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K Y B E R N E T I K A ČÍSLO 5, R O Č N Í K 3/1967 

On the Statistical Decision Problems 
with Finite Parameter Space 

IGOR VAJDA 

In the paper there are obtained some both-sides estimates of the Bayes risk and information 
in a sample concerning a parameter in terms of total variations of pairs of conditional distribu
tions in the framework of the classical model of statistical decision with finite parameter space. 
On the base of these relations the rate of convergence of the risk and of information to their 
limit values is studied, for the case if the sample size tends to infinity. 

1. INTRODUCTION AND PRELIMINARIES 

In this paper we shall deal with the classical model of statistical decision with 
a finite parameter probability space (X, 9C, \i) (9C is assumed to be the class of all 
subsets of the set X and the prior probability \i(x) is assumed to be positive for every 
parameter value x e X), with measurable sample space (Y, <&), set {vx}, x e X, of 
conditional distributions of the variable y e Y defined on the c-algebra <&, decision 
measurable space (X, 3£), and with a non-negative loss function w defined on X ® X. 

It is clear that a most important numerical characteristics of the model just de
scribed is the so called Bayes risk, i.e. the quantity defined as 

(1.1) r = inf £ n(x) [ w(x, Q(y)) dvx(y), 

where the infimum is extended over the set of all "^-measurable decision functions 
Q : Y-> X (for a more particular discussion of the decision model, see [3] — [6]). 
Another characteristics of great importance is the average amount of information / 
contained in the sample y concerning the parameter x defined as 

(1.2) / = [ logf(x,y)dm(x,y), 
J X®Y 



452 where / is the Radon-Nikodym density of the joint probability distribution 

co(E) = £ n(x) vx({y e Y: (x, y) e E}), Ee% ® <W , 
xeX 

with respect to the Cartesian product distribution \i ® <3 > a> on 9C ® <&, where 
by & we denote the marginal distribution of a on <W. (Let us note that all logarithms 
in this paper are taken to the base e.) 

From the intuitive point of view it is clear that, though the information / does 
not depend on the loss function w, for a sufficiently wide class of loss functions there 
exists a relation between r and I. The data reduction theory developed by A. Perez 
[3], [4], shows that the indicated relation plays a growing role in solutions of certain 
class of decision problems. 

The purpose of this paper is to estimate the Bayes risk and information in the 
framework of the decision model with finite parameter space and to investigate the 
indicated relation between them. This general questions are studied in Sec. 2; the 
results of Sec. 2 are then used in Sec. 3 devoted to the study of the rate of convergence 
of information and Bayes risk in some classes of decision models as it is more pre
cisely described below. 

Let the measurable sample space of the model we have considered be of the form 

i> 

(1.3) (Y", <Wn) = ® (Y„ <W), n = 1, 2 , . . . , oo , 
i = l 

(i.e. suppose that the samples are of size n, y = (yu y2,..., y„)), where Y is the set 
of all y;'s with a given a-algebra <W„ and denote the joint probability distribution of 
the n-vector (yx,..., y„) under the condition that x e l i s the realized value of the 
parameter by v". It is clear that, for every xeX, v" is the restriction of v" on the 
ff-algebra <W" <= <W°, where the latter inclusion (as well as the inclusions <W'; c <W", 
i = 1, 2 , . . . , n, n = 1, 2, ..., oo, that will be used below) is written in accordance 
with a well-known identification convention for product er-algebras. 

