Kybernetika

Jan Mareš

A note on Glushkov's algorithm of the synthesis of finite automata

Kybernetika, Vol. 8 (1972), No. 4, (289)--296
Persistent URL: http://dml.cz/dmlcz/124393

Terms of use:

© Institute of Information Theory and Automation AS CR, 1972
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

A Note on Glushkov's Algorithm of the Synthesis of Finite Automata

Jan Mareš

In this paper the problem of the optimalization of one step in the synthesis of finite automata is solved.

Let L be a finite language. Under the synthesis we understand here finding the transition function of a (finite) Moore automaton \mathfrak{N} that represents the language L by some subset of the set of its inner states. An algorithm of this synthesis is given in [1]. For concreteness we have in mind the algorithm mentioned on pages 101 to 102, rules 1 to 4 . In what follows, a knowledge of the algorithm is supposed.

Let Σ be a finite alphabet, i.e. a finite nonempty set of arbitrary symbols. Denote by Σ^{*} the set of all strings over Σ. Consider the set \mathfrak{F} of all such regular expressions over Σ which involve only operations sum (denoted by the symbol +) and catenation (denoted by juxtaposition) - except symbols belonging to Σ and parentheses, of course. Every such a regular expression will be referred to as "expression".

Each expression represents some finite language in the following sense: We say that an expression R represents a language L iff $|R|=L$, where the operation $|\ldots|$ is defined as follows (R_{1}, R_{2} are expressions):

$$
\begin{gathered}
|\alpha|=\{\alpha\} \text { for each } \alpha \in \Sigma^{*} \\
\left|R_{1}+R_{2}\right|=\left|R_{1}\right| \cup\left|R_{2}\right| \\
\left|R_{1} R_{2}\right|=\left\{\alpha \beta|\alpha \in| R_{1}|\wedge \beta \in| R_{2} \mid\right\} .
\end{gathered}
$$

Every finite language is, of course, represented by many various expressions yielding, after applying the algorithm to them, automata with various numbers of states. Our effort will consist in searching for such an expression which yields an automaton \mathfrak{N} with as few states as possible. However, this automaton $9 \mathbb{I}$ is not "absolutely" minimal (in accordance with [1], p. 135). On the other hand, there are algorithms that, for finite languages, construct automata which are minimal; see e.g. [3]. Thus
the automaton \mathfrak{A} is "minimal" only in the set of all automata which can be obtained by the mentioned Glushkov's algorithm.

We confine ourselves (obviously without loss of generality) to languages not containing the empty string.

Let R be an expression. Denote by $\mathfrak{g l}(R)$ the automaton that is obtained by applying the algorithm to the expression R. Furthermore denote by $\sigma(R)$ the number of states of $\mathfrak{Y l}(R)$. Finally, if L is a language, put

$$
\varrho(L)=\left\{{ }_{\{ } R \in \mathfrak{F}| | R \mid=L\right\} .
$$

The Formulation of the task:
To find, for an arbitrary finite language L, its minimal form, i.e. such an expression $R_{M} \in \varrho(L)$ that

$$
\sigma\left(R_{M}\right)=\operatorname{Min}_{R \in Q(L)} \sigma(R)
$$

Assume $R, S \in \mathscr{F}$. In what follows, by $R=S$ we denote the fact that $|R|=|S|$. On the other hand, under the identity $R \equiv S$ we understand "graphical identity" of R, S, i.e. R and S are equal as strings over the "extended" alphabet Σ_{0} containing, except symbols belonging to Σ, symbols + , left parenthesis and right parenthesis.

Let $R \equiv y_{1}, \ldots, y_{m}$ be an expression (of course, here the symbols y_{1}, \ldots, y_{m} belong to Σ_{0}). Each expression $y_{k} y_{k+1}, \ldots, y_{t}$, where $1 \leqq k \leqq t \leqq m, y_{k-1} \nsubseteq \Sigma$ or $y_{k} \notin \Sigma$, and at the same time, $y_{t} \notin \Sigma$ or $y_{t+1} \notin \Sigma$, we call a subexpression of R.

