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KYBERNETIKA-VOLUME 24 (1988), NUMBER 1 

DISCRETE MARGINAL PROBLEM 
FOR COMPLEX MEASURES 

FRANTISEK MATUS 

This paper contains complete analysis of the problem to find all complex measures (on the 
Cartesian product of a finite system of finite nonempty sets) for every from which a family of its 
marginal measures is identical with a given family of complex measures. The transform mapping 
every density of the complex measure into the family of its marginal densities, called here the 
discrete Radon transform, is considered together with its dual transform and their inversions 
are given in effective forms. Illustrating examples are added. 

1. FORMULATION OF THE PROBLEM 

Let n = 2 be an integer, N = {1, 2,..., n}, and for/ e JV let G} = {0, 1 , . . . . m} -1), 
where nij = 2 is an integer too. For every subset / c JV we define G7 = X &i being 

Jel 

the Cartesian product of the sets Gs, j eI;GN = G, G0 = {0} (0 is used instead 
of 0 in all indices). Elements of Gr will be denoted at, b,, Cj and for a7 = 
= (aj)jeI e Gj, Oj e Gj, the symbol aJ (J c J) will denote an element of Gj formed 
from a j by the projection on Gj, namely aJ = (a^)jeJ; a\ = ar, a° = 0 (index N 
will be omitted by every type of notation). 

Assuming that LI is a complex measure on G (we consider the cr-algebra on every 
finite set is simply the system of all its subsets), let / / (iczN) be its marginal measure, 
i.e. the measure on G7: 

VAt c Gj: II'(AJ) = n(Aj x G„_f) = £ n({b}). 
bsCbieAx 

Let a non-empty system s4 of subsets of N and a family (HJ)ISS^ of complex measures 
(iij on Gj) be given. The discrete marginal problem for complex measures may be 
now formulated precisely; we look for all complex measures p on G holding VJ e &£ 
ti1 = HJ, i.e. having the given family of complex measures as the family of its marginal 
measures. 

This problem was solved (probably first) by Kellerer in [1], where a necessary 
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and sufficient condition for solvability and a formula foi finding one of solutions 
are presented. Up to this time the interest has concentrated to more general marginal 
problems; arbitrary measure spaces are considered and constraints for measures 
are added (see Kellerer [1], [2] and Studeny [3]). Especially, the marginal problem 
for probability measures becomes very important in view of applications to intensional 
expert systems (suggested by Perez and Jirousek in [5]). In this case special approxi­
mative methods were found an developed (see [5] and [4]). 

Before outlining the contents of the present paper we reformulate the problem 
in view of the theory of the Radon transform and in view of the mathematical back­
ground to the "image reconstruction from projections" problems; see Helgason [6] 
and Herman [7] respectively. We conserve existing connections in the terminology 
and notation. 

As all measures considered here are naturally represented by their densities (with 
respect to counting measures) we shall deal with them only. Let CGl be the linear 
space of all complex functions on G, (over the complex numbers) and let CGs> 
be the linear space of all complex functions on G^ = (J G,, i.e. every element 
g of CGs* has the form g = (g,)Iefj, where g, e CG'. M 

Let the discrete Radon transform be a linear mapping from CG into CGs> assigning 
to every / e CG the function/ = (f,),eM e CGs>: 

V / e ^ Va,eG,: f,(a,) = £ f(b) 
beG,b' = ar 

and similarly let the dual transform to the Radon transform maps g e CGs* into 
geCG. 

Evidently, if/ e CG represents a complex measure / i o n 6 then/ = (fi)iest represents 
the family (fJ,')ie^ and the discrete marginal problem is equivalent to the solution 
of the equation / = g for a known g e CGs/ representing the family (ni),^. The dual 
problem: the solution of the equation g = / f o r a k n o w n / e C° is closely connected 
with the preceding problem and will be interesting too. 

In this paper these two dual problems are completely analysed by use of the con­
cepts of the discrete convolutions and the discrete Fourier transform on CG and CGsi. 
We present bases of the kernels and ranges of Radon transform and its dual, new 
conditions for solvability of the both problems and the sets of all solutions with 
effective formulae for finding the solutions with the smallest L2-norm on CG and 
CGs*. 

