 
n—*oo 

the pressure corresponding to the potential U € U. Note that the limit exists 
uniformly for every x £ XT (cf. e.g. Theorem 15.30 in Georgii [8]). 

Direct calculations can show that \Vn\~
l\ogZyn(xT\Vn) is a convex function of 

U £ U and, moreover, it satisfies 

\Vn 
1-1 l ogZ£ (xT\yn) - logZ& (xT\Vn)\ < HU1 - U2|| 

for every lJ1, U2 £ U, uniformly for every positive integer n and x £ XT. 
Therefore the same remains true also for the limiting function p. 
In what follows, we shall deal with the restriction of p to the subspace C. We 

sha,T write Zv and p(6) instead of Zy and p(U), respectively, for 6 = $(U), U £ C, 
and we shall understand p/C as a real-valued function on the space 7ZN equipped 
with the standard Euclidean norm || • ||2-

Let us also recall that the strong convexity is a stronger convex property ensuring 
e.g. positive second derivative whenever it exists (see Section 8 below). 

Lemma 5.1. 

i) For every 9l, 62 £ 7lN it holds 

\Vn\~
l | l o g Z £ ( * T \ V J -~\ogZeyn(xT\yn)\ < const • Hlj1 - 0 2 | | 2 

uniformly for every positive integer n and x £ XT and 

\P(e1)-p(e2)\<const.\\e1-e%. 

ii) The pressure p : 7 ^ —* 71 is a strictly convex continuous function. On every 
compact K C 7ZN it is even strongly convex. 

P r o o f . The assertion i) follows from the above considerations. The properties 
of the pressure in ii) follow e.g. from Proposition 16.1 in Georgii [8] together with 
Dobrushin and Nahapetian [5]. n 

Further important estimates are given in the following lemma. 
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Lemma 5.2. For a sequence {An}n=u An £ H T ) , w i t h l i m iV^'^AnAV^ = 0 
1

 n - + o o 

there exists a sequence of constants cn —> 0 for n —> oo satisfying 

i) I K I " 1 \ogUe
An(xAn\yT\An) + p(0) - \Vn\~1 £ t e v n 6Tg o r t(x) | < ||0||2 cn and 

n) | | -4 n | - 1 log/ i (x A J + p ( 0 ) - j 0 T » d ^ | < | | 0 | | 2 C „ 

for every x, x, y G XT, 0 G ftN, /i G G/(0). 

P r o o f . The bounds can be deduced e.g. from results of Section 15.3 in Georgii 
[8] together with the properties of the empirical r.f.'s given in Section 4. • 

The obtained results can be used to derive special forms of some important ther
modynamic (or information theoretic - if prefered) characteristics, namely the en
tropy rate 

H(fi)= lim \Vn\~1 [-\ogfA(xVn)]dfi(x) 
n—*oo J 

existing for every stationary r.f. /i, and the relative entropy rate (asymptotic I-
divergence, information gain) given for a pair v, \i of stationary r.f.'s by 

H(v\v)= lim \Vn\~
l f\og^\dv(x) 

n-+co J /i(lyj 

whenever the expressions make sense and the limit exists. 
Thus, for p, E G/(0) and a stationary v it holds 

and 

H(ia) = p(9)- jeTgd^>Q, 

H(v\p) = p(B) - f 9Tgdv- H(v) > 0 

with equality in the latter expression iff v G Gj(6), this result being called the 
variational principle. 

For v G G[(9X) we obtain 

H(u\fi) = p(9) - p(61) - j(9 - 9l)Tgdv 

with H(i/|/i) = 0 iff 9 = 9\ since GI(9)nGI(9
1) = 0 for 9 £ 91 e.g. by Theorem 2.34 

in Georgii [8]. 
Consequently, 

min p(6) - 9Tgdv 

is attained at the single point 9l. (For more detailed treatment cf. e. g. Georgii [8].) 

We finish this section with an important general lemma. We denote (Jb(Q ) 
{9 G TZN; ||0 - 0°||2 < 6} for every 8 > 0. 
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Lemma 5 .3 . Let {Pn}^Li be a sequence of real-valued continuous functions on 
7lN. Let Qffo be a class of functions satisfying 

q(0)-q(0°)>ys\\0-0Oh 

with some 7,5 > 0 for every 6 > 0, 9 <£ a&(9°), and q G Q#o. 
Let us suppose that for every e > 0 and sufficiently large n > n£ there exists 

qn E Q*o with |pn(0) - gn(0)| < e\\e\\2 for every 0 G HN. 
Then for every 6 > 0 and sufficiently large n > n$ 

min pn(8) 
eenN 

is attained at some 6n G ^( t^0), and therefore 9n —> #° for n —• 00. 

P r o o f . Let us choose <5 > 0 and set £ = 2(s+\\e°\\2)' 

Then for n > n£ and # ^ cr^t?0) we have 

Pn(0) > qn(0) - s\\9\\2 > qn(e°) + 76\\e - e°\\2 - e\\e\\2 > qn(e°) + e\\o°\\2 > Pn(e°). 

