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KYBERNETIKA —VOLUME 17 (1981), NUMBER 1  

LOGICALLY ORIENTATED CLUSTER ANALYSIS 

ARNOŠT VESELÝ 

This paper deals with a new logically orientated method of cluster analysis. Entities are grouped 
into clusters in such a way that among propsrties describing thsse entities strong logical relations 
are valid in the range of each cluster. The definition of the set of clusters is given and some pro­
perties of this set of clusters are considered. At ths end an algorithm which yields an approxima­
tion of this set of clusters is describsd. 

1. INTRODUCTION 

The general aim of cluster analysis is to create sets of entities, so called clusters, 
in which each entity resembles all others of the same cluster. Suppose that each 
entity can be described by n binary, parameters (properties). The fact that entity x 
has (resp. has not) /c-th property we shall describe by the statement Vk(x) (resp. 
Vk(x)). In this way each entity can be characterized by a vector v(x) = (vt(x),... 
..., vk(x),..., v„(xj), where vk(x) = 1 iff statement Vk(x) is valid or vk(x) = 0 iff the 
opposite statement Vk(x) is valid. 

The similarity of vectors v(x), v(y) is usually measured (see [1]) by means of 
difference 

(1-1) Hx)-v(y)\ = i\vt{x)-vi(y)\. 

If entities x e l a r e classified into classes Xu ..., X,„ by means of some classifying 
algorithm, the most often aim is to classify the set X in such a way that 

(1-2) G(Xu...,Xm) = t £ [vO)-v(»|. 
j = l x.yeXj 

achieves its minimum (see [1]). Regrettably, it is not possible to achieve the minimum 
of (1.2) in the most real situations. Then it is necessary to use its attainable approxim­
ation. 
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Suppose x eX be entities examining in some experimental science. For example 
these entities might be patients and Vk(x), k = 1, 2, ..., n their symptoms. Classifica­
tion of entities x e X into classes Xu ..., X,„ is an important part of all experimental 
sciences. Some classification must be performed at the very beginning of its develop­
ment and later this classification is modified and made more sophisticated. In medicine 
patients are classified for example according to their diagnoses, syndroms etc. 

Now we turn our attention to the definition of classes in experimental sciences. 
Classes are not usually defined by stating which logical formula consisting of proper­
ties Vtl, ..., Vip must be valid if an entity x is to be in certain class Xj. It means 
they are not defined by an expression of the following type 

(1.3) xeXj^0(Vh(x),...,Vip(x)), 

where $(Vh(x),..., Vip(x)) is a logical formula consisting of properties Vh, ..., Vip. 
R. Carnap [2] noticed that classes are often described by formulae of the following 
two types 

(1.4) <f>j ^ (<P2 => xeXj) 

and 

(1.5) <P3 => K => (x^Xj)), 

where the formulae <PU <P2, $3, $4 are arbitrary formulae consisting of properties 
Vu ..., V„. Following [2], formulae of the type (1.4) and (1.5) will be called reduction 
sentences of sentence x eXj. Similarly the pair of formulae of the type (1.4) and (1.5) 
will be called the reduction pair of sentences x e Xj. Most usual there are formulae 
of the type xeXj => <P, which are equivalent to the formulae of the type 

(1.6) $ => (TelCj) . 

It is possible to consider them as special types of the reduction sentences (1-5), 

because formula (1.6) is equivalent to the formula ¥ => (<t> => (xeXj)) where ¥ 

is arbitrary logically valid formula. 

From this point of view it is possible to say that in experimental sciences entities 
are classified in a such manner that for their properties within certain class a number 
of logical expressions are valid. Or one can say that among properties of entities 
of the same class there exists dependence which can be specified by logical expres­
sions valid whithin this class. 

In usual methods of cluster analysis the entities, which mostly resemble each other, 
are put into the same cluster. Resemblence in some sense is the most usual criterion 
of grouping entities together. In the following we shall state the requirement to group 
entities into clusters in such a way that among the properties describing entities 
strong relations are valid within each cluster. 
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2. DEFINITION OF CLUSTERS 

Properties of elements xx,x2, ... of a set X will be described by formulae of pro-

positional calculus. If all elements x e X have a property V we shall say that the 

atomic formula V is valid. (We denote a property and a corresponding formula 

by the same symbol to simplify our notation; if a property or a formula is concerned 

will be obvious from the context.) Formulae of prepositional calculus consisting 

of atomic formulae V; and logical connectives—, •, v , =>, = will represent assertions 

about properties of elements of the set X. For example, if the formula (V! v V2). V3 

is valid then all elements x eX have the property Vx or V, and that no element 

xeX has the property V3. Formulae will be denoted by capital letters of Greek 

alphabet $, W, .... 

