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KYBERNETIKA CiSLO 5, ROENIK 3/1967

On the Statistical Decision Problems
with Finite Parameter Space

IGOR VAiDA

[n the paper there are obtained some both-sides estimates of the Bayes risk and information
in a sample concerning a parameter in terms of total variations of pairs of conditional distribu-
tions in the framework of the classical model of statistical decision with finite parameter space.
On the base of these relations the rate of convergence of the risk and of information to their
limit values is studied, for the case if the sample size tends to infinity.

1. INTRODUCTION AND PRELIMINARIES

In this paper we shall deal with the classical model of statistical decision with
a finite parameter probability space (X, &, #) (Z is assumed to be the class of all
subsets of the set X and the prior probability 4(x) is assumed to be positive for every
parameter value x € X), with measurable sample space (Y, @), set {v,}, xe X, of
conditional distributions of the variable y € Y defined on the o-algebra %, decision
measurable space (X, %), and with a non-negative loss function w defined on X ® X.

It is clear that a most important numerical characteristics of the model just de-
scribed is the so called Bayes risk, i.e. the quantity defined as

(1.1 ro= infg;{u(x) J‘Y‘v(x, o) dvi(y) .

where the infimum is extended over the set of all #-measurable decision functions
¢:Y— X (for a more particular discussion of the decision model, see [3]—[6]).
Another characteristics of great importance is the average amount of information I
contained in the sample y concerning the parameter x defined as

(t2) I= f log f(x, ) dao(x, y) ,



where f is the Radon-Nikodym density of the joint probability distribution
o(E) =Y p(x)v({re¥:(x,y)eE}), Ec¥®@%,
xeX

with respect to the Cartesian product distribution y ® @ » w on Z ® %, where
by & we denote the marginal distribution of w on #. (Let us note that all logarithms
in this paper are taken to the base e.)

From the intuitive point of view it is clear that, though the information I does
not depend on the loss function w, for a sufficiently wide class of loss functions there
exists a relation between r and I. The data reduction theory developed by A. Perez
[3], [41, shows that the indicated relation plays a growing role in solutions of certain
class of decision problems.

The purpose of this paper is to estimate the Bayes risk and information in the
framework of the decision model with finite parameter space and to investigate the
indicated relation between them. This general questions are studied in Sec. 2; the
results of Sec. 2 are then used in Sec. 3 devoted to the study of the rate of convergence
of information and Bayes risk in some classes of decision models as it is more pre-
cisely described below.

Let the measurable sample space of the model we have considered be of the form

n
(13) (o)=Y, %), n=12..,00,
i=1

(i.e. suppose that the samples are of size n, y = (¥1, Y2, ..., V), Where Y, is the set
of all y;’s with a given g-algebra %, and denote the joint probability distribution of
the a-vector (yy, ..., ¥,) under the condition that x € X is the realized value of the
parameter by v;. It is clear that, for every x € X, v} is the restriction of v on the
c-algebra #" < %, where the latter inclusion (as well as the inclusions #; < #”,
i=1,2,...,n n=12,.., 00, that will be used below) is written in accordance
with a well-known identification convention for product o-algebras.

We shall denote by I, or r, the information or the Bayes risk respectively corre-
sponding to the measurable space (1.3). It is known that I, or r,, n = 1,2, ..., is
a non-decreasing or non-increasing sequence respectively and that lim I, =1,
lim r, = r,, as n tends to infinity (cf. [3], [4]). From the point of view of applications
it is important to ask which is the rate of convergence above. This question is studied
in Sec. 3 under the assumption that, for every realized value x € X, the sequence
Y1» Y2, -, of samples is independent random sequence, i.e. that

w
1.4) P = ®v, forevery xeX,
where v,;, i = 1,2, ..., 0, denotes over all the paper the restriction of vy on the

sub-g-algebra #; « #®, and that it is a »-mixing random sequence, i.e. that there
exists a positive integer N and a non-increasing real valued function ¢ defined for



all integers k = N with lim ¢(k) = 0 for k — oo such that, for every k 2 N, [ < m,
m + k < n and x € X, the following inequality takes place

