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KYBERNETIKA —~ VOLUME 24 (1988), NUMBER 1

DISCRETE MARGINAL PROBLEM
FOR COMPLEX MEASURES

FRANTISEK MATUS

This paper contains complete analysis of the problem to find all complex measures (on the
Cartesian product of a finite system of finite nonempty sets) for every from which a family of its
marginal measures is identical with a given family of complex measures. The transform mapping
every density of the complex measure into the family of its marginal densities, called here the
discrete Radon transform, is considered together with its dual transform and their inversions
are given in effective forms. Illustrating examples are added.

1. FORMULATION OF THE PROBLEM

Letn > 2beaninteger, N = {1,2,...,n},andforje NletG; = {0, 1, ..., m; —1},
where m; = 2 is an integer too. For every subset I = N we define G; = X G; being

jeI

the Cartesian product of the sets G;, jeI; Gy = G, Go = {0} (0 is used instead
of @ in all indices). Elements of G; will be denoted ay, by, ¢; and for a; =
= (a;);er € Gy, a; € G;, the symbol a] (J = I) will denote an element of G, formed
from a, by the projection on Gy, namely aj = (a;);e; af = ay, aj = 0 (index N
will be omitted by every type of notation).

Assuming that g is a complex measure on G (we consider the o-algebra on every
finite set is simply the system of all its subsets), let 4 (I <N) be its marginal measure,
i.e. the measure on Gj:

VA, = G pl(4)) = p(4; x Gy = % u({b}).
beG,bledr
Let a non-empty system 7 of subsets of N and a family (1) e, of complex measures
(i on G;) be given. The discrete marginal problem for complex measures may be
now formulated precisely; we look for all complex measures ¢ on G holding VI € &/
u' = py, ie having the given family of complex measures as the family of its marginal
measures.
This problem was solved (probably first) by Kellerer in [1], where a necessary
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and sufficient condition for solvability and a formula for finding one of solutions
are presented. Up to this time the interest has concentrated to more general marginal
problems; arbitrary measure spaces are considered and constraints for measures
are added (see Kellerer [1], [2] and Studeny [3]). Especially, the marginal problem
for probability measures becomes very importantin view of applications tointensional
expert systems (suggested by Perez and JirouSek in [5]). In this case special approxi-
mative methods were found an developed (sec [5] and [4]).

Before outlining the contents of the present paper we reformulate the problem
in view of the theory of the Radon transform and in view of the mathematical back-
ground to the “image reconstruction {rom projections” problems; see Helgason [6]
and Herman [7] respectively. We conserve existing connections in the terminology
and notation.

As all measures considered here are naturally represented by their densities (with
respect to counting measures) we shall deal with them only. Let C% be the linear
space of all complex functions on Gy (over the complex numbers) and let CCs
be the linear space of all complex functions on G, = U Gy, i.e. every element
g of C% has the form g = (g;)es> Where g€ CH. Test

Let the discrete Radon transform be a linear mapping from C¢ into C%# assigning
to every f e CY the function | = (f)sex € C°:

Vies/ VareGp fila)= Y f(b)
beG, bl =ar
and similarly let the dual transform to the Radon transform maps g € C% into
JeCS.

Evidently, if f € C represents a complex measure y on G then f = (f;);e.s represents
the family (4');., and the discrete marginal problem is equivalent to the solution
of the equation f = g for a known g e C% representing the family (1;);e.s- The dual
problem: the solution of the equation § = f for a known f e C% is closely connected
with the preceding problem and will be interesting too.

In this paper these two dual problems are completely analysed by use of the con-
cepts of the discrete convolutions and the discrete Fourier transform on C and C%.
We present bases of the kernels and ranges of Radon transform and its dual, new
conditions for solvability of the both problems and the sets of all solutions with
effective formulae for finding the solutions with the smallest I*-norm on C% and
O«

2. DISCRETE CONVOLUTION, PRODUCT AND FOURIER
TRANSFORM

Every set G, je N, will be understood as the cyclic group with the operation
mod (ml.), every Gr, I = N, as the direct product of the groups G;, j e 1.