We shall denote by I„ or r„ the information or the Bayes risk respectively corre
sponding to the measurable space (1.3). It is known that I„ or r„, n = 1, 2 , . . . , is 
a non-decreasing or non-increasing sequence respectively and that lim J„ = Ix, 
lim r„ = r^asn tends to infinity (cf. [3], [4]). From the point of view of applications 
it is important to ask which is the rate of convergence above. This question is studied 
in Sec. 3 under the assumption that, for every realized value x e X, the sequence 
yu y2,..., of samples is independent random sequence, i.e. that 

(1.4) vx = ® vxi for every xeX, 
i=l 

where vx„ i = 1, 2 , . . . , oo, denotes over all the paper the restriction of v" on the 
sub-<T-algebra <Wx c <Wm, and that it is a *-mixing random sequence, i.e. that there 
exists a positive integer N and a non-increasing real valued function <p defined for 



all integers k = N with lim <p(k) = 0 for k -* oo such that, for every k = N,l^m, 453 
m + k = n and x e X, the following inequality takes place 

(1.5) \vn
x(E n E) - v".(£) v*(F)| ^ q»(fc) v£(E) v(E) 

for every 

E = {(y1,...,yn):(yl,yl+1,...,ym)e£} 

and 

where 

and 

Ғ = {(Уi v . ) : (y f f l + i ,y и + ł + I , . . . ,v . )є í , } ) 

£ є <g> <зtŕ 
І = Í 

Ғ є <g> 1 
i = m+k 

We shall show that in both these cases the exponential rate of convergence takes place. 
In the remainder of this section we list some properties of a ^-divergence of two 

probability distributions for references later. The concept of ^-divergence plays an 
important role over all this paper. 

If v l 5 v2 are probability measures on a measurable space (Y <W), then ^-divergence 
A(vu v2) is defined by 

(1.6) .d(vx,v2) = i f | ^ - ^ 2 | d ( v 1 + v 2 ) , 

where cj£ is the "St-measurable version of the Radon-Nikodym density dvijd(vv + v2) 
for i = 1, 2. A is clearly reflexive, symmetric, and the triangle inequality satisfying 
distance measure in the space of all probability distributions on (Y <&). It is clear 
that 2 J(v1 ; v2) = |vj — v2| (Y), where |vt — v2| denotes the total variation of the 
signed measure vt — v2. This implies in particular that A takes values between 0 
and 1, and that A(vl5 v2) = 0 if and only if vx = v2 (on <&) and A(vx, v2) = 1 if and 
only if vt J. v2, and also the following very useful statement: 

(i) There exists a set E 6 <W such that 

Vi(E) - v2(E) g v,(E) - v2(E) = A(vu v2) for every E e <$/ . 

The following two assertions follow from the theory of semi-martingales ([2], 
Th. 4.1s, Chap. VII), as |<i;| is convex function of c; (cf. the definition of zl-divergence). 

(ii) If <5V(n), n = 1, 2 , . . . , is a non-decreasing sequence of sub-<7-algebras of the 
ff-algebra <& such that <¥ is generated by 

(J <3/M 



and if we denote by v(n), v(
2
n) the restriction of the distributions vu v2 on ®/(n\ then 

^(vin)> v2°) is for n = 1, 2, . . . a non-decreasing sequence and 

Urn A(v{"\ v(
2
n)) = A(vu v2) . 

(hi) If (Z, S£) is a measurable space and if T is a measurable transformation of 
(Y <W) to (Z, 2£\ then 

.d(v1T-1,v2T-1)^J(v1,v2). 

(iv) If there exist two numbers a, b = 0 and probability measures vtj, i,j = 1, 2, 
such that 

v. = a v n + bv12 , 

v2 = av21 + bv22 , 

where vu J. vj2, i,j = 1, 2, then 

4 v i> v
2) = a A(vlu v21) + b A(v12, v22) . 

Proof. The proof of this equality can be based on (i) and on the assumption of 
singularity. Details are omitted here. 

(v) If B(. ; p, n), B(. ; q, n) are binomial distributions with p + q, then there exist 
numbers A>0, 0 < A < 1 such that 

A(B(. ; p, n), B(. ; q, n)) > 1 - AXn for every n = 1,2, ... 