(1.5) PAE 0 F) = vi(E)vi(F)| £ o(k) vi(E) v(F)

for every
E={(y5 s ¥a) : (V6 y1s1s o ym) € E}

and
F = {()’1’ FES Yn) : (ym+k= Vitkt 15 s Vu) € F} 5
where
Few,
i=t
and
Fe @ #,.
i=m+k

We shall show that in both these cases the exponential rate of convergence takes place.
In the remainder of this section we list some properties of a A-divergence of two
probability distributions for references later. The concept of A-divergence plays an
important role over all this paper.
If v, v, are probability measures on a measurable space (Y, %), then A-divergence
A(vy, v,) is defined by

(1.6) Avy, v,) = %Jylﬁ - ‘52‘ d(v; + v2),

where &, is the #-measurable version of the Radon-Nikodym density dv,-/d(vl + v,)
for i = 1,2. 4 is clearly reflexive, symmetric, and the triangle inequality satisfying
distance measure in the space of all probability distributions on (¥, #). It is clear
that 2 4(vy, v;) = |v — Vzl (Y), where |v1 — vzl denotes the total variation of the
signed measure v; — v,. This implies in particular that 4 takes values between 0
and 1, and that 4(v,, v,) = 0 if and only if v; = v, (on @) and 4(v,, v;) = 1 if and
only if v; L v,, and also the following very useful statement:
(i) There exists a set F € % such that

v4(E) — v5(E) £ v,(F) — v5(F) = A(v,,v,) forevery Ee¥.

The following two assertions follow from the theory of semi-martingales ([2],
Th. 4.1s, Chap. VII), as || is convex function of & (cf. the definition of 4-divergence).

(ii) If ™, n=1,2,..., is a non-decreasing sequence of sub-g-algebras of the
o-algebra % such that % is generated by

U aym

n=1
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and if we denote by v{" " the restriction of the distributions vy, v, on @™, then
AV, v§P) is for n = 1,2, ... a non-decreasing sequence and

lim A(v(l"), v(z")) = A(v1, v2) .

n- o

(i) If (Z, Z) is a measurable space and if T is a measurable transformation of
(Y, @) to (Z, &), then

A T4 v, T < Ay, vs)

(iv) If there exist two numbers a, b = 0 and probability measures v
such that

Lj=12,

ij»
vy = avy, + bvy,y,
v, = avy; + bv,,,
where v;; L vy, i,j = 1,2, then
A(vy, v3) = a A(viq, va1) + b A(vy5, v2) .

Proof. The proof of this equality can be based on (i) and on the assumption of
singularity. Details are omitted here.

(v) If B(. ; p, n), B(. ; q, n) are binomial distributions with p # g, then there exist
numbers 4 > 0,0 < A < 1 such that

A(B(.; p,n), B(.5q,n)) > L — AX* forevery n=1,2,...
Proof. According to (i), if p < g, then

AB(.;p,n),B(.5q,n) =1 —k=(r)r}1i?l. (by(n. k) + by(n, k),

B
where
i=k+

biln, k) = il (?) P —py

i=

by(n, k) = io (’l‘) gt — gy~

If one of the numbers p, g is equal 0 or 1, (v) is trivial. Let, for0 < p< g <1,
k, be the least integer greater than or equal to gn, where 0 < ¢ < 1 is the unique

solution of the equation
p)" 1 — q>1—e
(q (1 -»)



Using Stirling’s formula and some elementary properties of the numbers B(. . n)
it can be shown that there is 4 > 0 and 0 < 4 < 1 such that for every n = 1,2, ...

by(n, k) + ba(n, k,) < AA";
the remainder of the proof is now clear.

In what follows we shall denote by card (X) the cardinal of X and by H(y), in
accordance with [6], the entropy of the finite probability space (X, u).