We define on C% two binary operations: the discrete convolution and the discrete
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product of a pair of functions:
Vfi. fre o H (fl *f;) ("r) :bz(:_fl(bl)fl/(al - bl)
(fr - f1)(ar) = fllay) - fi{ar)

both these operations are commutative, associative and linear in both arguments.
Let m, denote the number of all elements of G m; = [|m;, my =1 and let

my =y my. If we write: Jel
Teod

. ib;
[ar, b] = angfl’;jf , [a0, ] =0, where ar=(a)r, b= (b)jers
jeI mj

(we consider real operations here) then the discrete Fourier transform on G, has
the form:
Vfr e C: Fifi(ay) = ZGf,(b.) exp [ar, by]
1€G 1

and its inversion:

F;‘ fl'(al) = '*1* 2 fl(bl) exp — [01’ bl] .

my bieGs
The trivial identity:
Yexpd[a,b]=my a=0
beG
=0 a+0
will be used in the paper without references; e.g. it allows to verify these identities:
VfIECGI: FI_IFIfI = f; and HF1 IHZ = 'nl“fj‘"27
Y, fie cor Fl(fr *f;) = Fif; . Fiff and (Flfh FIfI,) = ml(fl,f.;) s

assuming the scalar product and the norm on C%7 are natural:
(Fufi) = X flan) fila) AP = X el -
areGy areGyr

We shall need analogical operations on C®, we define them coordinatewisely:
Vg, 9 € Co;gxg = (g1 * 97)sewr cte. The scalar product and the norm on s
are defined by:

(9.9) =Y gD o> =2 o
lest led
The notion of §]-function on G; (J = I = N) will be used with a lot of advantages:
6fa) =1 a,=0

0 otherwise

and
d1(ar) = 6,(a1) 5
§=06,=1.
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3. BASIC IDENTITIES

According to the introduced notation the Radon transform takes the form:
® Vies/, Va,eGp: fifa) = sz(b) 5iar — bY).
be
Then for fe C%, g e C%«:

(Fo)=Y(na) =% ¥ Y1(0)bar — ") gilar) =

Test Ted areGr beG
= 3 3 1(0) 0:(5) = 2. 1(0) Y. 0i(b") = (£, )
what gives the form of the dual transform:
(2) VgeC%, YbeG: {(b) :Ié a,(b%),

it may be called the backprojection (analogical transforms are in [7]).

Lemma 1.
€) V[ eCO (Fxf)n =T+f",
O] VfeC®, VYgeCl+: fxg=(Ixg)".

Proof. The proof is based on the following computations:
Vies/, VareGr (f=f); (a) =ch E(Z;f(c)f'(b — ¢)ofa; — b)) =
= Z‘éf(c)bsz'(b) Loap — = b = er(c) Jag — ) =
=2 2fo) Jar - by).d{c' ~ b)) = Y frlag - bl)f(bl) =
breGr ceG breGy
= )i (ar),
YaeG: (f=J)(a) =bzrf(b) .Izdg,(a' - b) =
=2 /B Y gila” — ef) 6:le, — bT) =IZ ;;91(“1 - Cr)fl(cl) =

Iedd beG c1eGr st
= 3 (fixg) (@) = (79)" (a). =
Lemma 2,
(5) YfeC® ()Y =f=*0,
(6) Vged,: (§)" =g=¢
where ¢ = Y 8" (%, is the range of the Radon transform).
réa

Note. Analogical identities are known 'in the theory of the Radon transform
(see Helgason [6]).
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Proof. The proof of the first identity is trivial:
VfeC?, VYaeG: ()Y (a) =Y Y f(b)d{a’ — b") =
et 666G
=3 f(b). 3 0'(a — b) = ¥ f(b) o(a — b) = (f + ¢) (a).
beG Iet beG
For g € #, we may find f e C® such that f = g and then:
@ =) =(fro) =Txd=g+d |
We have seen the function ¢ plays an interesting role in the last identities, we shall
need its Fourier transform. As the Fourier transform of &' is my_ ;6" 7 we have:
7) Fo =Y my_o"!
Teot
Let U = {ae G;3 e #: a¥ " = 0} then
Fo(a)=0 aeU

Fop(a) =0 a¢U
i.e., U is the “support” of Fo.

4. KERNELS AND RANGES

Let A ,, &, (¥, R,) be the kernel and the range of the discrete Radon trans-

form (its dual); we present their bases using functions of the following type: for
bye Gy let £ e COn:

L

g

Va;€ Gy &%(a;) = exp — [a;, by]

The Fourier transform of £°r;

Fea) = - 3 ol — b = (m) s~ )

My cre6r

helps us to establish orthogonality:

(&, &) =

i.e. {&, be G} isa base of CE,
The Radon transform of & is:

1 o
; (Fréhs F& I) = 51(1’1 - al) 5
my

Ve VareGp 8a) =Y —
ceG \/mN
i

= 3 Y, exp—[cs, b'].exp — [dy—p, D" 7] . S(ar — ¢r) =

My cicbs dn-iebn-r

exp — [¢, b] . 8,(a; -~ ¢f) =

= \/:ﬂn exp —[anb'] ¥ exp - [dy-n 8] = lmy-r) (@) 8°7),

IN-IEGN T
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what gives immediately & = 0 for b ¢ U, moreover for a, be U:
(&8 =Y (&) = ¥ my.g 8V M(a) V() (&, &) =
e fet
=Y my_; ¥ (a) 6% X(b) '(a — b) = 5(a — b) Fo(a)
Jeut

Another way of phrasing this result is the following

Lemma 3. C% = &, ® &, where {&, be U} is an orthonormal base of 2, and
{¢, be G ~ U} is an orthonormal base of ", (the orthogonal decomposition is
trivial).