Proof. According to (i), if p < q, then 

A(B(. ; p, n), B(. ; q, n)) = 1 - min (b^n, k) + b2(n, k)), 
fc = 0 , l n 

where 

*i(».*)- 1 (ÌPXІ-PГ1 

bÁn,k) = ì ^Ąí-qГ'. 

If one of the numbers p, q is equal 0 or 1, (v) is trivial. Let, for 0 < p < q < 1, 
kn be the least integer greater than or equal to on, where 0 < Q < 1 is the unique 
solution of the equation 

4) V ~ P 



Using Stirling's formula and some elementary properties of the numbers B(. ;. , n) 455 
it can be shown that there is A > 0 and 0 < X < 1 such that for every n = 1, 2, . . . 

b,(n, kn) + b2(n, kn) < AX"; 

the remainder of the proof is now clear. 
In what follows we shall denote by card (X) the cardinal of X and by H(/j), in 

accordance with [6], the entropy of the finite probability space (X, JX). 

2. GENERAL INEQUALITIES 

Lemma 1. There exists a disjoint system of sets {Ex}, Exe
(S/,xeX, such that 

(2.1) vx(Y - Ex) < card (X) (1 - min A(vx, vx)), 
x'*x 

(2.2) vx(Ex) < 1 — d(vx, vx) for every x #= x'. 

Proof. According to (i), there exists for every x, x' e X a set Exx, such that 

(2.3) A(vx, vx) = vx(Exx) - vx,(Exx) ; 

hence 

or 

A(vx, vx) < vx(Exx) 

(2.4) v v (Y - Exx) < 1 - A(vx, vx) 

and consequently 

v,( U (Y - Exx)) < card (X) (l - min A(vx, vx)). 

x'*x x'*x 

Since 

[)(Y-EXX)= Y- f)Exx., 
x'*x x'*x 

it remains to put in the latter inequality 

(2-5) Ex = f| Exx. 
x'*x 

and (2.1) is proved. From (2.3) we can easily obtain the following relation 

(2.6) Exx. = Y - Ex.x for all x, x'e X . 

Since 

vx(Ex) < vx(Ex,x) m vx(Y- Exx), 



456 to prove (2.2) it remains to use (2.4). In order to prove that the system of measurable 
sets {Ex}, x e X, defined by (2.5) is disjoint let us point out the following inclusions 

Ex = n Exx„ c Exx-, 
x"*x 

EX, = n Ex,x„ <= Ex,x 
x"*x' 

and then let us use (2.6). 

Theorem 1. If we denote 

(2.7) A = Vcard (X) (1 + 2 £ 7 [>(*) (1 - /<x))]), 

(2.8) n = min JA(X) > 0 , 
xsX 

then 

(2.9) p. log 2(1 - min A(vx, vx) ^ H(ju) - I ^ A , / ( l - min <d(v„ vx,)). 
x ' * x x'=t=x 

Proof. Since, for every x, x' e X the following inequality holds 

H ̂  j-t(x) AjCgO 
2 _ ^(x) + /<(x') ' 

the left inequality in (2.9) follows from Th. 3 in [6]. We next prove the right in
equality. It follows from Lemma 2 in [6] that, for the class {Ex}, Exe

cW, xe X, 
defined in Lemma 1 above, 

BQt) - / £ I 7 |Xx) vx(Ex) £ ft,*) V(£x ,)] + 

+ I v / [ ^ ) * ) Z W x " ) v , ( E o ) ] , 
xeX x"*x 

where 

E0 = n ( i r - -s j , 
xsX 

and consequently we can write 

JK» - / g j ; yixx) v̂ E.) £ /f(x") v(Ea)] + 

+ 1 )Zv / [ / 'W^ ' )E^")v(£ , ) ] + 
xeX x ' * x x"*x 



If we denote the terms on the right side subsequently by (l), (II), and (III), then 
by (2.1) 