2. GENERAL INEQUALITIES

Lemma 1. There exists a disjoint system of sets {Ex}, E.e %, xe X, such that

(2.1) v (Y — E,) < card (X) (1 — min A(v,, v,)),
x'Fx
(2.2) v(Ex) < 1= Av,,v,) forevery x +x.
Proof. According to (1) there exists for every x, x’ € X a set E,,. such that
(23) A(V.x! Vx’) = vx(Exx') - "x’(Exx') ;
hence

A(vx’ vx’) é vx(Exx')
or
(2.4) (Y= Ep) <1 — 4(v,, vy)
and consequently

vi{ U (Y = E)) < card (X) (1 — min 4(v,, v.,)) .
x"#x x'Fx
Since
U(Y-En) =Y~ NE,,

x'#x x‘Fx
it remains to put in the latter inequality

(25) E, = Eu

x'Fx
and (2.1) is proved. From (2.3) we can easily obtain the following relation
(2.6) E, =Y—E,. foral x,xeX.

Since
Vi(E) < v(Epry) = v(Y — Epr),
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to prove (2.2) it remains to use (2.4). In order to prove that the system of measurable
sets {E.}, x € X, defined by (2.5) is disjoint let us point out the following inclusions

E. =N Ep <,

x"Ex

E.=() Epw c Eo,

x"Fx’
and then let us use (2.6).
Theorem 1. If we denote

@7 A = Jourd (X) (1 + 2 5/ [us) (1 = o))

(2.8) p = min u(x) > 0,
xeX
then ’
(2.9) plog 2(1 — min A(v,, v) S H(u) — 1 < A4 \/(1 ~ min 4(v,, vy)) -
x'#x X'Fx

Proof. Since, for every x, x" € X the following inequality holds

# o ux) px)
27 ulx) + u(x)’

the left inequality in (2.9) follows from Th. 3 in [6]. We next prove the right in-
equality. It follows from Lemma 2 in [6] that, for the class {E.}, E,e ¥, x€ X,
defined in Lemma 1 above,

H) =15 T I (B T () velE] +
+ 3 V) (B 3 (1) velEo)]
where
Eo = ﬂ (Y - Ex) 5
and consequently we can write
H) =15 T V009 w(E) T 1) nelE] +
43 3 VI E) T ue) nel )] +

+x§( V) ¥ - Ex)xnz*xﬂ(x”)] .



If we denote the terms on the right side subsequently by (T), (IL), and (III), then
by (2.1)

(210 (1m1) = [eard (X) (1 = min A ve)] X VI (1 = p)]-
If we apply on the sum (T) the Schwarz’s inequality, we obtain
(1) (S XA velY ~ B2 5 /Toard () (1 = min 4 )]
One more application of Schwarz's inequality yields
(02 F000 Y 0 5 A 5 2
= T M0 (Y - E) Y w)] =
< e () (1 min s v )] 5 /040 (1 = ).

Using this together with (2.10) and (2.11) we obtain the desired result,

Theorem 2. If the loss function w is bounded from above by w, then

(2.12) %u (1 = min 4(vy, v)) £ 7 < wp card (X) (1 — min A(v,, v,))
x'Fx x$x’

@213) ORI j:‘; () 1)

where A is defined by (2.7), u by (2.8), and y by

y = min w(x, x') .
x,x'eX
X'#x
(Left inequalities remain true also without restriction w < wo.)

Proof. It is clear that for every measurable disjoint decomposition {E.}, x € X,
of Y the following inequality holds

r S wo Y () (1= vi(Ey)

and in order to prove the right inequality in (2.12) it remains to use Lemma 1. The
left inequality immediately follows from Th. 1 in [6]. The right inequality (2.13)
was proved in [6], Th. 2, and the left inequality follows from Th. 1 and from (2.12).

We shall say that a sequence a,, n = 1,2, ... of numbers converges exponentially
to a number a if there exist numbers 4 > 0 and 0 < 4 < 1 such that

|an — a] < AA" forevery n=1,2,...
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The loss function w will be said reflexive if w(x, x) > 0 for every x + x'.
An immediate consequence of Theorem 2 is the following Corollary that will be
very useful later.