The situation on the space C%# is less clear. We propose to use the functions
77 = (1} ) ;e € C° supposing ficst be G J e of:

= & NIy I =]
=0 1+1J
Evidently 1”7 % Oifand onlyif be Uand J € o, = (K € o/, b¥ ¥ = 0}; for a, beU,
lesd, Je o,
() = 3 (e n”) = 0 r+J
=8 I=Jesd,no,,
in the second case we became 1 only if o' = b but a¥ ¥ = 0 = bV ~7 what shows
orthonormality of the set {#"; b e U, J e o,}. This set has
Y| =Y T NIb) =Y m; = m, clements
bel belU Jeot Teod
so that it is a base of C%#.
Thus, if #° (b € U) denotes the linear span of {#*’, J € «,} then & = Y /(my_,).
" e #P. Let finally: feds
H = B DN,
be the orthogonal decomposition of #°, where £ is the linear span of &. We can
summarize:

Lemma 4. C% = A", @ #,, where {&; b e U} is an orthogonal base of %, and

N, = ® A, where &, is the set of all functions from #” orthogonal to &,
bev

Remark. Considering the compositions of the Radon transform and the back-
projection we see from (b € U)
VaeG: (&) (a) = ¥ Jlmy—r) &(a") = &(a) ¥ mys
Fesly Iesoty
and from

@ = Ebze%bm”"

that ¥ my- (b € U) are nonzero eigenvalues and ¢°, & are the corresponding eigen-
Tesly

vectors of these compositions.
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5. SOLUTION OF THE PROBLEM

Another characterization of A~ , and &, follows from Lemma 3 using the Fourier

transform

N, = {feCS Ffly = 0}
&, ={feC%Fls-y =0}

Let we %, be the function (unambiguously) given by Fo.Fp = y, where yy
is the characteristic function of the set U, i.e. @ may be expressed as
1 1
8 VaeG: ola) = — ———exp — [a, b
®) @ = 5 o o0 =[]
and its Radon transform & is

exp — [¢, b]. 0" — a;) =

) 1
Vied, VYaje Gy dfa;) = ZG — bf{] Folh)
o6 my be

1 1 - 1 exp = [a;, by}
9 ==Y —— " b)exp — [a,, ] = —
©) my bet Fop(b) () exp — [ar. ] my vicer ), my-; 87 (br)
Jest

From the facts Vbe G: Fp(b) = Fp(—b) and beU< —beU we get simply
w(a) = w(@) (a € G), i.e. w is a real function; w, & will be called the convolving

functions.

Lemma 5.
(10) Ve, f=o=(f)
(11) Yged,: g= o ()"

Proof. Let fe #,,, we apply the Fourier transform to w * (f)" and then we use
Lemma 2. We get
(12) Flox(f)") = Flo*¢+f) = Fo.Fp . Ef = Ff
because it is

0 = Fflg-y = Fole_y = Fple_y and (Fo.Fo), =1.
Let g € #,, then there is f€ &, f = g and using (3) and (10)
bx(@)" =(0xd" =(0x()) =F=4g. o

Theorem 1. The equation f = g, where g € C% is known, is solvable if and only
if for g (11) holds, and in this case the set of all solutions is given by
(13) woxd+ N, .

Proof. If the equation is solvable then g € #, and (11) holds due to Lemma 5.
Conversely, let (11) hold and g ¢ £, then g can be written as the orthogonal sum:

g=9"+g", geR,, 0+g'el,, (4,9)=0.
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Using Lemma 5 (for g') we get
g — @’k((g, + g!/)v)/\ = (b*(gvl)/\ - gl

what is a contradiction.

Let now g € Z, then any element of w * § + .47, is evidently a desirable solution
according to (3) and (11), and if f solves this equation then

f-~o0sd"=g—g=0, ie. f—wxfed,. O

Theorem 2. The equation § = f, where f € C% is known, is solvable if and only
if for £ (10) holds, and in this case the set of all solutions is given by
(14) dxf+ AN, .

The proofl can be omitted as it is “quite dual” to the preceding one.

Corollary. Dueto Lemma 1 @+ § = ((D xg)¥ eR,,i.e. this solution of the discrete

marginal problem has the smallest norm among all its solutions. “Dual” corollary
is true too.