2. DISCRETE CONVOLUTION, PRODUCT AND FOURIER 
TRANSFORM 

Every set Gj, j e N, will be understood as the cyclic group with the operation 
mod (rrij), every G„ I c N, as the direct product of the groups Gj, j e I. 

We define on CGl two binary operations: the discrete convolution and the discrete 
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product of a pair of functions: 

V/„/; e CG<: (f, *fi) (a,) = £ ffa)ffa - &,) 
IIISGI 

(//•/;) ( f l / )= / i (a , ) . / ; ( a i ) 

both these operations are commutative, associative and linear in both arguments. 
Let m, denote the number of all elements of G,: m, = Y\ mj> m0 = 1 and let 

m^ = £ mj. If we write: jGl 

IesJ 

[a„ ft,] = 2m £ ^ - i , [a0, fc0] = 0 , where a, = ( a ^ , , b, = (2>,.);e/, 
ye, H I ; 

(we consider real operations here) then the discrete Fourier transform on G, has 
the form: 

V/, e CG<: FJfa) = £ /,(&/) exp [a„ 6,] 
fejeGi 

and its inversion: 

i T V X - , ) - - Z / A ) exp - [a„ 6/J • 
m , 6ieGr 

The trivial identity: 
£ exp ± [a, fe] = mN a = 0 

6EG 

= 0 a + 0 

will be used in the paper without references; e.g. it allows to verify these identities: 

V/, e CG<: F^FJ, = / , and fliF,/,||2 = m,||/,| |2 , 

V / „ / ; 6 CG<: F,(fr * / ; ) = /",/ , . F , / ; and (F,/„ F , / ; ) = m , ( / „ / ; ) , 

assuming the scalar product and the norm on CGr are natural: 

(/„/;) =£/r(«r).j» ||/,I2=I|/K>P-
We shall need analogical operations on CGrf, we define them coordinatewisely: 

V#, g' e C 0 ^ ; a * g' = (a, * g;)/e^- etc. The scalar product and the norm on CGs/ 

are defined by: 

The notion of ̂ -function on G, (J <= / c AT) will be used with a lot of advantages: 

8 fa) = 1 a, = 0 

= 0 otherwise 
and 

SJfa) = 8 fa); 

5? = 80 = 1 . 
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3. BASIC IDENTITIES 

According to the introduced notation the Radon transform takes the form: 

(1) VI e si , Va, e G,: J fa) = I f(b) 8 fa - b1). 
beG 

T h e n f o r / e C G , a e C G ^ : 

(/,</) = I (//,»/) = I I lf(b)8fa-bI)Jfa) = 
lest lest O i e G i beG 

= I !/(*) 5^5 = !/(&) OT - (/, JO, 
JE.H? I>EG ( JEG lest 

what gives the form of the dual transform: 

(2) V g e C ^ , Vfc e G: $(b) = I 9I(b
l), 

it may be called the backprojection (analogical transforms are in [7]). 

Lemma 1. 

(3) V / ,TeC G : ( / * T ) A = / * / ' , 

(4) V / e C G , V a e C G ^ : / * £ = ( / * g ) v . 

Proof . The proof is based on the following computations: 

^Ie si, Va, e G,: ( / * / ' ) ? (a,) = I I / ( c ) / ' ( b - c) <5,(a, - b1) = 
beG ceG 

= I/OOITOO • ^ - c1 - &0 = I/(<0 J'(«i - <0 = 
C E G 6eG ceG 

= I I/(c) Jfa - br) . 8 fa - b,) = I / ' (a , - bt)f(bt) = 
biEGi C E G 6 i e G i 

= (/*A(«x), 
Va e G: ( / * g) (a) = I / ( b ) . I gfa - M) = 

6 E G I E J / 

= I !/(*>) I 0i(«' - -x) 5x(c, - bO = I I 9 fa - ci)ffa) = 
lest beG c i e G i lest aeGi 

= Wi*dI)(a
r) = (f*gy(a). D 

lest 

Lemma 2. 