Assume $R, S, T \in \mathscr{F}$. The following identities are true.
I_{1}

$$
\begin{aligned}
R+R & =R \\
(R+S)+T & =R+(S+T) \\
(R S) T & =R(S T) \\
R+S & =S+R \\
R(S+T) & =R S+R T \\
(R+S) T & =R T+S T
\end{aligned}
$$

Moreover, these identities are complete in the following sense. If $R, S \in \mathfrak{F},|R|=$ $=|S|$, then there is a sequence R_{1}, \ldots, R_{m} such that $R_{1} \equiv R, R_{m} \equiv S$ and for each i, $1 \leqq i \leqq m-1, R_{i+1}$ arises from R_{i} by applying identity I_{j} for suitable $j, 1 \leqq j \leqq 6$.
(We say that $V \in \mathscr{F}$ arises from $U \in \mathscr{F}$ by applying identity $\mathrm{I}_{i}(1 \leqq i \leqq 6)$ iff the following condition is true:

If we replace the symbols R, S, T of one side of I_{i} by suitable expressions in such a way that some subexpression U_{0} of U is obtained, then V arises from U by replacing U_{0} by V_{0}, where V_{0} arose from the other side of I_{i} by the same replacing of R, S, T as U_{0} did.)

In what follows, we shall consider (without any loss of generality) only such expressions in which parentheses will be written if and only if this is necessary for the correct interpretation of the expression (as regards representation). Thus identities I_{2} and I_{3} can be omitted.

Let R be an expression. If it is possible to apply to $R \mathrm{I}_{5}$ or I_{6} from left to right, denote the expression arisen in such a way by ${ }^{L} R$ or by R^{R} respectively. On the other hand, if it is possible to apply to R several times I_{4} and then (once) I_{5} or I_{6} from right to left, denote the expression obtained in such a way by ' R or by R^{\prime} respectively; if this is not possible (i.e. after no multiple application of I_{4} is it possible to apply I_{5}), put ${ }^{\prime} R \equiv R$ or $R^{\prime} \equiv R$. (Of course, in general there are many expressions that can be denoted by ' R or R^{\prime}.)

It is easy to show that

(1) if $R, S \in \mathfrak{F}$ and S arises from R by applying I_{4}, then $\sigma(S)=\sigma(R)$.

If $T \in \mathfrak{F}$, denote by $\mathscr{S}(T)$ the set of all states of the automaton $\mathfrak{V r}(T)$.
Now let R be an expression for which some ' $R \neq R$ and examine the relation between the numbers $\sigma(R)$ and $\sigma\left({ }^{\prime} R\right)$. Due to (1) we can confine ourselves to that case, when ' R arises from R by applying I_{5} only (from right to left), i.e. by replacing $S P_{1}+S P_{2}$ by $S\left(P_{1}+P_{2}\right)$, where $S, P_{1}, P_{2} \in \mathscr{F}$. Write down some places and indices in R and ' R. Corresponding parts have the forms

$$
\begin{align*}
& \left|\underset{I}{\mid} \underset{J_{1}}{ }\right| P_{1}\left|+\left|\underset{I}{S}{\underset{J}{J}}^{P_{2}} P_{2}\right|\right. \tag{2}\\
& |\underset{J}{S}|\left(\left|P_{1}\right|+\left|P_{J_{2}}\right|\right) \mid
\end{align*}
$$

where I, J_{1}, J_{2} are sets of indices.
Consider, how (2) differs from (3), i.e. R from ' R. Let M or N be the set of all principal indices in the expression denoted by the first of the second occurrence of S from left in (2), respectively. Assume M is (at the same time) the set of all principal indices in the expression denoted by S in (3).

If in (2) $m \in M x_{m}$-follows $m^{\prime} \in I \cup M$ and $n \in N x_{m}$-follows $n^{\prime} \in I \cup N$, clearly in (3) only $m x_{m}$-follows m^{\prime} (index n does not occur in (3)). In such a way it is possible to assign to each $m \in M$ an $n \in N$ corresponding to it and vice versa (M and N have the same number of elements). Further $J_{2}=J_{1}$. There are no other differences.

The states of the automata $\mathfrak{P Y}(R)$ and $\mathfrak{P}\left({ }^{\prime} R\right)$ consist of sets of (principal) indices of R and ' R. The set $\mathscr{S}\left('^{\prime} R\right)$ is obtained from $\mathscr{S}(R)$ in such a way that each index $n \in N$ is replaced in all states of $\mathscr{S}(R)$ by the corresponding index $m \in M$. From two different states arise two different ones again. Really, an arbitrary state $s \in \mathscr{S}(R)$ contains index n if and only if s contains the index m which corresponds to n. Thus by replacing n by m we get from two different sets of indices two different ones, too.

Hence

$$
\begin{equation*}
\sigma\left({ }^{\prime} R\right)=\sigma(R) \tag{4}
\end{equation*}
$$

We call here every mapping F from Σ^{*} to $N \cup\{0\}$ (where N is the set of all positive integers) a (finite) family iff $F(\alpha)>0$ for a finite number of strings $\alpha \in \Sigma^{*}$ only.