From two properties Vx, V2 one can create any number of formulae. For example 

formulae Vx v V2, (V! v V2) v V2, .... Some of them are equivalent. Formulae 

<PX and <P2 are equivalent iff formula <PX = <P2 is tautology, i.e. iff \-<Px = <P2. For 

example formulae Vx v V2 and Vx . V2 are equivalent. Also formulae Vx v V2 and 

(V! v V2) v V2 are equivalent etc. 

Lemma 2.1. Every formula consisting of properties Vx and V2 only is equivalent 

to one of the following formulae: 

A.L V!-V2, 
A.2. VX.V2, 

A.3. V! . V2 , 

A.4. V! . V2 , 

B.l. V! , 

B.2. Vj , 

B.3. V2, 

B.4. V2 , 

B.5. Vx.V2vVx.V2, 

B.6. Vi • V2 v V! . V2 , 

Proof. Every formula must be equivalent to the one of 16 formulae in disjunctive 

normal form, which can be formed by connection of the rows of truth-value table 

in different way. After their minimalisation we obtain the above mentioned formulae. 

• 
Formulae of group D are not interesting. Formula D.l. is not fulfilled in any class 

of entities and formula D.2. is fulfilled in all non-empty classes. 

Lemma 2.2. For every formula W of group B there exists formula $ of group A 

such that h # => W. Likewise for every formula W of group B there exists formula 0 

of group C such that YW => 0. 

Proof. For every formula of group B we shall find the corresponding formula 

of group A. For example for Vx it may be Vx . V2 since \-Vx . V2 => Vx. 
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C.I. V! V2 , 

C.2. Vx v V2 , 

C.З. Vx v V2 , 

C.4. VXW2, 

D.I. vx . vx, 
D.2. Vx v Vx . 



In the similar fashion for every formula of group C we shall find the corresponding 
formula of group B. For example, for Vt v V2 it may be formula Vt . V2 v Vx . V2 

since YVX . V2 v P, . V2 r> Vx v V2. D 

Lemma 2.3. For none formula <$ of group A there exists formula W of group B 
such that \-Y •=> <P. Likewise for none formula ¥ of group B there exists formula 0 
of group C such, that \-0 => ¥. 

Proof. This lemma could be proved by evaluating truth-values tables for all 
possibilities. 

Let Vt, ..., Vn be n properties. The number of different two element subsets {Vj, Vk) 
of the set {Vu ..., V„) is (w/2). We shall assign to every subset {Vj, Vk) in the range 
of class Xi the weight wt(Vj, Vk) in the following way: 

1) Wi(Vj, Vk) = 5t iff some formula of group A (consisting of properties V,-, Vk) 
is valid in Xt. 

2) w,(Vj, Vk) = 82 iff some formula of group B is valid in X, and no formula 
of group A is valid in X,. 

3) w,(Vj, Vk) = 83 iff some formula of group C is valid in Xt and no formula 
of group A or B is valid in Xt. 

4) Wj(V,-, Vk) = 84 iff formulae of group D.2. only are valid in Xt (i.e. formulae 
Vi v V and Vj v Vj). D 

Suppose 5t < 82 < <53 < <54 are positive real numbers. It follows from Lemma 
2.1, 2.2 and 2.3 that to every {Vj, Vk] one and only one of the numbers 8U 82, 83, <54 

is in the range of X, assigned. 

Definition 2.1. Let X be a set of entities and Vu ..., V„ their properties. For every 

disjoint system {Xu ..., Xm} of X( \J Xt = X, Xt n Xj = 0 for all i,;' = 1, ..., m; 
i = l 

i 4= j) and for any real positive numbers 8t < 82 < 83 < 84 we shall define 
Fdl SA (Xu ...,Xm) in the following way: 

- 6) 
(2.1) Ftl ii(Xl,...,Xm) = YJ I *i{Vj,Vk). 