Since pn is continuous, its minimum must be attained at some 9n inside as(9°), and 
6n -> #° is obvious. • 

6 MAXIMUM LIKELIHOOD AND MAXIMUM PSEUDO-LIKELIHOOD 
ESTIMATION 

The maximum likelihood estimate 9 of the parameter 9° G 1lN based on the data 
collection xwn G x^n should be in a rigid way defined by 

9 = argmax max ( l ^ n l - 1 l o g / i f i ^ ) } . 
eenN n£Gr(8) 

Here the maximum over Gj(9) is added in order to follow strictly the principle 
of seeking for the parameter corresponding to the most likely distribution. 

However, Lemma 5.2 ii) provides us with a convenient approximation, and there
fore we shall understand under the maximum likelihood estimate (MLE) its approx
imate version 

n = argmax ( / тgdџn - p( )). 
enN U J 

This kind of estimate can be also derived from the "minimum distance principle", 
since it is obtained by minimizing the relative entropy 

H(ťM=P(9)-J9Tgdvn-H(vn) 

of the empirical r.f. fin with respect to the theoretical /i G Gi(9), where the en
tropy rate Hd^™,) does not depend on the unknown parameter and therefore can be 
omitted. 
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Further, for every A G k(T) we define the corresponding maximum pseudo-
likelihood estimate (MPLE) by 

6n
A= argmax j l ^ l " 1 I \ogKA(xA\xT\A) d»n

£(x) 

This estimate may be also re-formulated in information theoretic terms, namely it 
minimizes the "mean relative conditional entropy" 

jHo([^]A^xnA)\nA(.\xnA))d^n
£(x) 

where [ ^ ^ ^ ( l ) is the corresponding conditional distribution derived from the em
pirical r.f. fi£, and Ho is the usual relative entropy. (Note that the empirical 
distributions and their entropies are well defined because the state space X is finite. 
For a general case we should proceed more carefully, but the idea would remain the 
same.) 

Theorem 6.1. 

i) The MLE 0n is defined with probability tending to one and it is consistent, 
i.e. for every /i° G 67/(0°) 

(JL0 Ix eXT; max I f 0Jgdfin - p(9) \ is attained J —• 1 

a n d 

6n —>0° a.s. [fjt°] f o r n - » o o . 

ii) For every A G k(T) the MPLE 6A is defined with probability tending to one 
and it is consistent, i.e. for every /i° G G/(0°) 

//° ( x G XT; max I \A\-1 / \ogU6
A(-\-)dfj,n I is attained 

and 
6n

A —>0° a.s. [/i°]for n - ^ o o . 

P r o o f. For i) we set 

Qd0 = Lfi(6)=p(e)- JeTgdtA 
/.ЄG,(0°) 

ana 
* . ( » ) = * « ) - / V i r < W for every n and fixed i 6 X*. 

For a. e. x G XT[n°] the assumptions of Lemma 5.3 are satisfied since by Lemma 5.2 
ii) together with Remark 4.2 and the variational principle in Section 6 we obtain 

min min (q^(9) - q (9°)) = 8 • y6 > 0 
| |0-H| 2=<5MeG .-(0°) 



Asymptotic Results in Parameter Estimation for Gibbs Random Fields 143 

and therefore by convexity qfi(9) — q^l(9°) > fi\\9 — 6°\\2 for every 9 £ a$(9°). Further 
from Lemma 4.1 we obtain 

\Pn(6) — Qn(9)\ < \\9\\2 • £ for some \i 6 Gi(9°) and large enough n. 

Moreover, the a.s . convergence in Lemma 4.1 yields the convergence in probability, 
and therefore the latter estimate, which guarantees the existence of minima, holds 
with probability tending to one. 

For ii) we set 

Qeo = («„(*) = - /m-Mogn^-iOd/.) 
K J ) ii£Gi{6°) 

Pn(e) = -J\A\-1\oguA(.\.)d^. 

«nW - ^°) = |A|-' J log 5 f i i i n^-l-) d/i > o 
for every 9 ^ 9° we obtain Qgo to be a collection of strictly convex continuous 
functions with the minimum at 9°. Thus the assumptions on Qgo are satisfied. 

Further it holds (note n ^ ( | ) = const.) 

and 

Since 

\q,(9)-pn(9)\ = J L4V1 [logП (̂-l-) - logПІH-)] (dџ - dџn)\ 

< \\9\\2 • const • max \fi(xdA) - n%(xdA)\ < £ • \\0\\2 
x8AexaA 

for large enough n and some /i g Gi(9°) by Lemma 5.1 i), Lemma 4.1, and obvious 
uniform bound H-4|-1FJ|( .J.) | < |IU||- Thus the assumptions of Lemma 5.3 are 
satisfied, and the proof is completed in the same way as for i). • 

Now let us fix the empirical r. f. / i? . We can study the behaviour of the MPLE 9A 

for growing A. For this purpose let {vlfcl^Lj satisfy the assumption of Lemma 5.2, 

namely let |Vfc|-1 |^4fcAVfc| — • 0 for k —> oo. 