If F, G are families, define:

$$
F=G \quad \text { iff } \quad \forall \alpha \in \Sigma^{*}(F(\alpha)=G(\alpha)),
$$

$$
\begin{array}{lll}
(F \oplus G)(\alpha)=F(\alpha)+G(\alpha) & \text { for each } & \alpha \in \Sigma^{*} \\
(F \oplus G)(\alpha)=F(\alpha)-G(\alpha) & \text { for each } & \alpha \in \Sigma^{*}
\end{array}
$$

$F \ominus G$ is defined only for such families F, G, for which $F(\alpha) \geqq G(\alpha)$ for each $\alpha \in \Sigma^{*}$. Clearly, every family F can be characterized by a finite list \mathscr{L}_{F} of exactly those strings $\alpha \in \Sigma^{*}$ for which $F(\alpha)>0$; in this list \mathscr{L}_{F} each $\alpha \in \Sigma^{*}$ occurs $F(\alpha)$-times. Two lists which differ only in the order of strings are supposed to be identical.
E.g. if $F(\alpha)=2, F(\beta)=1, F(\gamma)=3$ and $F(\xi)=0$ for $\xi \in \Sigma^{*}-\{\alpha, \beta, \gamma\}$, we write $\mathscr{L}_{\mathrm{F}}=[\alpha, \alpha, \beta, \gamma, \gamma, \gamma]$.

In what follows, we speak about \mathscr{L}_{F} 's themselves as about "families". Each finite set $A \subset \Sigma^{*}$ will be understood as a family that contains each string $\alpha \in \Sigma^{*}$ at most once.

Each expression which is a sum of several nonempty strings (belonging to Σ^{*}) is said to be a polynomial.

Obviously, every expression R is unbracketetable to a polynomial, i.e. there is a sequence R_{1}, \ldots, R_{m} such that

$$
R_{1} \equiv R, \quad R_{i+1} \equiv \bar{R}_{i}
$$

where either $\bar{R}_{i} \equiv{ }^{\mathrm{L}} R_{i}$ or $\bar{R}_{i} \equiv R_{i}^{\mathrm{R}}(i=1, \ldots, m-1)$ and R_{m} is a polynomial.
If P is a polynomial, $P \equiv \alpha_{1}+\ldots+\alpha_{n}, \alpha_{i} \in \Sigma^{*}(i=1, \ldots, n)$, put $\|P\|=$ $=\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right] .(\|P\|$ is a family. $)$

Let R be an expression and let F be a family. We write $\|R\|=F$ iff R is uribracketetable to a polynomial P such that $\|P\|=F$. (Clearly, it is not possible that R is unbracketetable to polynomials P_{1} and P_{2} such that $\left\|P_{1}\right\| \neq\left\|P_{2}\right\|$.)

Each expression R for which $\|R\|=|R|$ is said to be simple.

Lemma. Let R be an arbitrary expression. There is a simple expression S such that $|S|=|R|$ and $\sigma(S)=\sigma(R)$.

Proof. (In the proof a knowledge of the notion TotF is necessary; see [2] for it.) Assume R is not simple. By [2] (Theorem 1) there is a sequence $R_{1}, \ldots, R_{p n}$ such that $R_{1} \equiv R, R_{i+1} \equiv{ }^{\mathrm{L}} R_{i}$ and R_{m} has the form $\operatorname{TotF}(i=1, \ldots, m-1)$. At the same time by (4) it is $\sigma\left(R_{m}\right)=\sigma(R)$ and of course $\left\|R_{m}\right\|=\|R\|$.

Because R is not simple, there is $\alpha \in \Sigma^{*}, \alpha \equiv x_{1}, \ldots, x_{p}$ such that $\|R\|=\left\|R_{m}\right\|=$ $=[\alpha, \alpha, \gamma, \ldots]$.
Clearly, it is sufficient to prove that there is $S_{m} \in \mathscr{F}$ such that

$$
\sigma\left(S_{m}\right)=\sigma\left(R_{m}\right) \quad \text { and } \quad\left\|S_{m}\right\|=\left\|R_{m}\right\| \ominus[\alpha]
$$