1=1 j,k=\;j*k 

Set of m clusters {Cu ..., C,„} of the set X is defined as a such disjoint system of sub­
sets of X for which (2.1) achieves its minimum value, i.e. for which 

(2-2) F6 J C 1 , . . . , C m ) = min FSl .4(Xi,. • . .*«) 
lXi,...,Xm}sXm 

is valid. 

Thus it follows by Definition 2.1 that set of clusters is that decomposition 
{Xu ..., Xm] of X, in which the strongest logical expressions consisting of properties 
Vj, Vk are valid. 
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Example 2.1. Let X = {xv x2, x3, x4} be a set and let every element of X be 
characterized by four properties Vv V2, V3, V4 according to the Table 2.1. The set 

Vi v2 Vъ v4 

x l 0 0 0 0 
x

2 
0 1 0 0 

x3 
1 1 0 0 

x4 
1 0 1 1 

*г x2 
F(XVX2) G(XVX2) 

ы ы 
{x2,x3,x4} 21 8 ы ы {xvx3,x4} 23 8 

ы 
{xvx2,x4} 21 8 

ы 
{xvx2,x3} 18 4 

{xvx2} Ы x*ï 21 4 
{xvx3} Ы *Ą 23 6 
Ыx*} {x

2,
 xъ} 21 4 

Ы *г} {xvx3} Ы x4} Ы x3} {*2, *4} 

Ы v2) Vl V! . V2 V! . F 2 v2 v2 
Қ . F 2 V F . V2 

щЫ v2) 2 2 2 2 2 

(Vi, Vз) V.V3 Vъ 
V! . VЗ F . F 3 v3 

V,.. Vз v Vx. F 3 

w,(Vь V3) 1 2 2 2 ' 2 

O i , V4) V.ғ4 v4 
П • V4 v Г. . F4 v4 

vt. V4 v ą . ғ4 

щ(Vi, V4) 1 2 2 2 2 

(V2, Vз) Vъ ^з ^ 2 • v2.v3 
V2 • F 3 V F 2 . V3 

Щ(V2, Vз) 2 2 2 1 2 

(V2, V4) V4 ғ4 ғ2 
V2.V4 V2. F 4 v F 2 . V4 

щ(v2, v4) 2 2 2 1 2 

(Vъ, V4) ғ3.ғ4 ғ3.ғ4 
V3. V4 v F 3 . F 4 F 3 . Ҝ4 VЗ.V4 F 3 .V 4 

w((V3, V4) 

(2) 

1 1 2 1 2 

I щ(Vj,vk) 9 11 12 9 12 
j=l,k=l,j*k 
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X is to be decomposed into two clusters according to the Definition 2.1 and under the 

assumption that 51 = 1, <52 = 2, <53 = 3, <54 = 4. 

All possible disjoint systems {Xx, X2} of X, ( X , u X2 = X,Xtr\X2 = 0 ) are 

in the first two columns of the Table 2.2. In the third column of this table there are 

values of F(X1,X2). (In the following we shall omit <51;..., <54 from the notation 

of FSi,-Axi' • • •> xm) if Si = 1, 52 = 2, 53 = 3, <54 = 4). The values of F(X1, X2) 

are computed in the auxiliary Table 2.3. The values of G(X1,X2) take place in the 

fourth column of the Table 2.2. G(X1,X2) is defined by expression (1.2) and 

if G(X1,X2) is used for decompositions of X, the usual set of clusters is obtained. 

If usual definition of set of clusters is used, then all the following disjoint systems 

of X should be considered as sets of clusters: a) {xt,x2,x3}, {x4}; b) {xt,x4}, 

{x2, x3}; c) {xj, x2}, {x3, x4}. If the Definition 2.1 is used, then only decomposition 

{xlt x2, x3}, {x4} is the set of clusters of X. 

In the following we shall examine the problem of choice of values of 3ly..., 84. 

In the Example 2.1 we have chosen 51 = 1, <52 = 2, <53 = 3, <54 = 4. We shall show 

the result of this choice and we shall see that this choice is in some way natural. 