(2.10) (III) < V[card (X) (l - min A(vx, V ) ] £ VtX*) (1 - K*))] • 
x*x' xeX 

If we apply on the sum (I) the Schwarz's inequality, we obtain 

(2.11) (/) < J I n(x") vx„(Y - Ex.) < V[card (X) (1 - min A(vx, vx,))] . 
x"eX x ' * x 

One more application of Schwarz's inequality yields 

(//) S I V W ) v,( U Ex) X j.(x") V ( U Ex)] g 
xeX J C ' * * X " # J C X'*X 

^lA»(x)vx(Y-Ex)YKx")l = 
xeX x"*x 

< V[card (X) (1 - min A(vx, V ) ) ] £ .J[).(x) (l - p(x))] . 
x' + x xeX 

Using this together with (2A0) and (2.11) we obtain the desired result. 

Theorem 2. If the loss function w is bounded from above by w0 then 

(2.12) ^ (1 - min A(vx, vx„)) < r < w0 card (A') (1 - min A(vx, vx)), 
2 x'*x x*x' 

(2.13) m (H(») -If<r<-^- (HO*) - / ) , 

2A 2 log 2 

where A is defined by (2.7), n by (2.8), and y by 

y = min w(x, x'). 
x,x'eX 
x'*x 

(Left inequalities remain true also without restriction w < w0.) 
Proof. It is clear that for every measurable disjoint decomposition {Ex}, xeX, 

of Y the following inequality holds 

r = w0Yl*(x)(l-vx(Ex)) 
XsX 

and in order to prove the right inequality in (2A2) it remains to use Lemma 1. The 
left inequality immediately follows from Th. 1 in [6]. The right inequality (2.13) 
was proved in [6], Th. 2, and the left inequality follows from Th. 1 and from (2.12). 

We shall say that a sequence an, n — 1, 2,... of numbers converges exponentially 
to a number a if there exist numbers A > 0 and 0 < X < 1 such that 

\an — a\ < AX" for every n = 1, 2, ... 



458 The loss function w will be said reflexive if w(x, x') > 0 for every x =f= x'. 
An immediate consequence of Theorem 2 is the following Corollary that will be 

very useful later. 

Corollary. Let <3t(n), v£°, xeX, n = 1, 2 , . . . be defined as in (ii) and let r(n) and 
J(n) denote the corresponding Bayes risk and information respectively. Then 7(n) 

converges to H([i) exponentially if and only if A(v£°, v(")) converges to 1 exponentially 
for every x # x . If the loss function is bounded, then this condition is sufficient in 
order that r(n) converges to zero exponentially. If, moreover, the loss function is 
reflexive, then this condition is necessary and sufficient for the exponential rate of 
convergence of r(n) to zero. 

Remark. This corollary need not be true in case of an infinite parameter space. 
In order to prove this we proceed in the following manner. For ease of writing let 
us assume that X = {1, 2, . . .} and let w(i,j) = 0 or 1 depending on whether i = j 
or i #= j . Let'S/^1 be the u-algebra of Lebesgue measurable sets in the n-dimensional 
Euclidian space and let v("y be the w-dimensional Cartesian product of uniform 
distribution on the interval <2 _ ! — 1,2_ '>for every ieX. Under this assumptions 
one can show that 

^ (v^ , vf) = 1 - (1 - | 2 _ i - 2-J'|)" for every n = 1, 2 , . . . and i,jeX . 

Hence on the hand it is clear that A(v("\ v(j"y) converges for every i =j= j exponentially 
to 1 as « -* oo and on the other hand one may show on the base of Th. 1 and Th. 2 
in [6] that 

H(n) -1^ 2 l o g 2 ^ M L ( l - |2- - 2--DP, » = 1,2,..., 
KO + i-v) 

for every i 4= j so that, for every 0 < X < 1, there exist numbers A > 0 and X < 1 < 1 
such that 

r(„ ^ A!", 
H(/i) - J(n) ^ AT for every n = 1, 2 , . . . 

We are now in a position to prove by a simple contradiction that r(B) does not con
verge to zero as well as I{n) to -ff(^) exponentially for n -» oo. 