P r o p o s i t i o n 6 .2 . Let the MLE 9n exist. Then the MPLE 9^ exists for sufficiently 
large k, and 

9n
Ak — • 9n for k -+ oo. 

P r o o f . We set , r ~\ 

Q§n = {q(9)=p(9)- J 9Jgd^ 

which is now a singleton since the empirical distribution /i£ is uniquely defined, and 

Pk(9) = ~ J\Ak\-
l\ogJ\Ak(-\.)d^ for every k. 

Then the statement follows from Lemma 5.3 and Lemma 5.2 i). • 
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Remark 6.3. From Lemma 5.3 ii) by Lemma 5.3 it even follows that the "true" 
MLE 9 is also defined (in sense of existence of local maxima for sufficiently large 
n) and consistent. We must only prove in addition that the multifunction 

9 ^ {џ(xWn)}џ€Gl ( ) 

really attains its maximum in every ball <rs(9°). But, by the "compactness" argu
ments we obtain a sequence fij 6 G[(93) with 93 —> 9* £ crs(90) and /ij ==> /i* 
weakly for j —» oo for some stationary r.f. //*, satisfying 

Hj(xwn) —• SUP max fi(xWn) = H*(xwn). 
eeas(e°)^^Gi(e) 

Since the entropy rate H is upper semicontinuous (cf. e.g. Proposition 15.14 in 
Georgii [8]) we obtain from the variational principle fi* £ Gi(9*). 

Remark 6.4. The weak consistency of the estimates (i.e. the convergence in 
probability) can be proved with the aid of the appropriate large deviations theorems 
for the non-stationary Gibbs r.f.'s as well (cf. Gidas [10] and Comets [4]). An 
exponential rate of convergence consequently follows. 

7. ASYMPTOTIC NORMALITY OF THE MAXIMUM 
PSEUDO-LIKELIHOOD ESTIMATES 

Since 
-\ogUA(xA\xT\A) = \ogZe

A(xT\A) - 9T FA(xA\xT\A) 

is a smooth convex function of 9 £ HN we obtain an equivalent definiti 
MPLE 9n

A, namely 

9A = argmin 
6£llN 

iff 

• J\A\-l\ogn\(.\.)átt 

4 r a = o, 
where for every stationary r.f. //we define 

JA(0) = Jse
Adli for every* E f t " , 

and 

c9 _ 
^A — 

with 
EA[FA}(*T\A) = 

- {-IAI-1 lognl( . | . )} = | i 4 , - i [EA[FA}(.) - FA(.\.)} 
3 lj = l,...,N 

EA[FA}(xnA)= J2 FA(yA\xnA)Ue
A(yA\xT\A) 

for every i = 1,. . . , N and XT\A E X T \ A . 
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Further we define 

DA(x) = VSA(z)=(±[SA(x)i) 

= \A\-l[coy\{F\yFi){xT\A) 

for every 9 6 TZN and x E XT, where 

i,j.=l,...,iV 

>0 
J i j ' = l,...,ІV 

~™A(F1A,FA)(*T\A)= J2 FA(yA\xT\A)FJ

A(yA\xnA)lJA(yA\xnA) 
yAex* 

-EA[FA](xnA)-EA[FA](xnA). 

Lemma 7.1. Let fi be a positive stationary r.f. (i.e. fi(xs) > 0 for every XB E 
B(B), B E k(T)). Then J ^ is a one-to-one regular mapping with positive definite 
Jacobi matrix , 

x •> ' i,j=l,...,N 

at every 9 E 1ZN. 

P r o o f . By definition it holds V Jfi(9) = J D\ d/i where the matrix D\(x) is 
in general positive semidefinite for every A G k(T), 9 G 1ZN, and x G xT. Since 
Ul,. .. ,UN are mutually non-equivalent, for every 0 / c = (c i , . . . , c/v)T G R^ 
there exists x G xT with cTL>^(;r) c > 0 (cf. Section 3). But c T Lri(x) c G CdA and 
^ is positive, therefore J DAdfi > 0. D 

Remark 7.2. Accordingly, the inverse mapping [Jfi]"1 exists with similar prop
erties. (Note that every fi G {JO^RM Gj(B) and /i£ for large enough n are positive.) 
Therefore the MPLE §A can be defined by 

whenever J fin is regular and 0 is contained in the open set jfin(lZN). Since SA G 
CdA are uniformly bounded for every 9 E TZN we obtain jfi. \ jfi uniformly if 
fij ==> n weakly. Moreover, if every Jfi. is regular, the pointwise convergence of the 
inverse transforms can be concluded. We could follow this approach to prove the 
existence and the consistency of the MPLE 9A. 

Unfortunately, for the MLE estimate 9n we must proceed more carefully since 
the problem of phase transitions (9 E 1ZN with |G/(0)| > 1) can not be avoided. 
Namely, it holds by the variational principle that the MLE 

argmax 
9£7lN 

J9Tgd^-P(9) 
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is given iff there exists some fi G Gj(6n) satisfying 

ад = o. J?2(ri = J 9-Jgdfi 

Hence the estimate exists iff 

Jgd/4 e {/s^; l^ e G/W, 0 e 7^1 = G. 