Corollary. Let ™, v, xe X, n = 1,2, ... be defined as in (ii) and let r, and
I,y denote the corresponding Bayes risk and information respectively. Then I,
converges to H(u) exponentially if and only if A(vfc"), v;",’) converges to 1 exponentially
for every x =+ x'. If the loss function is bounded, then this condition is sufficient in
order that r(, converges to zero exponentially. If, moreover, the loss function is
reflexive, then this condition is necessary and sufficient for the exponential rate of
convergence of r, to zero.

Remark. This corollary need not be true in case of an infinite parameter space.
In order to prove this we proceed in the following manner. For ease of writing let
us assume that X = {1, 2,...} and let w(i, j) = 0 or 1 depending on whether i = j
or i =+ j. Let #™ be the o-algebra of Lebesgue measurable sets in the n-dimensional
Euclidian space and let v{” be the n-dimensional Cartesian product of uniform
distribution on the interval ¢27F — 1,27 " for every i € X. Under this assumptions
one can show that

AV, W) =1~ (1 - [2" - 2"’1)" forevery n=1,2,... and i,jeX.
Hence on the hand it is clear that A(v{"”, ¥4} converges for every i + j exponentially
to 1 as n — oo and on the other hand one may show on the base of Th. 1 and Th. 2
in [6] that

Ty 2 -“,(i)i@f(l ==, n=12,
u(i) + p(j)
H(p) — Iy 2 ZlogZM(l ~pri—2y, m=t2,.,
#(i) + p(j)

forevery i # jsothat, forevery0 < A < 1, there exist numbers 4 > Oand 1 < 1 <1
such that
Ty = A,

H(j) — Iy 2 AX* forevery n=1,2,...
We are now in a position to prove by a simple contradiction that r, does not con-

verge to zero as well as I, to H(;t) exponentially for n — oo.

3. DECISION MODELS WITH
INDEPENDENT AND %MIXING SAMPLES

In this section the classical model of statistical decision with a sample space
(Y", ") as it is described in Sec. 1 will be studied. We shall follow the terminology
and notation employed above.




It was shown in [7] that in the independent case the condition

(3.1) inf l Z A(v_,i, vx.,.) =a>0

n=1,2,..e B i=1
implies that

(3:2) AWVLVEY > 1 — 4f" forevery n=12,..,

where f lies between 0 and e~**. In view of the Corollary in the preceding section
it is clear that if, for every x € X, the sequence of samples is independent and if the
condition (3.1) holds for every x % x’, then I, = H(u) and I, converges to I, cx-
ponentially. If moreover the loss function is bounded, then also r, = 0 and r, con-
verges to zero exponentially.

If, for every x € X, the sequence of samples is moreover stationary, then the con-
dition (3.1) is equivalent to the condition

(3:3) v vl

It follows from Th. 1 and from the considerations above, that I, = H(u) if and only
if (3.3) holds for every x + x’. If this condition is satisffied, then in view of (2.13)
also r,, = 0 for every bounded loss function. If, moreover, the loss function is
reflexive, then in order that r, = 0 it is necessary and sufficient that (3.3) holds for
every x =% x'. Always when (3.3) holds H(u) — I, as well as r, converges to zero
exponentially. The short discussion of the independent stationary case we can con-
clude by a note that the exponential convergence rate for I, to H(x) under the con-
dition that the sample space Y; is finite was first proved by A. Rényi [5], and then
generalized by author in [7]. The exponential convergence rate for r, under the same
conditions was first proved by A. Perez [3].

In Sec. 1 we have defined the model of statistical decision with »-mixing samples.
According to the definition, in this case the sequence of samples is #-mixing random
sequence in the sense of [1] for every realized value of the parameter. The question
is which is the class of all =-mixing sequences. It is clear that independent random
sequence is *-mixing. It is easy to show that if a Markov chain possesses a long-run
distribution then it is *-mixing. Especially if a finite Markov chain is geometrically
ergodic (in the well known sense of Kendall), then there is 0 < ¢ < 1 such that
o(k) = const ¢* satisfies for N = 1 the requirements of the definition of x-mixing
random sequence (cf. (1.5)). Hence the class of all x-mixing sequences is wider than
the class of all independent sequences and consequently the =-mixing case must be
studied separately.