3. DECISION MODELS WITH 

INDEPENDENT AND *-MIXING SAMPLES 

In this section the classical model of statistical decision with a sample space 
(Y", <&*) as it is described in Sec. 1 will be studied. We shall follow the terminology 
and notation employed above. 



It was shown in [7] that in the independent case the condition 

(3.1) inf - £ A(vxi, vx.) = a > 0 
n=l ,2„ . . n i= l 

implies that 

(3.2) A(v"x, v"x) > 1 - 4[f for every n = 1, 2, ..., 

where fi lies between 0 and e~a/4. In view of the Corollary in the preceding section 
it is clear that if, for every x e X, the sequence of samples is independent and if the 
condition (3.1) holds for every x + x', then JOT = H(fi) and J„ converges to 1^ ex
ponentially. If moreover the loss function is bounded, then also rm = 0 and r„ con
verges to zero exponentially. 

If, for every x e X, the sequence of samples is moreover stationary, then the con
dition (3.1) is equivalent to the condition 

(3.3) vx * vx. . 

It follows from Th. 1 and from the considerations above, that Im = H(n) if and only 
if (3.3) holds for every x 4= x'. If this condition is satisffied, then in view of (2.13) 
also rOT = 0 for every bounded loss function. If, moreover, the loss function is 
reflexive, then in order that rx = 0 it is necessary and sufficient that (3.3) holds for 
every x + x . Always when (3.3) holds H(/J) - J„ as well as r„ converges to zero 
exponentially. The short discussion of the independent stationary case we can con
clude by a note that the exponential convergence rate for /„ to H([i) under the con
dition that the sample space Y is finite was first proved by A. Renyi [5], and then 
generalized by author in [7]. The exponential convergence rate for rn under the same 
conditions was first proved by A. Perez [3]. 

In Sec. 1 we have defined the model of statistical decision with *-mixing samples. 
According to the definition, in this case the sequence of samples is *-mixing random 
sequence in the sense of [1] for every realized value of the parameter. The question 
is which is the class of all *-mixing sequences. It is clear that independent random 
sequence is *-mixing. It is easy to show that if a Markov chain possesses a long-run 
distribution then it is *-mixing. Especially if a finite Markov chain is geometrically 
ergodic (in the well known sense of Kendall), then there is 0 < Q < 1 such that 
(p(k) = const Qk satisfies for N = 1 the requirements of the definition of *-mixing 
random sequence (cf. (1.5)). Hence the class of all *-mixing sequences is wider than 
the class of all independent sequences and consequently the *-mixing case must be 
studied separately. 

Our considerations will be based on the following 

Lemma 2. If, for every xeX, the sequence of samples is *-mixing and if, for 
i = 1,2,..., 

(3.4) A(vxi, vx,) 3j a > 0 for some x,x'eX, 



460 then there exists 0 < X'< 1 such that 

(3.5) A(v"x, v"x.) > 1 - 8/1" /or every n = 1, 2 , . . . 

Proof. It follows from (3.4) that 

- £ 4v*i„ vx,u) > a 
m s = i 

uniformly with respect to increasing sequences iu i2,..., im of positive integers and 
hence, in view of the Lemma of [7], there is such 0 < /? < 1 that 

(3.6) A( ® vxis, ® v_,J > 1 — 4/3m for every m = 1, 2 , . . . 
s = l s = l 

uniformly in the sense given above. Let k > N (cf. the definition of *-mixing random 
sequence) be positive integer such that 

(3.7) 1 + <p(k) < ljp 

and let n be an arbitrary integer. Define integers m and r by n = km — r where 

m _: 1, 0 < r < fc, and let \\> be a mapping of Y" to ® Yti_r defined by 

i = l 

tffol, ••> >'n)) = .V*-- y 2 . - r . •••> J U - r ) • 

If we denote by I_/(") the cr-algebra generated by the class of all sets E of the form 