The proof of Theorem 6.1 shows that Q is an open subset of nN. According to 
Proposition 5.18 and Example 5.20(1) in Georgii [8] the limit exists 

ЛГ lim JAk(9) = J?(i>e(vt)) for every 9 G H 
k—>-oo h ^ 

where the particular ve(n) G GJ(9) depends on the actual fixed stationary r.f. //. 
Obviously, J?^. (-'a (/-£)) could be understood as a well-defined function of 9 G 7 ^ , 

tx 

but it may not be continuous at the points of phase transitions, etc., and therefore 
this way seems useless. On the other hand, we can directly introduce the inverse 
transform 

j;}(\) = {9enN; min fgdv-fgdLin-\ = o) , 
I n£GI(9) J J 2 > 

which is a well-defined continuous mapping, and finally we obtain J " 1 —• J " 1 for 

fij = > //, and [J^ f c ] - 1 —• J^1 for k —• oo. 

And this is in fact the definite essence of Theorem 6.1 and Proposition 6.2. 

The main aim of the present section consists in proving the asymptotic (mixed-) 
normality of the MPLE. Therefore we need an appropriate version of the central 
limit theorem. 

For f1, f2 G C(XT) and stationary r.f. /i we denote 

-?M(/1)/
2) = E c o v^- f l ' /2° r*) 

t£T 

whenever the sum converges. 

For f = (f1,...,fN)T andh = (h1,...,hN)T we denote 

BAf;h] = (B»(fi,V))i,j=;1 N. 

For T1, T2 C T we denote T1 Q T2 = {t - s; t G T1, s G T2}. 

Lemma 7.3. Let /i G Gj(9). Then 

i) B,[SA;SA]= £ c o v ^ [ S j ; 5 l o n ] > 0 > 
t£dAQdA 

and 
") ~B,[SA;g] = f D9

Ad» =. V J*($) > 0. 
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P r o o f . For a fixed c ^ 0 we set Y = cT SA G CdA, and define the potential 
UY = {U^}Bek(T), where U% = Yort for B = dA + t, t £ T, and U% = 0 otherwise. 
Let Uy f& 0. Then by the variational principle in Section 5 we obtain f Y dv = 0 
for every stationary r.f. v, and especially for some v1 G Gi(91), 91 = 9 + c. Thus 
0 = fcT(S9

A - S^d*/1 = cT [f DB
A dv1} c where 0* = 9 + j c, y G [0,1], which 

contradicts Lemma 7.1. Therefore UY 96 0. 
Thus by Lemma 2 in Dobrushin and Nahapetian [5] we obtain a constant A > 0 

such that / v v\ 
\Vm\"1co^m ( ifm , EV?m ) (xT\Vm) > A 

for every x G xT and some sequence of cubes {Vm}m=i w* t n Kn / T as m -* 00. 
Finally, utilizing the standard inequality i?[var(£|»7)] < var(£), we obtain 

0 < A < \Vm\~lE^ [cove
vJF^,F^)(-)] 

< \Vm\~1 cov ^F^,F^) 

]T covl'(y,yors)-|(/r + s)n/'X|-|Kn|-1 

—• cT B^S^; S6
A]C a s m ^ o o , 

since iKnl"1 \(I% + s) n IXI —• 1 as m -> 00 where / ^ = {<G T; (&4+<)nVm # 0} 
for very m, and 

c o v ^ ( y , 7 o r i ) = 0 if dAn{dA+t) = %. 

Thus the statement i) is proved. The proof of ii) is a direct computation based on 
the observation that coWy,(SA, f) = 0 whenever / G CT\A- a 

Theorem 7.4. (CLT) Let // G GE(9). Then 

| 7 n | " i ^ 5 j o n = > A/V(0, B^[SA;SA}) in distribution [/i] as n -> 00. 
teVn 

P r o o f . Following Guyon and Kiinsch [13], for fixed c ^ O and every t G T we 
denote yt = cT S£ o rt. We set £n = a"1 £ t 6 v B yt and ^ = a"1 Etetf+.ytV. yt f o r 

every s G K., where ^ = cM 0 cM and an = EM [.Ctgvn -^j • 
Then, due to e.g. Lemma 2 in Bolthausen [3], it is sufficient to verify 

lim En \(i\ - £n) e l A H = 0 for every real A. 
n—<-oo J 

Employing the decomposition (again by Bolthausen [3]) 

(i\-tn)eiX^=Cn,l+Cn>2 + Cn,3 
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C„д = -a" 1 £ Y, ."«-<->, 
tЄV„ 

V tЄVn / 

C„,3 = e » « - o - 1 X : i ' . ( e - i e " + . A ^ - l ) , 

we observe £ ^ Cn , i = 0 for every n, E^Cn^l — • 0 as n —> oo by the mean ergodic 
theorem (cf. e.g. Theorem 14.A5 in Georgii [8] - here the assumption /i G GE(@) 
is needed), and E^\Cn<3\ — • 0 as n —• oo by standard estimates. For details cf. 
Guyon and Kiinsch [13] for the particular Ising model or Janzura and Lachout [20] 
for the general case. • 

Now, we can prove the asymptotic normality of the MPLE. 