Our considerations will be based on the following

Lemma 2. If, for every x € X, the sequence of samples is =-mixing and if, for
i=12...,

(34 Avei, Vo) Z > 0 for some x,x' € X,
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then there exists 0 < A < 1 such that
(3.5) AV, Vi) > 1 — 81" forevery n=1,2,...
Proof. It follows from (3.4) that

LS Ay von) 2
m s=1

uniformly with respect to increasing sequences iy, iy, ..., i, of positive integers and
hence, in view of the Lemma of [7], there is such 0 < f < 1 that

(3.6) A ® vy, ®vy)>1—4p" forevery m=1,2,...
s=1 7 s=1

uniformly in the sense given above. Let k > N (cf. the definition of *-mixing random
sequence) be positive integer such that

(3.7 1+ (k) < 1/B

and let n be an arbitrary integer. Define integers m and r by n = km — r where

mz 1,0 £r <k, and let y be a mapping of Y" to ® ¥,;_, defined by
i=1

W((.Vn ces ,Vn)) = (yk—n Vak—rs oves mG—r) .

If we denote by #™ the o-algebra generated by the class of all sets E of the form
E=N{(vs,.... ) :yie Fi} where Fie%y_,,
i=1
then the following assertions hold:

(a) Y® <y,

(b) ¥ is a measurable transformation and
m n m
VH® Yy, — F)=® Y, ~ y !(F) forevery Fe® %;—,,
i=1 i=1 i=1
m
(<) Vi (F)) £ 1 + (k)" _®1vxkiﬁ,(F) .
i=

The assertions (a) and (b) are obvious. The inequality (c) follows immediately from
the definition of #-mixing sequence when F is of the form

F = ®Fi1 Fie¥-.
i=1

i=



and consequently also when F is a denumerable union of disjoint sets of this form. 461
An application of a well-known approximation argument yields the general validity

of (c).

Using (3.6) together with (i) we obtain that there exists a set

Fe® Y-t
i=1

such that

m "
® kai—r( ® Yy, — F) < 4",
i=1 i=1

® V- (F) < 4™
i=1

or, in view of (a), (b), and (c), that there exists a set E & ¥" such that
v;'((Y" - E) < 4[(1 + (p(k)) ﬁ]’" s
ViE) < 4[(1 + o(k)) ] .
These inequalities imply in view of (i) that
AGL ) > 1= S[(1 + (1) B
If we put 4 = [(1 + ¢(k)) ]"/***, then by (3.7) the proof of (3.5) is complete.

Theorem 3. If, for every x € X, the sequence of samples is x-mixing and if
(3-8) Ay Vo) Za >0 forevery i=1,2,... and x +x',

thenl, = H(,u) and I, converges to I, exponentially. If the loss function is bounded,
then r,, = 0 and r, converges to zero exponentially.

Proof. It follows from the assumptions of the Theorem that the assumptions of
the preceding Lemma are satisfied for every x # x" and hence there exists 0 < A < 1
such that

(3:9) 1~ min A(V, vir) < 84" forevery n=1,2,...
x*+x'

and, in accordance with (ii), 4(vy, v3) = 1t for every x + x'. Using this together
with (2.9) or (2.12) we obtain I, = H(u) or r,, = 0 respectively. The desired expo-
nential rate of convergence follows from (3.9), from the Corollary in Sec. 2, and from
(2.12).

We shall say that a *-mixing sequence of random samples is stationary for realized
value x € X of parameter if(Y,-, @,-) = (Yj, @j) and v,; = v;foreveryi,j = 1,2,...
It can be easily verified that this stationarity is rather weaker than the usual station-
arity in the strict sense.
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It is clear that if the sequence of samples is =-mixing and stationary for every
x € X, then (3.8) is satisfied if and only if v}; % vl for every x = x’ and hence we
have proved the following

Theorem 3s. If the sequence of samples is *-mixing and stationary for every
xeX, and if
vl vl forevery x +x',

thenl, = H(u) and I, converges to 1, exponentially. If the loss function is bounded,
then r,, = 0 and r, converges to zero exponentially.