Assume $R_{m} \equiv y_{1}, \ldots, y_{d}\left(y_{i} \in \Sigma_{0}\right)$; each subexpression $T \equiv y_{d_{1}}, \ldots, y_{d_{2}}$ of R_{m} such that $y_{d_{1}-1}$ is the left parenthesis, $y_{d_{2}+1}$ is the right parenthesis and for no $i, d_{1} \leqq$ $\leqq i \leqq d_{2}, y_{i}$ is a parenthesis, is called a minimal subexpression of R_{m}. (Clearly, T is a polynomial.)
Suppose that T_{1}, \ldots, T_{k} are all minimal subexpressions of R_{m}. If $\delta \in \Sigma^{*}$ (possibly $\delta \equiv \Lambda ; \Lambda$ denotes the empty string), and T is a polynomial, $T \equiv \delta_{1}+\ldots+\delta_{q}$, put $\|T\|\|\delta\|=\left[\delta_{1} \delta, \ldots, \delta_{q} \delta\right]$. It is not difficult to verify that

$$
\left\|R_{m}\right\|=\left\|T_{1}\right\|\left\|\eta_{1}\right\| \oplus \ldots \oplus\left\|T_{k}\right\|\left\|\eta_{k}\right\| \oplus\left[\beta_{1}, \ldots, \beta_{h}\right]
$$

where $\eta_{1}, \ldots, \eta_{k}, \beta_{1}, \ldots, \beta_{h} \in \Sigma^{*}$ are suitable strings, $k \geqq 0, h \geqq 0$. Put $T_{0} \equiv$ $\equiv \beta_{1}+\ldots+\beta_{h}, \eta_{0} \equiv \Lambda$.
Thus there are $r, s, r \neq s, 0 \leqq r \leqq k, 0 \leqq s \leqq k$ such that

$$
\left\|T_{r}\right\|\left\|\eta_{r}\right\| \oplus\left\|T_{s}\right\|\left\|\eta_{s}\right\|=[\alpha, \alpha, \gamma, \ldots]
$$

Now there are two possibilities: either

$$
T_{r} \equiv \ldots+x_{1} \ldots x_{t_{1}}+\ldots, \quad \eta_{r} \equiv x_{t_{1}+1} \ldots x_{p}
$$

and

$$
T_{s} \equiv \ldots+x_{1} \ldots x_{t_{2}}+\ldots, \quad \eta_{s} \equiv x_{t_{2}+1} \ldots x_{p}
$$

or

$$
\begin{gathered}
T_{r} \equiv \ldots+x_{1} \ldots x_{t_{1}}+\ldots+x_{1} \ldots x_{t_{2}}+\ldots \\
\eta_{r} \equiv x_{t_{1}+1} \ldots x_{p} \equiv x_{t_{2}+1} \ldots x_{p}
\end{gathered}
$$

and $t_{1} \leqq t_{2}$.
Assume that S_{m} arises from R_{m} by deletion of the string $x_{1} \ldots x_{t_{1}}$ (without any other change). Clearly $\left\|S_{m}\right\|=\left\|R_{m}\right\| \ominus[\alpha]$.

$$
\begin{aligned}
& R_{m} \equiv \ldots\left(\ldots+\xi_{1}+x_{1}^{1} \ldots x_{t_{1}}^{1}+\xi_{2}+\ldots\right) \ldots\left(\ldots+x_{1}^{2} \ldots x_{t_{2}}^{2}+\ldots\right) \ldots \\
& S_{m} \equiv \ldots\left(\ldots+\xi_{1}+\xi_{2}+\ldots\right) \ldots\left(\ldots+x_{1}^{3} \ldots x_{t_{2}}^{3}+\ldots\right) \ldots
\end{aligned}
$$

(upper indices are only for distinguishing the same symbols in various places; $\left.\xi_{1}, \xi_{2} \in \Sigma^{*}\right)$.
It is obvious that $x_{1}^{1}, x_{1}^{2}, x_{1}^{3}$ have the same "preindex", namely 0 . Denote by $\iota\left(x_{i}^{j}\right)$ the index of x_{i}^{j}. Clearly, $S_{1} \in \mathscr{S}\left(R_{m}\right)$, where $S_{1}=\left(\iota\left(x_{1}^{1}\right) \vee \iota\left(x_{1}^{2}\right) \vee \ldots\right)$; hence
$S_{2} \in \mathscr{S}\left(R_{m}\right)$, where $S_{2}=\left(t\left(x_{2}^{1}\right) \vee \imath\left(x_{2}^{2}\right) \vee \ldots\right)$ etc.; finally $S_{t_{1}} \in \mathscr{S}\left(R_{m}\right)$, where $S_{t_{1}}=\left(\imath\left(x_{t_{1}}^{1}\right) \vee \iota\left(x_{t_{1}}^{2}\right) \vee \ldots\right)$. It is easy to see that no other state $s \in \mathscr{S}\left(R_{m}\right)$ contains any of the indices $\imath\left(x_{1}^{1}\right), \ldots, t\left(x_{t}^{3}\right)$.