(5) V/eC G : ( / ) * = / * < ? , 

(6) Vae3? A : (#)A = a * <£ 

where <p = I 8* (8k v is the range of the Radon transform). 
lest 

Note. Analogical identities are known in the theory of the Radon transform 
(see Helgason [6]). 
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Proof. The proof of the first identity is trivial: 

V/e CG , Va 6 G: ( / ) v (a) = £ £ / ( b ) <5r(a
7 - b7) = 

Is- ' 6_G 

- ! / ( * ) • Z <57(a - 6) = 1 / ( 6 ) <p(a ~ 6) = ( / * <P) (a) . 
6-G /___' 6EG 

For a e -IA we may find / e CG such t h a t / = g and then: 

( - ) A = ( ( / ) V ) A = ( / * < ? ) * = / * < £ = - *<£ • 

We have seen the function cp plays an interesting role in the last identities, we shall 
need its Fourier transform. As the Fourier transform of <57 is mN__3N"~7 we have: 

(7) Fcp = __ m w _ 7 ^ - 7 

_6 ._ 

Let U = {a e G; 3/ e jrf: a*"7 = 0} then 

Fcp(a) = 0 aeU 

F(p(a) = 0 a . U 
i.e., Uis the "support" of Fcp. 

4. KERNELS AND RANGES 

Let Jf A, __ A (./K v , _% v ) be the kernel and the range of the discrete Radon trans­
form (its dual); we present their bases using functions of the following type: for 
bj e GT let <f' e CGl: 

Va, _ G_: .<"(a_) = -j- exp - [a,, b_] 
V m -

The Fourier transform of _*r: 

l_-**(-j) = - A - E exp [C/, a, - b r] = V(mr) 5/C-i - -,) 
V m j CISGI 

helps us to establish orthogonality: 

«*', <f') = - ( r ^ < , W1) = 5.(b. - a.) , 
m1 

i.e. {§*, b e G} is a base of CG. 
The Radon transform of £6 is: 

We .* / Va_eG.: #(«,) = __ - - - exp - [c, b] . <._(_.. - c7) = 
ceG ^/mjv 

- - 7 - Z Z exp - [c„ b7] . exp - [„w_„ b»~7] . 5.(a_ - c.) = 
^ m N CisGi _w-ieGN-i 

= 1 exp _ [ a / , fcr, -r e x p _ [ 4 i ) ^ - 1 - = . / ( ^ ^ ( a j ) 5N-r ( f c ) j 

Vm/V _w-K.Gf.-i 
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what gives immediately f = 0 for b $ U, moreover for a, b e U: 

(lb, f) = £ (|ft, e?) = I mN.t 5N~'(a) 5N~>(b) (c?', ""') = 
/6jy /s_r 

= £ m » . , <5*~J(a) SN~'(b) 8>(a - b) = «5(a - ft) Tcp(a) 
J e j / 

Another way of phrasing this result is the following 

Lemma 3. CG = Jf A © ^ v where {cft, ft e U} is an orthonormal base of ^ v and 
{£,b, be G — U} is an orthonormal base of Jf A, (the orthogonal decomposition is 
trivial). 

The situation on the space CGja? is less clear. We propose to use the functions 
nbJ = (n"i'J)ie^ e CG^ supposing first beG Jest: 

ny = eJ • SN~J(b) 1 = J 
= 0 / 4= J 

Evidently J J M + Oif andonlyif b e Uand Je db = {KE.PJ, bN~K = 0};for a,beU, 
lesrfa,Je J*„: 

{na'I,nb'J) = YAnaKI,nV) = Q I* I 

= ( f ' , 0 I = J 6 < n ^ , 
in the second case we became 1 only if a1 = bl but aN~' = 0 = bN~T what shows 
orthonormality of the set {if'3; b eU, J e s/b}. This set has 

Z K l = Z Z <5N (̂̂ ) = Z »/ = »_» elements 

6e[/ 6E17 Jejtf 7 S J / 

so that it is a base of CG^. 
Thus, if ̂ f t (ft e U) denotes the linear span of {rf'J, J e j / t } then |ft = Z V K - * ) -

. j j M e - f 6 . Let finally: Je-/6 

•Jfft = ^ A © ̂  v 

be the orthogonal decomposition of Jfft, where ?̂ft
A is the linear span of |ft. We can 

summarize: 

Lemma 4. CGj* = Jf v © ^ A , where {|ft; ft e U} is an orthogonal base of 01 ̂  and 
Jfy = © ^ » v s where ^T*v is the set of all functions from "f * orthogonal to |*. 