Remark 1. It is to be noted that the analogies between the independent and
*mixing case are not complete. Namely, a routine verification (using the Lemma
of [7]) gives in the stationary independent case that the mecessary and sufficient
condition for the validity of A(v¥, v%) = 1 is (3.3) and that if the latter condition
is satisfied, then A(v}, vi.) converges to 1 exponentially as n — co.. An analogous.
assertion does not hold in the (stationary) *-mixing case. An example of statistical
decision problem with stationary #mixing samplés given below shows that, even
when v} = v, holds, the equality 4(v?, v2) = 1 as well as the exponential converg-
ence rate of A(v}, vi.) to 1 is possible. Hence in the %-mixing case the condition (3.4)

is sufficient but not necessary for the exponential rate of convergence of 4(vj, Vi) to 1.

Example 1. Let X = {x', x"}, ¥; = {1, 2} foreveryi = 1,2, ... and let, for every x
under consideration, the sequence y,, y,, ... of samples be a homogeneous Markov
chain determined by an initial distribution v; on {1, 2} and by a matrix W(x) of
transition probabilities, whose element wij(x), lying at the intersection of the i-th
row and the j-th column, is given by

wii(x) = P[ypey =Jj|x,y,=1i] forevery n=12..andij=12.
Let us put vi(1) = vi(2) = vl[(1) = vL(2) = 4,

W(Xl)=<1fpl;p>’
e =(, 1,0

l-g ¢

where p and g are assumed to be different. It is easily proved that in this case the
sequence of samples in stationary for every x € X. As the n-step transition probability
matrices W7(x') or W*(x") are given by

oy (A @ =1 L= (2p 1)
)= (3 ey 3+ Gre )’
3+ (2q - 1) %—(24—1)")
F-(29-1)" 1+ (29— 1)

e -




respectively, it is obvious. that both the homogeneous Markov chains are geometri-
cally ergodic and consequently that the condition (1.5) is satisfied for N = 1 and

@(k} = const (max {{2p — 1], ]2 — 1}, k=1,2,...;

this proves that the sequence of samples is x-mixing for every x. On the other hand
it is obvious that v., = vl.. It remains to prove that A(\';,, Vi) converges to 1 expo-
nentially. Let us denote foreveryn = 1,2,...

Vi = ®{0,1}, where {0,1};=1{0,1}, i=§.2,...

i=1
and let us define a mapping 7, of the space Y"*! to the space Yy by

T(Vss oo Yuet) = (b5, o 205
where

¥E= 9@ yin forevery i=1,2,...,n,

and where y; ® y;4; = 1 or 0 depending on whether y; = y;,; or y; & y;; . Let
us denote by ¥; a probability measure induced by T, on Y}, i.e. let

Vi(E) = vi* (T, 'E) forevery E < Yi and xe{x,x"}.

A routine verification gives that

where

(3.10) o,=Y y¥.
i=1

According to (iii) we get

AT VY Z AL, V) = A(B(. s p,n), Bl 54, 1)),

since the distributions induced by ¥. or ¥ on the real line are B(. 3P, n) or B(. 5 q, n)
respectively. In view of the laiter inequality, (iii), and (v), the exponential con-
vergence rate of 4(v, vi.) to 1 holds.

Remark 2. The question arises if the #-mixing condition is also necessary for the
exponential convergence rate of A(v, vi.) to 1 (as well as of H(u) — I, or r, to zero).
In the sequel we shall show that this assumption is not true. In order to achieve this
we shall give the following

463



464

Example 2. Let X = {x,x"}, Y; = {1,2,3,4}, for every i =1,2,... and let,
similarly as in the example above,

14 1—-p00
O
\ o 0 01/

q 1-400\

Ll P
\ o 0 01/

be matrices of transition probabilities and let vi.(3) = vi.(4) = 4, vi(1) = vi(2) =
= vp(1) = v1(2) = 4 be initial distributions determining, for every xe {x’,x"},
a homogeneous Markov chain which will be referred to as a sequence of samples.
It is clear that none of these random sequences is *-mixing as it is not in this case satis-
fied the following necessary condition )

lim V}:(i) W'i'j(x) - vl(i) vxn(j) =0
o v2(i) valJ)

