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K Y B E R N E T I K A - VOLUME 25 (1989), NUMBER 5 

ON THE DIRECTABILITY OF AUTOMATA 

LASSI NIEMELA 

We present some partial results on the hypothesis due to Cerny [1] and a necessary and suffi
cient condition for the directability of an automaton. 

1. THE DIRECTABILITY OF AUTOMATA 

Let s4 = (A, I, 3) be a finite automaton, where A is the finite set of states, 2 
is the finite set of input signals and 3: A x I -> A is the transition function. This 
function can be extended to the set A x I*, where I* is the set of all words over I, 
and it defines for every s e I* a mapping 

s*: A -> A , a\-+ as** = 8(a, s). 

For every B ^ A, \B\ will designate the number of elements in B and BI* is the set 
{bw*\ b e B, we I*}. An automaton s/ = (A, 1,5) is strongly connected if for 
every state a e A, al* = A. 

An automaton stf is directable if there exists a word s e I*, called a directing 
word, and a state c e A such that As* = {c}. Then n (al* \ a e A) =t= 0. This is the 
smallest subautomaton of s/ and also the unique strongly connected subautomaton 
of s4. C(s4) or (C(A), I, 5) will designate this subautomaton and we shall call C(s/), 
and also C(A), the centre of s/. If there exists a word t e I* such that At* £ C(A), 
we shall call s4 semidirectable and t a semidirecting word of srf. Let Sf be the class 
of all semidirectable automata and <B the class of all directable automata. 

Theorem 1.1. s4 e 9 o s/ e Sf and C(s4) e 9. 
Proof. If As* = {c} for some sel*, ceA, then c e r\(al* \ a e A) = C(A) 

and i e ^ . Naturally C(s#) e £?. 
If At* £ C(A) and C(A)s^ = {c} for some t,sel*, then Ats* = {c} and sSe®. Q 

Remark 1.1. When stf e @ then for every state c e C(A) there exists a word sc e 
6 I* such that Asf = {c} and for every directing word s of j / , As"^ e C(A). 
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Let stf = (A,Z,d) be a semidirectable automaton with n states. Then C(A) = 
= n (aS* | a e A) and for every a e A there exists sa e I* such that asf e C(A). 
From these words sa we construct a semidirecting word of s/. 

If C(A) = A, then every word is semidirecting. 
Let C(A) =f= A, aeA\ C(A) and sa e I* such that asf e C(A). Then 

\Asf n (A \ C(A))| <\A\ C(A)\ . 

If Asf n ( A \ C(A)) 4= 0, we repeat this procedure until we get such words sa, sb, ... 
..., sw, s 61* that s = sasb... sw and As^ £ C(A). 

Therefore Theorem 1.1 has 

Corollary 1.1. A finite automaton stf is directable iff it has the smallest subauto-
maton, the centre, which is directable. 

2. THE HYPOTHESIS OF CERNY 

Let l(stf) be the length of the shortest directing word of s4 = (A, I, 5) e Qs and 
D(n, m) the class t 

{stfe@ | \A\ = n, \C(A)\ = m] . 
Let 

\(n) = max (\(s/) | stf e D(n, m), 1 < m < n) . 

In [1] Cerny has presented the following hypothesis. 

Cerny's hypothesis. \(n) = (n — I)2, ne N. 

In [2] Cerny, Piricka and Rosenauerova have proved the hypothesis for n < 5. 
By Corollary 1.1. we sharpen this hypothesis. 
If m = n, then \(stf) = \(C(s4)). 

Let m < n, s be the semidirecting word that we can get by repeating the procedure 
presented in the proof of Corollary 1.1. by choosing every state c and every word sc 

such that the word sc is so short than possible, and lg(s) be the length of the word s. 
n — m 

Since \A \ C(A)| = n — m, we find that \g(s) fg £ i' . 
i = 0 

Theorem 2.1. Let s4 e D(n, m), m,neN. Then 
n — m 

\(s4) :g 2 i + \(C(s*)) . 
i = 0 

n — m 

The sum £ /, is better upper bound than (n — m)2 that one can get from the 
i = 0 

conjecture presented by Pin [5]. 

Corollary 2.1. If an automaton stf e D(n, m), m,n e N, fulfils the condition 
\(C(st)) < (m - l)2 , 
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then 

l(st) £ (n - I)2 . 
Especially 

l(sf) < (n - l)2 for all n > 2 , n + m . 
n-m 

Proof. When m + n, n > 2, then /(j./) < £ * + (»- - I)2 < (» - m) (n - 1) + 
+ ( m - l ) ( n - l ) = ( n - l ) 2 . <=° D 

Now also the first claim is obvious. 

Since Cerny's hypothesis was proved in [2] for automata si e D(n, m), n <? 5, 

we get 

Corollary 2.2. For all automata s# e D(n, m), m < 5, 

l(sJ) <_(n- l ) 2 . 

Remark 2.1. If Cerny's hypothesis is valid for strongly connected directable 

automata, then the upper bound (n — l)2 presented by Cerny can be sharpened for 

all directable automata with centre C(A) + A, where |A | > 2. 

(Received May 11, 1988.) 

R E F E R E N C E S  

[1] J. Cerny: Poznamka k homogennym experimentom s konecnymi automatmi. Mat. fyz. cas. 
SAV 74(1964), 208-215. 

[2] J. Cerny, A. Piricka and B. Rosenauerova: On directable automata. Kybernetika 7 (1971), 
289-297. 

[3] J. E. Pin: Le probleme de la synchronisation, Contribution a l'etude de la conjecture de 
Cerny. These, 3e cycle, Paris 1978. 

[4] J. E. Pin: Le probleme de la synchronisation et la conjecture de Cerny. In: Non Commutative 
Structures in Algebra and Geometric Combinatorics (A. De Luca, ed.), CNR (1978), pp. 
46-58 . 

[5] J. E. Pin: On two combinatorial problems arising from automata theory. Ann. Discrete 
Math. 77(1983), 535-548. 

[61 J. E. Pin: Sur les mots synchronisants dans un automate fini, Elektron. Informationsverarb. 
Kybernet. 14 (1978), 283-289. 

[7] J. E. Pin: Sur un cas particulier de la conjecture de Cerny. In: Automata, Languages and 
Programming — Proceedings 5th International Conference (G. Ausiello, C Bohm, eds.), 
(Lecture Notes in Computer Science 62), Springer-Verlag, Berlin—Heidelberg—New York 
1978, pp. 345-352. 

[8] P. H. Starke: Eine Bemerkung iiber homogene Experimente. Elektron. Informationsverarb. 
Kybernet. 2 (1966), 257—259. 

Lassi M. Niemela, Department of Mathematics, University of Turku, Turku. Finland. 

421 


		webmaster@dml.cz
	2012-06-05T20:28:23+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




