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ON ONE NP-COMPLETE PROBLÉM 

J I Ř Í D E M E L AND M A R I E DEMLOVÁ 

Let S be a finite set, and R be a set of three element subsets of S. An element r of R 
is interpreted as a production rule which enables to derive one of the elements of r from 
the others. A subset X C S is conflicting if an element of S can be derived from X in 
two different ways. The problem of finding a largest non-conflicting subset is shown to be 
NP-complete. 

Let 5 be a finite set; its elements will be called constants. Let R be a set of three 
element subsets of S. We interpret an element r — {a,6,c} 6 R as a production 
rule, which enables us to derive a value of any constant in r from the values of the 
remaining two constants. 

Informally, we say that a subset of constants X C S is conflicting if there is a 
constant which can be derived from X in two different ways. The problem treated 
here is to find, for a given set R of production rules, the largest non-conflicting set 
of constants. We show that this problem is NP-complete. 

Let us point out that the problem is motivated by the study of models and 
useful constrains for qualitative physics. This is a new field of AI searching for an 
appropriate formalism supporting common sense reasoning, see [2] for a brief survey 
of this topic. The variables in the qualitative methodology are supposed to have 
only a fixed set of discrete values; mutual relations among variables are expressed 
by a limited set of dependencies (or constraints). The simplest constrains can be 
defined by the production rules mentioned above. The problem of existence of a non-
conflicting set of a given size arises when trying to define a partially specified model 
for a given set of production rules, i.e. to find an evaluation of the set of variables 
corresponding to constraints given by production rules and the partial specification. 
The evaluation of a variable is called here a constant. 

First, let us give some formal definitions. Let 5 be a non-empty finite set of con
stants, R be a set of production rules and X a non-empty subset of S. A derivation 
D from X is a finite sequence of ordered triples {(a,, 6,, Ci)}f=1 such that: 

1. Members of each triple a;,6i,c,- form a production rule, i. e. {a.,6,-,c.} g R. 
The third element, c;, we consider to be derived from a,-, 6,-. 
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2. Each of the first two members of any triple is either in X or has been derived 
earlier, i. e. a;,&; £ X U { C J | 1 < j < i}. 

The integer k is called the length of the derivation. An element y £ S is derived 
from X by the derivation D if y = c; for some i. We say that all elements of X are 
derived from X by the empty derivation. 

A minimal derivation of an element y £ S from X is a derivation which derives 
y and it has no proper non-empty subderivation which derives y from X (i.e. we 
cannot omit any triples to get a smaller non-empty derivation of y from X). Every 
empty derivation is considered to be also a minimal one. Note that for every non
empty minimal derivation of y of the length k we have y = c j , k < \S\ and y £ 
{ai,bi,a\i< k}. 

Two derivations are called equivalent if their sets of production rules are equal. 
A set of constants X is called conflicting with respect to the set of rules R if 

there is an element of S which is derived by two non-equivalent minimal derivations 
from X. 

P r o p o s i t i o n 1. If there is an element y £ X which is derived by a non-empty 
derivation from X then X is conflicting. 

P r o o f . The proof is trivial; non-empty derivation of y contains a non-empty 
minimal one. The second minimal derivation is the empty one. • 

Corollary 1. If there is a production rule {a,b,c} £ R such that {a,b,c} C X 
then X is conflicting with respect to R. 

For a given set of constants X C S and a set of production rules R the following 
simple polynomial algorithm decides whether X is conflicting with respect to R. 

Algorithm 1 . 
{Input: sets S, R and X as described above.} 
{Auxiliary variables:} 
{Z is the set of constants that has been derived so far.} 
{D is a derivation which derives all elements of Z.} 
{finished is a boolean variable indicating end of computation.} 
{conflict is a boolean variable indicating discovery of a conflict.} 
begin 

D :=<H;Z :=X; 
finished := false; conflict := false; 
while not finished do 

begin 
finished := true; 
for all r £ R do 

if \r D Z\ = 3 and r is not in D then conflict := true; 
else if \r n Z\ = 2 then 

begin 
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denote a, b, c the elements of r such that {c} = r\Z; 
append ordered triple (a,b, c) to D; 
Z := ZU{c}; 
finished :— false; 

end; 
end; 

if conflict then write ("conflicting") 
else write ("non-conflicting"); 

end. 

T h e o r e m 1. For a given set of constants X C S and a set of production rules R 
the Algorithm 1 decides in polynomial time whether X is conflicting with respect to 
R. 

P r o o f . The time bound follows from the fact that the while-loop is repeated at 
most ( | S \ X | + l)-times. 

Let us prove the correctness. 
a) Assume that the algorithm answered "conflicting". Let r = {a, b, c} be the rule 

for which the variable conflict changed its value from false to true, i. e. \r n Z\ = 3, 
s o r a . 