Assume $\mathscr{S}\left(R_{m}\right)=Q \cup\left\{s_{1}, \ldots, s_{t_{1}}\right\}, \quad Q \cap\left\{s_{1}, \ldots, s_{t_{1}}\right\}=\emptyset$. Then $\mathscr{S}\left(S_{m}\right)=$ $=Q \cup\left\{\tilde{s}_{1}, \ldots, \tilde{s}_{t_{1}}\right\}, Q \cap\left\{\tilde{s}_{1}, \ldots, \tilde{s}_{t_{1}}\right\}=\emptyset$ again, where \tilde{s}_{i} arises from s_{i} by replacing the couple $t\left(x_{i}^{1}\right) \vee t\left(x_{i}^{2}\right)$ by $t\left(x_{i}^{3}\right)\left(i=1, \ldots, t_{1}\right)$. Furthermore, because no s_{j} contains $u\left(x_{i}^{3}\right)\left(i, j=1, \ldots, t_{1}\right)$, it is $\tilde{s}_{u} \neq \tilde{s}_{v}$ for $u \neq v\left(u, v=1, \ldots, t_{1}\right)$. Hence

$$
\sigma\left(S_{m}\right)=\sigma\left(R_{m}\right) .
$$

(i As follows from the lemma when searching for a minimal form, we can confine ourselves to simple expressions only. Really, if some $R \in \mathscr{F}$ that is not simple is a minimal form, by the lemma there exists such a simple $S \in \mathfrak{F}$ that S is a minimal form (of the same language), too.

Let P be a polynomial. If we apply several times identity I_{6} from right to left to P (i.e. we form a sequence P_{1}, \ldots, P_{m}, where $P_{1} \equiv P, P_{i+1} \equiv P_{i}^{\prime}(i=1, \ldots, m-1)$), it is easy to see that here T in I_{6} represents only strings belonging to Σ^{*} (not arbitrary expressions).

Now let R be an expression and examine the relation between the numbers $\sigma(R)$ and $\sigma\left(R^{\prime}\right)$ under the special condition mentioned above, i.e. R^{\prime} arises from R by replacing P by P^{\prime}, where $P \equiv P_{1} \alpha+P_{2} \alpha, P^{\prime} \equiv\left(P_{1}+P_{2}\right) \alpha$ and $\alpha \equiv x_{1} \ldots x_{k}$, $\alpha \in \Sigma^{*}$. Write down some places and indices in P and P^{\prime} :

$$
\begin{equation*}
\left.\left|P_{1}\right| x_{m}\right|_{m+1} x_{m+2} x_{2} \underset{m+k}{ } \ldots\left|x_{k}\right|_{n}+\left|P_{2}\right| x_{1}\left|x_{n+1} x_{2}\right|_{n+2} \ldots\left|x_{k}\right|, \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\mid\left(\left|P_{1}\right| \underset{\substack{m \\ n \\ m}}{\left.\left|P_{2}\right|\right) \mid} x_{1}| |_{m+2} x_{2}|\ldots| x_{m+k} .\right. \tag{6}
\end{equation*}
$$

Consider, how (5) differs from (6), i.e. R from R^{\prime}. In (5) $n+1 x_{1}$-follows n, ir (6) $m+1 x_{1}$-follows n. Further, in (5) $m+i+1$ or $n+i+1 x_{i+1}$-follows $m+i$ or $n+i$, respectively, while in (6) only $m+i+1 x_{i+1}$-follows $m+i(i=1, \ldots$ $\ldots, k-1$). There are no other differences.

Thus the set $\mathscr{S}\left(R^{\prime}\right)$ is obtained from $\mathscr{S}(R)$ by replacing index $n+i$ in all states belonging to $\mathscr{S}(R)$ by index $m+i(i=1, \ldots, k)$. Hence (because due to the replacing two or more identical states can arise)

$$
\begin{equation*}
\sigma\left(R^{\prime}\right) \leqq \sigma(R) \tag{7}
\end{equation*}
$$

In general, the inequality \leqq in (7) cannot be replaced by $<$. The latter one, however, holds in "most" of concrete cases, as it can be proved.