Theorem 2.4. Let be dt = 1, 82 = 2, 53 = 3, 84 = 4; X, = {x 1 ; ..., x„,} and let 

M(X,) be a matrix 

(vi(Xi), vfa), ...,vn(xt)\ 

Vx(xm), v2(xm),...,vn(xm) 

{x3, x4} {x 1 ; x2, x 3} {xu x2, x4} (x2, x3, x4} {xu x3, x4} 

1 

Vi Vx v V2 F l V2 VI vV 2 Vi v F2 

2 3 3 ' 3 3 

vx 
Vг VІ • Vз v 7X . Fз Vi v F3 VІ v F3 

2 2 2 3 3 

v, V4 V! • V4 F. . F4 VІ v F4 
Vx v V4 

2 2 2 3 3 
V2.V3v V2 v3 % F2 v ғ3 ; Vz • F3 v ғ 2 . v3 

F2 v F3 

2 2 3 2 3 
V2.V4v V2 v4 v4 

F2 v F4 V2 . V4 v V2 . v4 
F2 v V4 

2 2 3 2 3 
VЗ • V4 V F 3 V4 v3.v4 

VЗ • V4 F3 . F4 VЗ • V4 F3 . v4 
Vз . V4 v F 3 . V4 

2 1 2 2 2 

12 12 15 15 17 
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Let M}k(X,) be a submatrix of M(X,) consisting of its two columns j and k. Then the 
value of wt(V}, Vk) is equal to the number of different rows of submatrix M}k(X,). 

Proof, l) Let be w(V}, Vk) = 1. Then one of formulae of group A must be valid 
in classZ,. Let it be for example formula V} . Vk. In this case, all rows of submatrix 
MJk(Xt) must be vectors (1,1). Hence the value of wt(V}, Vk) is equal to the number 
of different rows of submatrix Mjk(X[). We should arrived at the same conclusion 
if we should take into consideration all other formulae of the group A, i.e. Vt . V2, 
V1 . V2 and V . V2. 

2) For values 2, 3, 4 of wt(V}, Vk) we should prove the assertion of this theorem 
in a similar fashion. • 

An immediate consequence of the Theorem 2.4 is that F(XU ..., Xm) equals to the 
sum 

- (") 
£ £ d(MJk(Xt)), 

where d(M}k(Xt)) is the number of different rows of submatrix MJk(Xt). Thus the set 
of m clusters [Cu ..., Cm] is that decomposion of X for which this sum is minimum. 

3. CLUSTER ALGORITHM 

In Sec. 2 the set of clusters was defined. Howewer, the question how to determine 
this set of clusters arises in practice. In the Example 2.1 of Sec. 2, at first, the values 
of F(Xt, ..., Xm) for all possible decompositions of X were computed. Then according 
to (2.2) the decomposition of X, for which the value of F(XU ..., Xm) was minimum, 
was taken as the set of clusters of X. In our example the set X consisted of 4 elements 
only. But in practical situations the set X might consist of hundreds of elements. 
If n denotes the number of elements of X, the number of all possible decompositions 
of X into two classes is 2". The number of all possible decompositions of X into 
more than two classes is much greater. This fact implies, that in the case n K 100, 
the set of clusters could not be determined in a such simple way as in Example 2.1. 
The generation of 2", n « 100 decompositions of set X would not be possible even 
if the most modern computer would be used. 

It should be noted that the same difficulty arises when usual definition of set 
of clusters is used, i.e. if the set of clusters is defined as that decomposition of X 
for which (1.2) attains minimum. Even for this most usual definition of the set 
of clusters, it is not possible to determine the set of clusters, if n x 100. We must 
be content with an approximation attainable by means of a computer. Most often 
this approximation is the result of using ISODATA algorithm [3] or some of its 
modifications. 

In the following we shall put down an algorithm which yields an approximation 
to the set of clusters as defined by Definition 2.1. 



Cluster algorithm. 

1. Let xu x2, ..., xm be m arbitrary elements of X. Then put X° = {xj}, ..., Xm = 

= {*,„}. 

2. Let X\, ...,Xm be sets determined in the r-th step of the algorithm. 
m m 

a) If the set X - \J X\ is non-empty, pick up an arbitrary element xeX - \J X\ 

and compute 

F1(r1u{x},xr
2,...,rm), 

F2(X\,X'2 u{x}, ...,Xr
m), 

Fm(xr
l,r2,...,rmu{x}). 

Let s be the minimum natural number l g s ^ m for which 

F s = min F' 
f e < l , m > 

Then put * r + x = Xr for all i = 1, ..., m; i + s and * r + ' = Z s u {x}. 

b) If the set Z - U Xr
t is empty, the algorithm stops and the set {Xr

u ..., Xm} 

is taken as an approximation to the set of clusters. 