(cf. (1.5)), where v,,(j), in accordance with the notation employed above, is given by
V) = Plyn = J [ x], n=12..

and where wj(x) is an element of the n-step transition probability matrix W"(x),
lyving at the intersection of the i-th row and j-th column. In order to prove this it
suffices to put, for x = x’ or x”, i = 2, j = 3 or i = 2, j = 4 respectively, and then
to use explicit expressions for the corresponding n-step transition probability ma-
trices.

On the other hand we shall prove that in this case A(v}, v%) converges to 1 cx-
ponentially (the condition (3.8) is however in this case satisfied). It follows from the
definition of the joint probability distributions v}, x € X, and from the concrete
definition of the sequence y, y,, ... of random samples above that in this special
case the following equalities take place:

=468 + ),
= 208 +8),
where v{)(3,3,...,3) = 1 and v§)(4, 4, ..., 4) = 1, and where {} or v{J coincides
with v}, or vi. considered in Example 1. Consequently the assumptions of (iv) in

Sec. 1 are satisfied and A(v{3, v{3) converges to 1 exponentially. Since it is clear that
A(v$3, v§)) = 1, by using (iv) we conclude the proof of the desired result.

(Received December 8th, 1966.)
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VYTAH

O statistickych rozhodovacich problémech s koneénym
parametrovym prostorem

IGor Vaipa

Tato prdce navazuje na [6], kde byl studovdn klasicky model statistického rozho-
dovdni s abstraktnim vyb&rovym prostorem a s nejvySe spodetnym parametrovym
prostorem. Ukazuje se, Ze odhady zdkladnich charakteristik uvaZovaného modelu,
a to Bayesova rizika a stfedni informace o parametru obsaZené ve vybéru pomoci
nékterych jednodusfich veli¢in uvedené v [6] dédvaji zajimavé vysledky zejména
v piipadé koneéného parametrového prostoru.

V prvni ¢dsti prdce je definovdn zdkladni model, jemu piisluiné Bayesovo riziko
a informace a dva specidlni modely odpovidajici rozhodovdni na zdkladé€ opakova-
nych vybéri, které jsou v préaci vySetfeny podrobngji. V prvnim z t&chto modeli se
piedpoklddd, Ze jednotlivé vybéry jsou statisticky nezdvislé, kdeZto v druhém se

pfedpoklddd jisty typ slabé zdvislosti. V této &dsti je ddle uvedena definice 4-diver-

gence dvou pravdépodobnostnich distribuci a n&které jeji viastnosti.

V druhé &sti prdce jsou nalezeny vztahy mezi informaci resp. Bayesovym rizikem
a mezi 4-divergencemi dvojic podmingnych pravdépodobnosti modelu (véty 1 a 2).
Z téchto vysledki plyne, 7e asymptotické chovani Bayesova rizika a informace (p¥i
zjemiiovéni o-algebry vybérového prostoru, specidlng pii zv&tSovéni rozsahu vybéru)
je ddno asymptotickym chovdnim pfislu§nych A-divergenci. V téZe &sti prdce je
oviem na piikladu ukdzdno, Ze tyto zdvéry plati jen tehdy, kdyZ parametrovy prostor
je konegny.
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Ve tieti &dsti se studuje asymptotické chovdni 4-divergence podminénych pravdé-
podobnostni pfi velkych rozsazich vybéru v obou specidlnich modelech definovanych
vye. Ukazuje se (viz diskusi na za&dtku tfeti &dstia véty 3 a 3s), Ze rychlost konver-
gence A-divergence (a tedy i Bayesova rizika a informace) k jejich limitnim hodnotdm
je v obou téchto pfipadech za dosti obecnych podminek exponencidlni.

Ing. Igor Vajda, Ustav teorie informace a automatizace CSAV, Praha 2, VySehradskd 49.
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