Remark. Considering the compositions of the Radon transform and the back-

projection we see from (b e U) 

Va e G: (<f ) v (a) = £ > » . , ) ^ V ) = £ft(a) £ m , . , 
Iesft, Iestb 

and from 

((mA-Pz»»-i 
Iesfb 

that £ n.jv-/ (ft - U) are nonzero eigenvalues and <i;ft, |ft are the corresponding eigen-
Ie.rf6 

vectors of these compositions. 
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5. SOLUTION OF THE PROBLEM 

Another characterization of JT A and 0tv follows from Lemma 3 using the Fourier 
transform 

JTK ={feCG;Ff\v = 0} 

®v ={feCG;Ff\G^v = 0} 

Let co e <MW be the function (unambiguously) given by Fco . Fcp = %v where Xu 
is the characteristic function of the set U, i.e. co may be expressed as 

(8) Va e G: co(a) = — £ ~ exp - [a, b] 
mN beu Fcp(b) 

and its Radon transform co is 

W e . * / , Va ,eG , : coj(aj) = £ — £ _ L - - e x p - [c, b] . 5&1 - a,}\ = 
CSG mN bsu Fcpyb) 

(9) - - Z — r : «*-'(*) exp - [a* * ] = -L E ^ ^ 
m1 bsu Fcp(b) mt b^Gi 2. t%-j "/ (j->j) 

From the facts Vfe e G: Fcp(b) = Fcp(-b) and beU <*> —beU we get simply 
co(a) = co(a) (a e G), i.e. co is a real function; co, co will be called the convolving 
functions. 

Lemma 5. 

(10) V / e ^ v : / = co*(jy 

(11) V a e ^ A : a = co*(£)A 

Proof. L e t / e ^ 2 v , we apply the Fourier transform to eo*( / )v and then we use 
Lemma 2. We get 

(12) F(co * (f)v) = F(co*cp*f) = Fco. Fcp. Ff = Ff 

because it is 

0 = Ff\G-v = FO)\G-U = F<P\G-U and (Fco . Fcp)\v = 1 . 

Let g efflA, then there i s / e ^ ? v , / = a and using (3) and (10) 

<b*(gy =(co*gy =(co*(jyy =f=g. • 

Theorem 1. The equation / = a, where g e CGj* is known, is solvable if and only 
if for g (11) holds, and in this case the set of all solutions is given by 

(13) CO*3 + JVA. 

Proof. If the equation is solvable then g e IMA and (11) holds due to Lemma 5. 
Conversely, let (11) hold and g <^0tA then g can be written as the orthogonal sum: 

g = g'+g", g'e@A, 0*g"eJfv, (g',g") = 0. 
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Using Lemma 5 (for g') we get 

g = 6> * ((g' + g"YY = w * (<f)A = g' 

what is a contradiction. 

Let now g e * A then any element o~ <XJ * g + Jf A \s evidently a desirable solution 
according to (3) and (11), and if/ solves this equation then 

( / - co*g)A = g - g = 0 , i.e. f-aJ*geJ/'A. ~~ 

Theorem 2. The equation g = / , where feCG is known, is solvable if and only 
if f o r / ( l 0 ) holds, and in this case the set of all solutions is given by 

(14) 6j*f + yfv. 

The proof can be omitted as it is "quite dual" to the preceding one. 

Corollary. Due to Lemma 1 m * g = (d> * g)v e&v, i.e. this solution of the discrete 
marginal problem has the smallest norm among all its solutions. "Dual" corollary 
is true too. 

Remark 1. Kellerer in [1] formulates the following necessary and sufficient condi­
tion for solvability: 

(15) VJ, J e st, Va / o J e G,nJ: Z g,(br) 5InJ(alnJ - b]'3) = 
bieGi 

= Z dj(bj) 5,nJ(a,nJ ~ b]'1) 
bjeGj 

In our notation it can be proved directly without any difficulty (for g = 
= Z X 9C'K"°'K (9C'K ~ complex numbers) we have g, = ^ 0 c , / f r / " J ( c ) and 

ceU Kes4c ceU 

(15) is equivalent to 

Vc e V Vf, J e stc: gcj J(mH-j) = gcJ V(*%-,) 

i.e. Z ~C'K"C'K e ^ A , j e ^ A ' necessity is trivial). 
Kerfc 

Remark 2. Evidently dim MA = dim 3~v = \U\ = £ ( - l ) 1 " ' - 1 m" a (in [1] 
this is proved by induction). °*S"=J* 

Remark 3. Kellerer found in [1] this solution / of the problem: 