We shall consider the "unbiased version" Jxn of the empirical r.f. Thanks to the 
basic estimate 

Jfdté-Jfdft < ll/Hoo \Vn\~1 \{t G Vn, t + V CVn}\ —+ 0 for 

for every / G Cv with {jt^v (t + V) C Wn, the modification does not influence 
the problem of consistency of both the MLE and the MPLE. We shall quote the 
estimates based on the "unbiased version" fin of the empirical r.f. as the modified 
MLE and the modified MPLE, respectively. 

Denoting the modified versions by 9n and 9A for A G k(T), respectively, we could 
replicate the proof of Theorem 6.1 to obtain 

6n —y 6° and dn
A — • 9° a. s. \pe°] for n -> oo and every 9° G 6 . 

We must only keep in mind the assumed relation between Vn and Wn so tha t the 
empirical r.f. fil is defined for the particular g or SA, respectively. Such problem 
does not occur with the "stationary version" /i£ but its bias could break validity of 
the central limit theorems. 

For the sake of brevity we denote 

Bfto = B,[g; Se
A] (B,[Se

A, SA])~l B»[SA;g] 

for fi E Gi(9). 

T h e o r e m 7.5. For every A G k(T) the modified MPLE 9A is asymptotical
ly normal, providing the generating Gibbs r. f. is ergodic, namely for every /i G 
GE(0°), 6° G RN, it holds 

\Vn\H0~A ~ °°) => NN (0, (B^(fi))-1) in distribution [fi] as n -> oo. 
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P r o o f . By definition it holds 

0 = Js§/dtn = Jse
A°djin + Ď у»'°Ч1-уППт ( n

A - °) 

with some j n G [0,1]. 
We observe 

Vn | * J S A° åџn =>ЛÍN(0, Bџ [S A°; s £ ] ) 

by Theorem 7.4 since J J SA dfin dfi(x) = J Se
A d// = 0 thanks to the "unbiased 

version" of the empirical r.f. Jin. 

Further, since De
A is uniformly bounded, 9A is consistent estimate, and /i is an 

ergodic r.f., we obtain 

The rest of the proof is standard. 

DA dџ a.s. [џ]. 

Corollary 7.6. For a stationary generating // G Gi(6°) the modified MPLE 9A is 
asymptotically mixed-normal, i.e. 

\Vn\ (0n

A~9°) => I MN(0,(Bf(u))-l)dP^(v) in distribution \p] as n -> oo 
JGE(e°) 

where P^ is the ergodic decomposition measure. 

P r o o f . The result follows directly from the preceding Theorem 7.5 and the 

ergodic decompoition. Namely, denoting r)n = cT \Vn\* (9A — 6°)\, we obtain 

fj,(r]n < a) = JQ ,Qo\ v(r)n < a) dP^(u) for every n. By taking limit we obtain 

the claimed statement. • 

8. DOBRUSHIN'S UNIQUENESS REGION 

For every t 6 T let us define 

7t(U) = - sup I ^ hfo}(xo|yT\{o}) - U\0}(xo\zT\{0}) ; ys = zs for s -- t> . 
UoGAT J 

If j(U) = YlteT lt(U) < 1 the potential is said to satisfy Dobrushin's condition. 
Gross [11] proved that the Dobrushin's uniqueness region V = {U E U; y(U) < 1} 
is an open subset of the space U. • 

Moreover, for every U° EV there exists an open neighborhood dU° satisfying 

l(dU°) = ^lt(dU°)<l, 
teT 
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where 
jt(dU°) = sup jt(U) for every t € T. 

uedu° 
This is always possible, see the proof of Proposition 2 in Gross [11]. 

For every U 6 D there is exactly one Gibbs r. f. fiu (this is the famous Dobrushin's 
result - cf. e.g. Kiinsch [22], Corollary 2.3) which is, moreover, stationary and 
ergodic (cf. Theorem 4.1 and Theorem 4.3 in Preston [24]), i.e. G(U) = Gi(U) = 
GE(U) = {nu} for every U eV. 

We denote £ = V D C, where again C = Lin( lJ1 , . . . , UN) with mutually non-
equivalent Ul,..., UN £ Kr, r > 0. 

For every 6 £ $(£) = 0 we shall write \iB instead of fiu, and we shall deal with 
the parameter family 

M = {fie}ee® 

of Gibbs r.f.'s with the open set of parameters 0 C 7 ^ . 
Let us note that 0 always contains the zero vector 0 £ RN, and fi is in fact 

simply the corresponding infinite power of the uniform distribution. 
Further, we may write directly 

Be(f1,f2) = Y,™ve(f\f2°Tt) 
t£T 

for every f1, f2 £ Cw with W £ k(T), and 6 £ 0 , where cov" stands for the 
covariance with respect to / / . The sum is now absolutely convergent by Theorem 
5.1 in Kiinsch [22]. 

Moreover, again by Theorem 5.1 in Kiinsch [22] it holds 

> = / acj j 

and _. . 