Remark 1. Kellerer in [1] formulates the following necessary and sufficient condi-
tion for solvability:

(15) VI,Jesd, Yaj.;€ Gy Z gl(bl) 5m1(am1 - b;mj) =
breGr
= E gj(b_,) 51,11(01& - bin!)
byeGy

In our notation it can be proved directly without any difficulty (for g =

=3 Y gokgK (go¥ — complex numbers) we have gy =Y ¢='& 0¥ !(c) and
ceU Kesto ceU
(15) is equivalent to

YeeU VI, Jed,: go J(my_s) = g°" J(my-y)
ie. Y g "X e &%, g e & ,; necessity is trivial).
Kede
Remark 2. Evidently dim %, =dim 2, = |U|= Y (=D)¥"'m"? (in [1]
this is proved by induction). OxA=A

Remark 3. Kellerer found in [1] this solution f of the problem:

(16) VaeG: fla)= Y (-1 Gra(a”?)
o+Fea My_ g
where gnm€C%2 and if Ie B < o then Gngldng) = . 9i(by) S.a(ans — b7
are for g € #, unambiguously defined functions. breGr
Then

= Lﬁﬂ: -1—_ aBy _
/@) Iaredia  |B] My-aa 9nala™)
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(‘1)1%“1 i n? )
= Z Z gl(bI)I ;‘—“ - e 5n£(” — b7 ) =

Tedt breGr Iﬂ’ My_ g

=Y Y gilbr). ex(@” ~ by) = (g % 2)" ()

Iéd b1eGr
where
(-1 gpe
0eC, g, = A Vies,
Ie#<of l@l My 2

i.e., Kellerer’s solution (g * ¢)¥ € £, is the same as that one (g * ®)” in Theorem 1.
v

Remark 4. As w and & are real functions, all solutions of the discrete marginal
problem for signed measures may be obtained as the real parts of the found solutions.

Remark 5. When another Radon transform (@  §)° (for given & > o) of the
solution w * ¢ is needed only, it may be computed by:

Vie#, VajeGp: (w=§)f (a) = b;;(u‘) «g)" (b). 5(a; — b") =
:bg; Js%(d) )y (b7). 8,(a; — bT) =

= Z My crody Z (CD * 9)1 (b}ul)' 51(”: - b}w!) =
Jedt bruscGrus

= Z My -1y Z ((’3 * g), (bJ) . 51r\](a§n] - bﬁ’u) .
Jeut bs€Gs

6. EXAMPLES

IL.Letnz2,m =my=..=m,=2and o = {{1,2},{2,3},....,{n — L,n},
{n,1}}. For I = {i}, i,} € o, ay = (a;,, a;,) € Gy due to (9) we have:
1 . (_ l)anbn*—nubu

[0) S =
AR R
Jed

— el +
Y01 Y10 Yoy Y ér(0,0)
Jeat Jest Jest Jest

= _1. (;1 + %((-—1)““ + (_l)az,) + (_l)a,,+a“)

>
ie.
o (1,0 = T g gy 2 U
> PX
,(0,0) = %L" 6,0, 1) = i_zﬂl



Letg e C%v,
g B v
o B

(o, B, ¥ real nonnegative numbers, o + 2B + v = 1), be briefly given similarly as
in the foregoing table, then (15) holds, i.e. g € Z,, and

(g+ o)

o+ v
1+1n
e CIEID) P

~(2+1 n)+i( 1+1,n)+—2"

o

(- 1—r1n)4- - (2 + 1n)

A+ y B |
— (=1 +1n)+ == (1+1
o ( [n) 2,,,1( [n)

Due to Theorem 1 (g*®)" = @ * § solves the equation f = g. For n = 3 this
solution may be represented by the cube:

4B+y—a Ty-4B+a
1
!
48+a-y | 4p+y-0f
I
8. (g *d): {
ELA T SU— L __JiBF+Y-a
-
s
e
e
Ta—-48+y 48+a-y

We see although g represents probability measures, (g * ®)" in general does not.

2. Let k be an integer, n 2 k+ 1, my =m,=...=m,=2and & = {I = N,
|1] = k}. Forled a;e Gy (we assume that exactly 0 < I < k coordinates of a;
are equal to 1) we have:

. 1 exp — [ag, by} exp ~ [ag, by}
(ux(a)) 2[1] b,;; Zzn 171 51 J(b) 2 bieGs 51 J(bl) .
Jeat

If b; has exactly j coordinates equal to 1, the denominator is Y. (k]_]> (n;k) and

)(” : ")

afar) =

m;,_

45



Fork = 1:

11+ 11-n
&[0) = — ~ @1y = =
’( ) 2" n I( ) 2" n
and for k = 2:
n(n — )2y ~n*+n+2 n?—3n+2
n+n+2 —n*4+n+2
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