E = f){(y1,...,yn):yieFi} where Fte^ki.r, 
i = l 

then the following assertions hold: 

(a) Y("> c: Y" , 

(b) \j/ is a measurable transformation and 
iA-1( ® Yfc,-_r - F) = ® Yj - \I/~\F) for every F e ® ^ i . , , 

i = l i = l i = l 

(c) v"x(r\F)) < 1 + <p(k))m ® vxki.r(F) • 
i = l 

The assertions (a) and (b) are obvious. The inequality (c) follows immediately from 
the definition of *-mixing sequence when F is of the form 

F = ® F i s Ei6'3t'fci_r 



and consequently also when F is a denumerable union of disjoint sets of this form. 461 
An application of a well-known approximation argument yields the general validity 
offc). 
Using (3.6) together with (i) we obtain that there exists a set 

F e ® <Wki_r 
> = i 

such that 

®v x t i_ r (® y „ . r - - F ) < 4 / r , 
i = i i = i 

® Vx-U-tf) < W 

or, in view of (a), (b), and (c), that there exists a set E e Y" such that 

v ^ ( r - £ ) < 4 [ ( i + <Kfc))/?]m, 

v"x.(E) < A&l + <p(k)) fiy . 

These inequalities imply in view of (i) that 

A(vn
x, vx.) > 1 - 8[(1 + cp(k)) /?]"'. 

If we put X = [(1 + cp(k)) j - ] 1 / 4 + 1 , then by (3.7) the proof of (3.5) is complete. 

Theorem 3. If, for every x e X, the sequence of samples is *-mixing and if 

(3.8) A(vxi, v„,;) 2; a > 0 for every i = 1, 2, ... and x + x', 

thenlx = H(fi) and _„ converges to I _, exponentially. If the loss function is bounded, 
then rx = 0 and r„ converges to zero exponentially. 

Proof. It follows from the assumptions of the Theorem that the assumptions of 
the preceding Lemma are satisfied for every x #= x and hence there exists 0 < X < 1 
such that 

(3.9) 1 - min A(v"x, v"x,) < 8/1" for every n = 1, 2, . . . 
JC4=X' 

and, in accordance with (ii), A(vx, vx.) = 1 for every x + x'. Using this together 
with (2.9) or (2.12) we obtain __, = H(p.) or r„ = 0 respectively. The desired expo
nential rate of convergence follows from (3.9), from the Corollary in Sec. 2, and from 
(2.12). 

We shall say that a *-mixing sequence of random samples is stationary for realized 
value x e l o f parameter if (Y;, <&?) = (Yj, <S/j) and vxi = vxj for every i, j = 1,2,... 
It can be easily verified that this stationarity is rather weaker than the usual station-
arity in the strict sense. 



It is clear that if the sequence of samples is *-mixing and stationary for every 
x 6 X, then (3.8) is satisfied if and only if vx 4= vx, for every x 4= x and hence we 
have proved the following 

Theorem 3s. If the sequence of samples is *-mixing and stationary for every 
x e X, and if 

vx + vx' for every x 4= x', 

then I x = ff(/u) andl„ converges toIx exponentially. If the loss function is bounded, 
then rx = 0 and r„ converges to zero exponentially. 

Remark 1. It is to be noted that the analogies between the independent and 
*-mixing case are not complete. Namely, a routine verification (using the Lemma 
of [7]) gives in the stationary independent case that the necessary and sufficient 
condition for the validity of A(vx, vx,) = 1 is (3.3) and that if the latter condition 
is satisfied, then A(vn

x, v
n

x) converges to 1 exponentially as n -* oo.An analogous 
assertion does not hold in the (stationary) *-mixing case. An example of statistical 
decision problem with stationary *-mixing samples given below shows that, even, 
when vl

x = vl
x,, holds, the equality A(vx, vx) = 1 as well as the exponential converg

ence rate of A(vx, v"x,) to 1 is possible. Hence in the *-mixing case the condition (3.4) 
is sufficient but not necessary for the exponential rate of convergence of A(v"x, vx,) to 1.. 