-JfA/ = B,(f,g>) 
for every i=l,...,N; f £ Cw with W £ k(T), and 6 £ 0 . 

In particular we have 

B,[S;9]=(iW^)),J=1 N=(-JL-m) 
i,j = l,...,N 

and we observe Be[g;g] > 0, i.e. positive definite - by Lemma 5.1 ii) for every 
0 £ 0 . 

Finally, let us denote by 

< ( x ) = ^ ( x ) ť = = - l l o g / ( a ? v j ) 
i = l,...,N 

the corresponding score function. 
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P r o p o s i t i o n 8 .1 . 

i) For every f € Cw, W € k(T)t and 9 € 0 it holds 

rV«H E [/or^- / / V l =>^N(0,Bi(ftf)) 
t£Vn

 L ^ 

for n —»• oo in distribution [ / / ] . 

ii) For every 9 £ 0 is holds 

IVJ-* H E 9°rt-
ltevn

 L *I 

pd//6 - £ 0 for rz —• oo in probability [ /r] . 

iii) The parameter family .M obeys the regularity condition of local asymptotic 
normality (LAN), namely it holds 

log 

= \Vr 

џ e+\vn\~ta (xvn) 

ß (xvn) 

"l~" zC аT 9°n(z)- gdџ* 
tevn 

~-aTBe[g;g]a + Me

n(x) 

for every 9, 6 + \Vn\ *a £ Q, x £ XT and .arge enough positive integer n, 

where 
M6

n —> 0 for n —> oo in probability [pi8]. 

P r o o f . The first s ta tement is the central limit theorem for functionals of Gibbs 
r.f. 's (cf. e.g. Theorem 4.1 in Kiinsch [22]). 

The remaining statements can be obtained by appropriate expansions together 
with the bounds following from Theorem 3.2 in Kiinsch [22]. For details cf. Janzura 
[17] and [19]. • 

R e m a r k 8.2. The crucial central limit theorem in Proposition 8.1 i) can be also 
proved with replacing the assumption 9 € O by a rather technical condition (cf. 
Theorem 2 in Gidas [10]) that guarantees the convergence of Be(f,f). Since for 
9 G 0 this condition is satisfied, the result seems to be more general. On the other 
hand it is not completely clear where else the condition can be satisfied in addition, 
and therefore we rather prefer the "uniqueness region" approach which will also 
provide us with some usefull bounds (cf. Section 10 below). 

Moreover, the problem of positive definiteness of the asymptotic variance matrix, 
which is closely related to the strong convexity of the pressure (proved by Dobrushin 
and Nahapetian [5]), is not discussed in Gidas [10]. 
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9. ESTIMATION IN THE UNIQUENESS REGION 

We shall restrict our further considerations to the uniqueness region, namely to the 
parameter family 

M = {ft9}9ee 

of Gibbs r.f.'s. Again as in Section 7 we shall deal with the "unbiased" empirical 
r.f.'s and modified versions of the estimates. 

Theorem 9.1. The modified MLE 9n is asymptotically normal and asymptotically 
efficient, namely for every 6° £ 0 it holds 

\Vn\i(9
n - 6°) => MN (0, (Bgofo-^])-1) for n -> oo in distribution [//°] 

and 

\Vn\^\en-60-(Beo[g;g])-1\Vn\-
1£e

n°} —> 0 for n - oo in probability [ / " ] . 

P r o o f . The statements follow from Proposition 8.1 i) and ii), and the regularity 
properties of the transform 6 >-> f f dfx6 (cf. Janzura [17] for details). • 

Remark 9.2. The preceding theorem states that the MLE 9n is asymptotically lin
early related to the score function. This yields, together with the regularity ensured 
by the LAN condition (Proposition 8.1 hi)), the maximum possible concentration 
about the true value (cf. e.g. Hajek [14] for details). 

Proposition 9.3. For every A £ k(T) it holds 

i.e. the MPLE is asymptotically less efficient to compare with the MLE. 

P r o o f . Since the "asymptotic covariance matrix" 

/ B9o[g;g] -Beo[g;SA°] \ 

{ -Beo[SA°;g] Beo[SA°;SA°] ) 

is positive semidefinite, and the particular block submatrices are strictly positive 
definite by Lemma 5.2 ii) and Lemma 7.3, the statement follows immediately. It 
also naturally agrees with the well-known Rao-Cramer theorem. Note that Bgo[g; g] 
plays the role of the asymptotic Fisher information matrix. • 
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R e m a r k 9 .4 . There is an open problem under what reasonable conditions we 
obtain a strict positive definiteness in the above statement. As a straightforward 
counterexample we have the i.i.d. case, i.e. U1, .. ., U G uo- Then all the MPL 
estimates coincide with the MLE, and thus we obtain even the equality of all the 
asymptotic variance matrices. In general we can observe that the strict positive 
definiteness occurs whenever the collection 

U 
uл - 1 

B o \SA;g\ HЄo[íTSrГ U, 

where U = (U1,..., UN)T, and for every i = 1,. . ., N we set U^'*'1 = (SA°)
1 o rt if 

B = dA + 1, t £ T, and UB ' 'l = 0 otherwise (cf. also the proof of Lemma 7.3), is 
given by mutually non-equivalent potentials. 