If r C X then X is conflicting by Corollary 1. 
Let r % X. Then, without loss of generality we can assume that c £ Z\X 

and each of a, b either belongs to X or was derived by D earlier than c. Denote 
t = (p, q, c) the triple of D which derives c. Since r £ D it must hold {p, q} / {a, b}. 
Denote by D\ the minimal non-empty derivation of c obtained from D by omitting 
some triples. Note that t is the last triple in D\. The second minimal derivation 
D2 of c we obtain from D by replacing t by (a, b, c) and then omitting unnecessary 
triples. Derivations D\, D2 are non-equivalent, hence X is conflicting. 

b) Now, assume that the algorithm answered "non-conflicting". Then all con
stants which have a derivation from X are derived by D and all rules which can be 
used in any derivation from X are used in D. Let us prove that X is not conflicting 
in this case. 

Assume for contrary that X is conflicting. Then there is a constant y with two 
non-equivalent minimal derivations D\, D2 from X. Without loss of generality we 
can assume that the sum of lengths of D\, D2 is minimal. Denote by B the set of 
all rules used in at least one of D\, D2. 

Each constant which is contained in a rule from B is either in X or it is contained 
in at least two different rules of B. Indeed, for y it follows from the minimality of the 
sum of lengths: the last rules of D\ and D2 must be different. For other constants 
it follows from the minimality of derivations D\, D2: a constant x $• X, x ^ y is 
derived by a rule from B and (since x / y and D\, D2 are minimal) is used by at 
least one other rule from B. 

Let (a, b, c) be the last triple in D which is a use of a rule from B. Each of the 
constants a, b, c either is in X or it appeared in some earlier triple of D. So, the algo
rithm instead of appending (a, b, c) to D had to discover a conflict, a contradiction. 

• 
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P r o b l e m 1. Given a set of constants S, a set of rules R and an integer K. Decide 
whether there exists a non-conflicting set X C S with respect to R with \X\ > K. 

T h e o r e m 2. The Problem 1 is NP-complete. 

P r o o f . First, the problem belongs to the class NP: One can non-deterministi-
cally guess a set X with at least A' elements and use the above algorithm to verify 
(in a polynomial time) that X is non-conflicting with respect to R. 

To prove that Problem 1 is NP-complete we show that the following well-known 
NP-complete problem [1] can be polynomially reduced to Problem 1. 

The Independent Set Problem: For a given undirected graph G and a 
given integer A', does there exist an independent set X of vertices with 
|X | > K. (A set ofvertic.es is independent if it contains no two adjacent 
vertices.) 

Let us have an undirected graph G and an integer A', we shall construct an 
instance of the Problem 1. 

First, the Independent Set Problem can be easily reduced to a slightly restricted 
version in which the graph has no isolated vertices and A > 3. (Each isolated vertex 
can be replaced by a pair of adjacent vertices.) 

Hence, let G = (V, E), where V is the set of vertices, E is the set of undirected 
edges. Take three new elements p,q,r ^ V and define a set of constants S and a set 
of production rules R as follows: 

S = VU{p,q,r] 
R = {{v,w,t}\{v,w} g E and i. g {p,q,r}} 

U{{p,?,r}} 

To prove the Theorem it suffices to show that for every X C S with at least three 
elements we have 

(*) X is a non-conflicting set with respect to R if and only if X C V and X is 
independent in G. 

One implication is clear; any independent set X C V in G with \X\ > 3 is 
non-conflicting with respect to R since nothing can be derived from X. 

Let us prove the other implication. Let X C S be a non-conflicting set with 
respect to R and let \X\ > 3. 

a) First, we shall show that X C V. Since X is non-conflicting and {p, q, r} g R, 
we get that {p, q, r} g X (see Corollary 1). Since \X\ > 3 we have that X contains 
at least one element v of V. Note that v is adjacent to at least one other vertex 
w g V. Now, assume for contradiction, that Xf~\{p, q, r} is non-empty. Without loss 
of generality we assume that p g X. If w g X then {v,w,p} C X, a contradiction 
(see Corollary 1). If w ^ X consider the following two derivations from X: 

(1) (v,p,w),(v,w,q),(p,q,r) 
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(2) (v,p,w),(v,w,r) 

T h e y are clearly m i n i m a l and non-equiva len t . T h u s X is conflicting, a con t rad ic t ion . 

Therefore X l~l {p, q, r} is e m p t y and X CV. 

b) I t r e m a i n s to prove t h a t X is an independen t set of vertices in G. Assume t h a t 

the re exist v,w £ X w i th {v, w} £ E. T h e n the following two min imal der iva t ions 

of r from X are non-equiva len t : 

(3) (v,w,p),(v,w,q),(p,q,r) 

(4) (v,w,r) 

T h u s aga in X is conflicting, a con t rad ic t ion . 

Hence , we have proved (*) which concludes t he proof of t he T h e o r e m . • 

(Received December 31, 1993.) 
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