Example 1. Let X = [x', x"}, Y; = {1, 2} for every i = 1,2,... and let, for every x 
under consideration, the sequence j l 5 y2,... of samples be a homogeneous Markov 
chain determined by an initial distribution v* on {l, 2} and by a matrix W(x) of 
transition probabilities, whose element w;j(x), lying at the intersection of the z-th 
row and the j'-th column, is given by 

wu(x) = P[y„+i = j\x, y„ = i] for every n = 1, 2, ... and i,j = 1, 2 .. 

Let us put v*.(l) = v^,(2) = v^(l) = v*„(2) = i , 

V - P P 

W) = iq l~ 
V-9 1 

where p and q are assumed to be different. It is easily proved that in this case the 
sequence of samples in stationary for every x e X. As the n-step transition probability 
matrices W"(x') or W"(x") are given by 

n*') = ( i + (2p-1)n * - < 2 ' - i r 
{ J \l-(2p- I)" i + (2p - 1)" 

- ^ /i + (2*-ir i - ( 2 , - i n 
u-(2?- i ) n i + (2?-iW 



respectively, it is obvious, that both the homogeneous Markov chains are geometri- 463 
cally ergodic and consequently that the condition (1.5) is satisfied for N = 1 and 

<p(k) = const (max {\2p - l\,\2q - l|})*, k = 1,2,.. . ; 

this proves that the sequence of samples is *-mixing for every x. On the other hand 
it is obvious that vx. = vx„. It remains to prove that A(v"x>, v"x„) converges to 1 expo
nentially. Let us denote for every n = 1,2,... 

Yl = ® {0, 1}; where {0, 1}; = {0, 1} , i = f, 2 , . . . 
i = l 

and let us define a mapping T„ of the space Y"+1 to the space Y£ by 

Uyu...,yn+l)~(y*u...,y*), 
where 

y* = yt ® y,'+i for every i = 1, 2 , . . . , n , 

and where y{ ® yi+1 = 1 or 0 depending on whether _y; = yi+l or yt 4= y ; + 1. Let 
us denote by v" a probability measure induced by T„ on Y%, i.e. let 

v"x(E) = v ^ ^ T " 1 ^ for every E c Y* and x e {%', x"} . 

A routine verification gives that 

rx{yl-,y*n) = Pni(i-pY-nn, 

vnAyl-:,y:) = qnii-qr'n'', 
where 

(3-10) n„ = ty*. 
i = l 

According to (iii) we get 

K^1' <"') = A(K'> v"») = A(B(. ; p, n), B{. ; q, n)) , 

since the distributions induced by v"x, or v"„ on the real line are B(. ; p, n) or B(. ; g, n) 
respectively. In view of the latter inequality, (iii), and (v), the exponential con
vergence rate of A(v",, v"„) to 1 holds. 

Remark 2. The question arises if the *-mixing condition is also necessary for the 
exponential convergence rate of A(v", vx,) to 1 (as well as of H(p) — I„ or r„ to zero). 
In the sequel we shall show that this assumption is not true. In order to achieve this 
we shall give the following 



Example 2. Let X = {*', x"}, Yt = {1, 2, 3, 4}, for every i = 1, 2, . . . and let. 

similarly as in the example above, 

rV(x') = 

( V 1 - p 0 o^ 

1 - p p 0 0 

0 0 1 0 

v o 0 0 1; 

( q 1 - q 0 Ô  

1 - 3 q 0 0 
0 0 1 0 

< o 0 0 1, 

W(У') = 

be matrices of transition probabilities and let v*,(3) = v*,,(4) = J, v*,(l) = v*,(2) = 

= v*„(l) = v^„(2) = \ be initial distributions determining, for every x e [x', x"}, 

a homogeneous Markov chain which will be referred to as a sequence of samples. 