Now, we shall study the behaviour of the asymptotic efficiency for growing A. 

Let again {Ak}k
x>

=zi satisfy the assumption of Lemma 5.2, namely let 
\imk^oo\Vk\-

1\AkAVk\ = 0. 

T h e o r e m 9.5 . For k —> oo the maximum asymptotic efficiency is attained, i.e. 

lira Bf0
k =Beo[g;g] 

k -+CO 

for v_very 9° G 6 . 

The p r o o f is given in the following section. O 

R e m a r k 9.6. Since | J 4 * | ~ 1 ||TUfc — YlteAk 9 ° T i |L > ^ uniformly for k —• oo 

(cf. the proof of Lemma 10.1 for details) we could replace the term TAfc with 

YlteAk 9 ° Tt m the definition of the function SAk. Setting directly 

ŠI = 1-4*1 EÌ X] 9°П 
И€Ак 

- J2 9°Гk 
t£Ak 

we can follow this approach from Section 7 to obtain similar results, some of them 
even in an easier way. 

We can make another step and introduce an estimate defined through the function 

SAk=EAk[g]-g. 

Such kind of estimate obviously strongly imitates the original MLE which can be 
defined in the same manner only with the "unconditional" Ee[g]. For this particular 
modifications there would occur some small differences in efficiency, but negligible 
for k —> oo since all of them approach the MLE. 

In general we can employ any function Se that ensures regular mapping 8 t—> 
/ Se d/i for every stationary r. f. /i and 0 = / Sedfie for every 9 G 6 . 
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Remark 9.7. The asymptotic results for growing Ak / T as k —> oo namely 
Proposition 6.2 and Theorem 9.5, are naturally not much relevant for the practical 
purposes since only the MPLE based on a fixed and "rather small" set A can be 
calculated. Their importance consists in justifying the idea of the MPL estimation as 
a natural generalization and extension of the ML estimation. We can conclude that 
by a sequence of the MPL estimates we could approximate the optimum MLE both 
for a fixed sample size (Proposition 6.2) and in the asymptotic sense (Theorem 9.5.). 

10. PROOF OF THEOREM 9.5 

For the fixed 0° = $(U°) G 0 we denote j = £ t € T 7< where j t = 7t(dU°) as 
defined in Section 8. Following Kiinsch [22] we further denote V = (jt-s)t,s£T 
and x — Z~)n=o^n- Thus x — (Xab)a,b£T is an infinite matrix with the property 
Ea€T Xab = £ a e T Xba = (1 - 7 ) _ 1 < co for every beT. 

Moreover, for a continuous function / G C(XT) and s G T we set 

<Ps(f) = sup {\f(x) - f(y)\; xt = yt for t -= s} . 

Let us emphasize that 

CW C C 1 = ( / G C(XT); <p{f) = £ > ( / ) < o o l 
I seT ) 

for every W G k(T). Note that ips(f o rt) = <ps-t(f) for every t, s G T and / G C1. 
For some fixed U G Ur we again denote 

9= E \V\~lUv, FAk= ~T Uvt and SA\ = EA\[FAk\-FAk. 
V£k(T;0) VnAk?t 

Lemma 10.1. It holds 

i) |A f c | -V (se
Ak + ^ 6 A f c g o T t) —> 0 for k -> oo, 

ii) |Afc|-1y?(S^fc) < const. < oo for every k. 

P r o o f . Let us denote Vr = {V G k(T); diam(V) < r, minV = 0}, where the 
minimum is taken with respect to some linear (e. g. the lexicographical) ordering. 
Note that |Vr| < oo and Vr does not contain any pair of "shift-similar" sets. 

Further, denoting Ak 0 V = {t G T; (V +1) n Ak ^ 0} for V G Vr we observe 

1-4* e r|< | A* Vm 

and for fixed b G T we obtain 

\Ak\-
1\(AkeV)n(Ac

k-b)\—*0 fovk-^oo. 
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Now, since .fUfc = £ £ Uy+t and £ < , o r , = £ £ HX±L\(U+ t)nAk\ 
VqVrt£AQV t£Ak VeVrteAQV 

we obtain 

l ^ | - v ( ^ - E * o r , ) < £ *<EVHA.|-' J) A_l(^-0nv|\ 
V t€^fc / V6Vr t£AkQV ^ 1 1 / 

= £ ^ v ) | ^ | - 1 | F | - 1 £ | ( ^ e K ) n ( ^ - 5 ) | — , 0 f o r f c - o o . 
Vevr sev 

Further, by Corollary 2.4 in Kiinsch [22] we obtain for b £ Ak 

Vb(EA\[FAk}) <J2xb9<Pq(FAk), 
qeT 

while for b 6 Ak we have zero by definition, and therefore 

i-4*rv(<[PAj) < i^r1 £ E X H W ^ ) 

< £ î r1 £ £ E^H(IV) 
V6Vr b$Ak teAkQV q€T 

= £ £ Xb.MUv^Akr'UkQV) H(Ac
k- 6)|—>0 forfc-+oo 

V€Vr6,9eT 

by the dominated convergence arguments since |^4^|_1 K-4* 0 ^ ( 1 (A% — b)\ < \V\. 