Let R be a polynomial and let R_{1}, \ldots, R_{m} be a sequence of expressions such that $R_{1} \equiv R, R_{i+1} \equiv R_{i}^{\prime}(i=1, \ldots, m-1)$ and $R_{m}^{\prime} \equiv R_{t r}$. Then the expression R_{m} is called total right bracketing of R.

Assume an arbitrary finite language L is given. It is possible in many ways to form a polynomial that represents L. (We simply write down all strings of L in an arbitrary order and place between every two neighbouring strings the symbol +.) Further, to each such polynomial there exist various total right bracketings of it. We show, however, that all such bracketings yield automata with the same number of states and that each such bracketing is a minimal form of the language L.

Really, let P_{1}, P_{2} be arbitrary polynomials that represent the language L and let T_{i} be an arbitrary total right bracketing of $P_{i}(i=1,2)$. It is clear that e.g. T_{2} is also a total right bracketing of P_{1}. (Really, by definition of P_{1}^{\prime} it is possible to apply to P_{1} firstly several times identity I_{4}; in such a way P_{2} can be obtained.)
In [2] (Theorem 3) it is proved that every two total right bracketings of an arbitrary polynomial can be obtained each from the other by multiple application of the identity I_{4}. Whence and by (1) it follows that

$$
\sigma\left(T_{1}\right)=\sigma\left(T_{2}\right)
$$

Now suppose there is given an arbitrary (simple) expression $R \in \varrho(L)$. In [2] (Theorem 1) it is proved, that there is a sequence $P_{1}, \ldots, P_{m}, S_{1}, \ldots, S_{n}$ such that $P_{1} \equiv R, P_{i+1} \equiv{ }^{\mathrm{L}} P_{i}, S_{1} \equiv P_{m}, \quad S_{j+1} \equiv S_{j}^{R}(i=1, \ldots, m-1 ; j=1, \ldots, n-1)$ and S_{n} is a polynomial.

By (4) we then have

$$
\begin{equation*}
\sigma\left(P_{m}\right)=\sigma(R) \tag{8}
\end{equation*}
$$

(if $P_{i+1} \equiv{ }^{\mathrm{L}} P_{i}$, then ${ }^{\prime} P_{i+1} \equiv P_{i}$).
Further, there is a sequence $R_{1}, \ldots, R_{k}(k \geqq n)$ such that $R_{1} \equiv S_{n}, R_{i+1} \equiv R_{i}^{\prime}$ $(i=1, \ldots, k-1) . R_{k}^{\prime} \equiv R_{k}$ and at the same time $R_{i} \equiv S_{n-i+1}(i=1, \ldots, n) ;$ particularly, $R_{n} \equiv S_{1} \equiv P_{m}$.

Hence and by (7)

$$
\sigma\left(R_{k}\right) \leqq \sigma\left(P_{m}\right)
$$

and then (by (8))

$$
\sigma\left(R_{k}\right) \leqq \sigma(R)
$$

(The formula (7) can be applied because in [2] the results we use were proved under the same special condition as (7) was.)

Thus the number of states of $\mathfrak{H}(R)$ is not less than the number of states of $\mathfrak{g r}(T)$, where T is some (and then arbitrary) total right bracketing of a polynomial P which represents the language L. Hence each total right bracketing of P is a minimal form of the language L.
[1] В. М. Глушков: Синтез цифровых автоматов. Физматгиз, Москва 1962.
[2] J. Mareš: Two Properties of Expressions in a Certain Free Universal Algebra. (In Czech.) Kybernetika 5 (1969), 3, 190-200.
[3] J. A. Brzozowski: Derivatives of Regular Expressions. Journa! of ACM 11 (1964), 481-494.

VÝTAH
Poznámka ke Gluškovovu algoritmu syntézy konečných automatů

Jan Mareš

Při syntéze konečného automatu pomocí regulárních výrazủ závisí počet vnitřních stavů konstruovaného automatu na tvaru regulárního výrazu, od kterého při syntéze vycházíme. V tomto článku je ukázáno, jak lze k libovolnému konec̆nému jazyku L nalézt takový regulární výraz R (reprezentující jazyk L), který je minimálni v tom smyslu, že je-li S libovolný jiný regulární výraz reprezentující jazyk L, není počet stavů automatu zkonstruovaného pomocí S menší než počet stavů automatu zkonstruovaného pomocí R.

Jan Mareš, Matematický ústav ČSAV (Institute of Mathematics -- Czechoslovak Academy of Sciences), Z̆itná 25, Praha 1.