It is clear that none of these random sequences is '"-mixing as it is not in this case satis

fied the following necessary condition 

lim v»(o</*)-vKoa?) = 0 
vi(OOj) 

(cf. (1.5)), where vxn(j),in accordance with the notation employed above, is given by 

v*„(j) = P [ v „ = j | x ] , n = \,2,..., 

and where w"j(x) is an element of the n-step transition probability matrix W"(x),. 

lying at the intersection of the r-th row and j-th column. In order to prove this it 

suffices to put, for x = x' or x", i = 2, j = 3 or i = 2, j -» 4 respectively, and then 

to use explicit expressions for the corresponding n-step transition probability ma

trices. 

On the other hand we shall prove that in this case <d(v",, v"„) converges to 1 ex

ponentially (the condition (3.8) is however in this case satisfied). It follows from the 

definition of the joint probability distributions v", xeX, and from the concrete 

definition of the sequence yu y2,... of random samples above that in this special 

case the following equalities take place: 

v ^ K v i - i + v ^ ) , 

v ^ K v ^ + v?]), 

where Vi"i(3, 3,. . . , 3) = 1 and v2"i(4, 4,..., 4) = 1, and where v ^ or v2

al coincides 

with v", or v".„ considered in Example 1. Consequently the assumptions of (iv) in 

Sec. 1 are satisfied and A(v("2, v!,"]) converges to 1 exponentially. Since it is clear that 

<4(v(u, V21) = 1, by using (iv) we conclude the proof of the desired result. 

(Received December 8th, 1966.) 
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O statistických rozhodovacích problémech s konečným 
parametrovým prostorem 

IGOR VAJDA 

Tato práce navazuje na [6], kde byl studován klasický model statistického rozho
dování s abstraktním výběrovým prostorem a s nejvýše spočetným parametrovým 
prostorem. Ukazuje se, že odhady základních charakteristik uvažovaného modelu, 
a to Bayesova rizika a střední informace o parametru obsažené ve výběru pomocí 
některých jednodušších veličin uvedené v [6] dávají zajímavé výsledky zejména 
v případě konečného parametrového prostoru. 

V první části práce je definován základní model, jemu příslušné Bayesovo riziko 
a informace a dva speciální modely odpovídající rozhodování na základě opakova
ných výběrů, které jsou v práci vyšetřeny podrobněji. V prvním z těchto modelů se 
předpokládá, že jednotlivé výběry jsou statisticky nezávislé, kdežto v druhém se 
předpokládá jistý typ slabé závislosti. V této části je dále uvedena definice zl-diver-
gence dvou pravděpodobnostních distribucí a některé její vlastnosti. 

V druhé části práce jsou nalezeny vztahy mezi informací resp. Bayesovým rizikem 
a mezi zl-divergencemi dvojic podmíněných pravděpodobností modelu (věty 1 a 2). 
Z těchto výsledků plyne, že asymptotické chování Bayesova rizika a informace (při 
zjemňování cr-algebry výběrového prostoru, speciálně při zvětšování rozsahu výběru) 
je dáno asymptotickým chováním příslušných zl-divergencí. V téže části práce je 
ovšem na příkladu ukázáno, že tyto závěry platí jen tehdy, když parametrový prostor 
je konečný. 



Ve třetí části se studuje asymptotické chování zl-divergence podmíněných pravdě
podobnostní při velkých rozsazích výběru v obou speciálních modelech definovaných 
výše. Ukazuje se (viz diskusi na začátku třetí části a věty 3 a 3s), že rychlost konver
gence zl-divergence (a tedy i Bayesova rizika a informace) k jejich limitním hodnotám 
je v obou těchto případech za dosti obecných podmínek exponenciální. 

Ing. Igor Vajda, Ústav teorie informace a automatizace ČSA V, Praha 2, Vyšehradská 49. 
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