Hence, since ip (s9
A\ + J2teAk 9 ° rt) < ¥>(PAfc - £ i e A f c ? ° *)"+ ¥> (£A°(PAfc)) the 

proof of i) is completed. 

Further, since tp (EA\(FAk)) < ( 1 - T ) " 1 <p(FAk) and \At\~1 tp(Uy) \AkQV\ \Ak\~
x 

— £V6V r IVI *p(Uv), the proof of ii) is straightforward. • 

Now for U%, i = 1,...,N, we shall denote by gl and [5^ ]*, respectively, the 
corresponding terms. 

Proposi t ion 10.2. For every pair (i,j) it holds 

\Ak\~1 Beo (g\ [Se
A\y) + B(gi,g^) —* 0 for k - oo 

and 

\Ak\~2 Beo ([SA\]\ [S6
A\y) + \Ak\~1 B9o (g\ [SA\y) — 0 for k - oo. 

P r o o f . Since obviously 

Beo(gi,gj) = \At\~1 BBo L\ ]T ^ot j J 
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we may write 

\Ak\-lBdo(gi,[SA°ky)+Beo(g\gj) 

\Ak\-1 B8o[9i
tísAy+ _P^0Tn 

V t£Ak ) 

< l ^ l _ 1 E E E Y^xcax^Mg'or^nhs^y+liZ^oTA 
sGT a;b,c£T \ t£Ak / 

= (i-j)-2rtň\Ak\-i<p([sAy+ ___!řoTt\ 
\ t£Ak J 

by Corollary 3.4 in Kiinsch [22]. 
Similarly 

| |A* | - 2 B, . ( [ < ] • • , [ < ] ' ) + | X , | - 1 B , . ( * ' , [ < ] ' 

< (i-r)-2M.|-V([<y)l^|-v([sl°J(+E»i°'-«) 
V «€Afc / 

Thus both the terms tend to zero by Lemma 10.1. 

Corollary 10.3. It holds 
lim Bft =B o[g;g}. 

k—+oo 

Proof . Since all the involved matrices are positive definite, the assertion follows 
from the "term-wise" convergence ensured by Proposition 10.2. • 

11. INFINITESIMAL ROBUSTNESS 

Finally, we shall briefly discuss the problem of robustness, which is understood as a 
sensitiveness of the estimator to the data. 

For fixed 6° e 0 and A G k(T) we set 

0A(e,u)=[J-_^eO+£u\ (0) 

j ^'^[(l-€)»»*+Sv}=0 

for every stationary r.f. v and € > 0. By direct differentiating and proper substi
tuting we obtain 

'A(0,u) = 
à A(e,u) 

áє 
— Bao 

e = 0 

g;Se

A}~ íse
A°áu. 
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Since for every v and large enough n we have f SA dv = f \f Se
A d£in\ du(x), we 

can understand in general 

6'A(0,tt) = Bgo\g;SAT1 fstfdft 

as the influence function for the MPLE 9A, i.e. 

9A(e,v)K6° + eJd'A(0,jln
£)dv(x) 

for "small" e > 0, and for u "not too far" from / / we obtain 

eA(i,v)*90 + Je'A(o,j4)dv(x). 

Analogously from Remark 7.2, for the MLE 9n we obtain the influence function 

9'(0,ť£) = Beo[g;g}-1 J g-JgdfA àfil 

Proposition 11 .1 . The influence functions 9'A(0,jj.n) and 9'(0,fin), respectively, 
are zero mean random variables under / / , satisfying 

and 

^(0 , / -* ) — 0 , 0'(O,/-2)—»0 a.s. [ / ] for n - oo, 

|Ki|*^(0,«)--->--Vjv(0,[ .B/.]-1) l l V ; | ^ ( 0 ) ^ ) - ^ . N V ( 0 ) B # . [ f f ; f f ] - 1 ) 

in distribution [/i ] for n —> oo. 

P r o o f . The siatements follow from the properties of the unbiased version em
pirical r.f. /i£, ergodicity of fie , and Proposition 8.1. i). • 

Corollary 11.2. The every MPLE $~ is "less robust" than the MLE 9n since 
[H<fo]-1 — [Be°[g,g\\~l > 0, i.e. under the true model / / the asymptotic covariance 
matrix of the influence function 9'A(0, jln) is "greater" than the asymptotic covariance 
matrix of 0'(O,/_gJ, 

P r o o f . The statement follows directly from the preceding proposition and Re
mark 9.4. • 

Note that the above results are rather natural since all the considered estimators 
belong to the class of the so-called M-estimators with bounded ^-function which 
are, also from the robustness point of view, deeply studied and well understood in 
mathematical statistics. For general treating cf. e.g. Hampel et al [15], and for the 
case of autoregressive processes cf. Kiinsch [23]. 
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