The algorithm described above can be easily modified in the following way. Item 2. 

will be executed for all xe(X - \J X-) and that x will be chosen, for which Fs is 
; = i 

minimum. In the following Algorithm 1 denotes the primary algorithm and Algo­
rithm 2 denotes its modification. 

It is obvious, that if Algorithm 1 is used, the approximation of the set of clusters 
depends on the choice of X°,...,Xm and on the sequence x., ..., xr, ..., where 

xreX — \J X] is the element of X chosen in ?--th step. If the Algorithm 2 is used, 
; = i 

the approximation depends on the sequence Xt,...,Xm only. The realisation of 
Algorithm 2 needs much more computing than a realisation of Algorithm 1. There­
fore we recommend to use the Algorithm 1 more times with different choice of initial 
sets X°, ..., Xm and with different sequences xu ...,Xj If no information about 
the set of clusters is given apriori, initial sets X°, ...,Xm must be chosen randomly. 
The elements Xj of a sequence x t , . . . , Xj,... are to be chosen randomly too. 

To illustrate a behaviour of the Algorithm 1, we shall consider the Example 2.1. 
Initial sets let be X° = { x j and X°2 = {x2}. A sequence of elements, which are 
chosen in the step 2 of the algorithm, let be x2, x3. The process of formation of clusters 
is illustrated in Fig. 3.1. At every vertex sets X\, X2 are put down and inside a ring, 
which denotes a vertex, a corresponding value of F(X\, X2) is written. Between two 
verteces is put down that element x, which is used in the second step of the algorithm 
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for a formation of X] + 1 of X\. In Fig. 3.2 a formation of a set of dusters is illustrated 
for the same choice of initial sets X\, X°, but for a different sequence of elements 
chosen in the step 2 of the algorithm. In this case the sequence is x3, x2. From these 
two figures it is obvious that in the both cases the approximation of set of clusters, 
which is the result of the application of the Algorithm 1, is {Cu C2} i.e. the set 
of clusters itself. 

{X1<X

2}<Ы(§ ( x1 <X3}<K}(17) (18) 

Y \2 {xl}'{x3<x/>} 

® (21) (18; (23) 
{x1,x2,x3)í{x4} {x1,x2)/{x3,x4} {x1/x2,x3}/{xA) {x1/x3]/{x2/x4} 

Fig. 3.1. Fig. 3.2. 

In the last example initial sets X° X° were chosen in a such way that i j c ^ 
andX^ c C2. Suppose n o w l ? = {xx} andZ^ = {x2}. ThenX? c C t andX° c C2 

cannot be both valid. The behavior of the algorithm in this case is illustrated in Fig. 
3.3 for the sequence x3, x4 and in Fig. 3.4 for the sequence x4, x3. We know from 
Sec. 2 that the set {{x1; x2, x3}, {x4}} is the only set of clusters of the set X. But the 
elements x1, x2 were put in the first step of the algorithm into different initial sets. 
Taking into consideration that during a run of the algorithm every element x once 
put into X\ remains there, the elements xx and x2 must remain in different sets. 

(x1 • x
2 } 

QЦ},{x2,xз} 

ы<ьы 

lЫ'íx2'Xз} Hl^ľVЛ { X V X З ' X A } ' Ы {XГX/,}'{X2'xз} 
Fig. 3.3. Fig. 3.4. 
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Therefore decomposition of X, which is a result of the algorithm cannot be the set 
of clusters {C1; C2}, but only its approximation. In effect, for both sequences 
x3, x4 and x4, x3 the resulting decomposition of X is the same. It is decomposition 
{{*i,x4}, {x,,x3}}. 

Fig. 3.5. 

Choice of sets 
vO v o 
Xi , . . . ,X m 

Choice of x e(X-U X r) 
i=1 ' 

Compute F, . . . ,F 

Take minimum s ,1ss<m y 

for which Fs=minF f 

te<1,m> 

Put X- -X- , for 1<i<m 
and i#s ; 

X S =X[ u ( x ) 

Notice that if the set of clusters is defined in the usual way, i.e. according to (1.2), 
then the decomposition {{x1, x4}, {x2, x3}} is the set of clusters of X too. (See Table 
2.2). 

At the end we shall present flow chart of the Algorithm 1 (see Fig. 3.5). Using 
this flow chart a program for computer realising the Algorithm 1 could be work out. 

(Received June 6, 1977.) 
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