(16) VaeG: /(«)= Z (-l)W'l—-—8Ua-a) 
O*08c.tf mN-nS) 

where s n « e C G « » and if J e J <= st then gnJ,~n®) = Y,9i(bj) Snm(anSS - b?®) 
are for g e&A unambiguously defined functions. bl'G' 

Then 

/(«) = Z Z Mtr--J -~^(0 = 
ІЄSŚ um^sś 
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= E YUbl) X M ^ - — — «n-(-"--6?-) = 
lest bieGj IeSS^sJ \38\ mN-nSS 

= 1 I ffi(&/) • e/(ar - bt) = (fl * e)v (a) 

where 

eeCG-, C l - E M ^ ^ — V/ej^ , 
IeSSczsJ \gg\ mN^nSB 

i.e., Kellerer's solution (a * g)v e 5?v is the same as that one (g * co)v in Theorem 1. 

Remark 4. As co and co are real functions, all solutions of the discrete marginal 
problem for signed measures may be obtained as the real parts of the found solutions. 

Remark 5. When another Radon transform (co * $)n (for given 38 => sd) of the 
solution co * g is needed only, it may be computed by: 

VJ 6 a , Va. 6 Gx: (to * £)? (a,) = £ (A * a) v (6). <5,(a, - iV) = 
fjeG 

= E L(^*^(ftJ).57(«7-&0 = 

= E I»W-CJW) E (<*> * a)J (tivj) • &Mi ~ biuj) = 
Jest bIvljeGiuj 

= E m»-ci^) E (<& * a)j (bj). 5,n j(a/n J - tf1') • 

6. EXAMPLES 

1. Let ?i ^ 2, m ( = m2 = ... = m„ = 2 and ja/ = {{1,2}, {2,3}, . . . , { « - 1, n}, 
{n, 1}}. For I = {iu i2} E rf, a, = (ah, a,-2) e Gj due to (9) we have: 

*f ^ - v (-l)""""^"6-

Je.*/ 

= 1 / (-!)"" (-1)"" (-l)«"+a" 1 
2" \£ 0^(0, 1) + £ ôî-'(l, 0) + X Sl-% 1) + S ^ ' (O, 0) 

Je.af Jest Jest JesJ 

*,: ^1,0) = ^ " ^(1,1) = ^ 

^0,0) = --±2--- ^(0,1) = ^ ^ - " 
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Let g e CG^, 
Qi- P Y 

a 13 

(a, 13, Y real nonnegative numbers, a + 2P + Y = 1), be briefly given similarly as 
in the foregoing table, then (15) holds, i.e. g e 3k A, and 

(g * (_•),: 

~ r 1 ( - 1 + !/«) + _ £ i (i + !/») ~ + _ ~ r ( - i +1/»)+ ~i(2 +1/») 

| ( 2 + l/«) + ^ T ( - l + l /n)+-I ; i « ± ? ( - l + l/„) + J L ( l + l / „ ) 

Due to Theorem 1 (g * w)v = co* g solves the equation / = g. For n = 3 this 
solution may be represented by the cube: 

4ß+ү-a 

4ß+ce-ү 

8. (g*ò)v: 

ь a - Y > . 

7a-4ß+ү 

7ү-4ß+a 

4ß+ү-( 

йß+ү-a 

4ß+ct-ү 

We see although o represents probability measures, (g * „ ) v in general does not. 

2. Let k be an integer, n 2: k + 1, mt = m2 — ... — m„ — 2 and „ - = { _ _ _ . , 
|. | = /c}. For _ e _/ a,eGj (we assume that exactly 0 :£ / ^ fc coordinates of a, 
are equal to 1) we have: 

A (a . = — V ________J___i___L - A V e x p - [af, _,] 
A ' ' 2 " l . i c _ l 2 - l " . J - W 2" -xtox £ #-'(&,) ' 

If _,has exactly j coordinates equal to 1, the denominator is £ ( ) ( ) and 
then 

-̂iiit______ 
2"i=0 ? . _ . . ; * 
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Forfc = 1: 
A //.> 1 1 + n A /.x 1 1 - n 

2" n 2" n 

and for fc = 2: 
n(n - 1) 2"co/: - « 2 + n + 2 n2 - 3« + 2 

n2 + n + 2 - « 2 + n + 2 
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