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KYBERNETIKA- VOLUME 24 (1988), NUMBER 1 

ON SYMMETRY AND REVERSIBLE SYMMETRY 
CONCERNING GENERALIZED DIRECTED DIVERGENCE 

T. D. RAKHEJA, K. K. GULATI 

The authors have proved a theorem on symmetry considering three probability distributions 
using reversible symmetry, a concept weaker than symmetry in the strict sense. 

1. INTRODUCTION 

Let 

T„= [(p1,-2,...,A):.P._.0,i-« 1,2,...,«; £ Pi = 1} , n = 2 , 3 , 4 , . . . 
i= 1 

and 

IT ={(Pi,P2,--- ,P„):Pi =0,Pl £ 0 , / = 2 ,3 , . . . , « ; £ p, _ 1}, n = 2 , 3 , 4 , . . . 
;= I 

denote respectively the sets of all w-component complete discrete probability distribu
tions with non-negative elements and with first component zero. Let G„, n = 2,3,... 
denote the set of all 3/i-tuples of the form (Pl, Pl, ..., Pn; qu q2, ..., qn\ ru r2, ..., ?•„) 
with (Pl, Pz, ..., p„) 6T„, (qu q2, ..., qn) e T„ and (r1; r2, ..., r„) e T„ such that 
whenever r ; is zero, the corresponding qt and p ; are also zero, 1 rg i ^ n. 

A measure called the generalized directed divergence is defined as ([1], [4], [5], [7]) 

(1) T„(pu p2, ..., p„; qu q2, ..., q„; ru r2, ..., r„) = £ Pi log2 (_/r ;) 
; = i 

Here the convention 0 log2 (Ojx) = 0, x ^ 0 is used. 
An important property of T„ is: 

Postulate I„ (Symmetry). T„: G„ -» R is symmetric under the simultaneous permuta
tions of pk, qk and rk, k = 1, 2, ..., n, that is, 

(2) T„(Pl,p2,...,p„; quq2, ...,q„; rur2,..., r„) = T„(p«(1), p n ( 2 ) , • • • 

P^(»); <?K(1), <?^(2), ••• , <?K(n),' ?'*(1), ?'n(2), • • - , ^ (n ) ) • 

where n is an arbitrary permutation of 1, 2 , . . . , n. 
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The object of this paper is to prove a theorem on symmetry using reversible 
symmetry, a concept weaker than that of symmetry in the strict sense. This theorem 
can be used in various characterization of the generalized directed divergence. For 
some related work concerning directed divergence, see [6] . 

2. REVERSIBLY SYMMETRIC FUNCTIONS 

E x E x x E 
Definition. Let E be a non-empty set and E" = — . A non-empty 

rc-times 

subset D„ of E" x E" x E" is said to be closed under reversible symmetry if 

(xu x2,..., x„_1; x„; y l f y2,.... y„-u y„; zu z2,..., z„.u z„) e D , = » 

=>(x„,x„_j, ...,x2,xu y„,y„-u •••,y2,yu z„,z„.u ...,z2,zt)eD„ 
for all (xux2, ...,x„; yu y2, ...,y„; zu z2, ...,z„)e D„. 

A function /„: D„ -» U. is said to be reversibly symmetric over the domain D„ if 

f„(xu x 2 , . . . , xB_ l f x„; yu y2,..., y„-u y„; _„ z2, ..., z„_1, z„) = 

= f„(x„, x„-u ..., x2, Xj; y„, y -_ l f . . . , y2, y l f z„, z„_ 1 ; . . . , z2, _/) 

for all (x1; x 2 , . . . , x„; yu ..., y„; zu z 2 , . . . , z„) e I>„. 

The above definition is motivated by reversible codes, see [3]. 

3. SYSTEM OF POSTULATES 

Postulate IIm (Reversible Symmetry): Tm: Gm -» R, m _ 2 is reversibly symmetric, 
that is, 

(3) Tm(pu p2, ..., p m _ l s pm; qu q2, ..., qm.u qm; ru r2,..„ rm-u rm) = 

Tm(pm, pm-u..., Pi, pu qm, qm-t,..., q2, 9i , rm, r m _ l f . . . , r2, r ,) 

for all (pu p2,..., pm-u pm; qu q2,..., qm.u qm; r l f r 2 f . . . . rm) e Gm. 

Postulate IIm tells us that value of Tm remains unaltered if the order of probability 
estimates is reversed. It uses only two permutations of 1, 2, ..., m, namely the 
identity permutation 1, 2, ..., m and the permutation m,m— 1 , . . . . 3, 2, 1. 

Postulate Im implies Postulate IIm. We give an example to show that the converse 
is not true. 

Example I. Define E„: G„ ~> R, n = 3, 4 , . . . as 

Fn(Pi,p2, ••-,?„; qu q2, ...,q„; ru r2, ...,r„) = 
n-i 

Y,{Pi<liri ~ P i + l < ? i + i r ; + i ) 2 . 
i = l 



Then for all integers n = 3, F„ satisfies Postulate IIn but not I„. Thus II„ is weaker 
than I„ in the strict sense. 

For n = 2, I2 and II2 are equivalent. 

Postulate III„ (Recursivity). For all probability distributions (pl5 p2 Pn)e 

GT„ with p± + p2 > 0, (qu q2,..., q„) eT„, (ru r2, ..., r„)eT„ such that 
(p!,p2,....p„; quq2,...,q„; ru r2, ..., r„) e G„, 

(4) Tn(pup2,p3, ...,pa; quq2,q3, ...,qn;rur2,r3, . . . , r„) = 

r„-i(pi + p2,p3,--;P«;qi + q2,q3,--;qn;r1 + r2,r3, . . . ,-„) + 

<* +,2)T2f-^-, - f t - ; _ L , - 1 3 - ; ^ L _ , _J^_V 
\Pi + P2 Pi + P2 qi + «2 <7i + q2 r1 + r2 rj + r2j 

p. + £2 > 0 . 

Postulate IV„. For all probability distributions (0, 0, p3,..., pn) eT„0), 
(qi,q2,q3,--;q„)erm,(ru r2, ...,r„)eT„ w i t h 0 < £7! + g2 < 1,0 < r. + r2 < 1, 
such that (0, 0, p3, ..., p„; «?,, a2,..., q„; ru r2,..., r„) e G,„ 

(5) T„(0, 0, p3, ..., p„; qu q2, q3,..., q„; ru r2, r3, ..., r„) = 

T„_j(0,p3, ...,p„; q1 + q2,q3, ...,q„; rx + r2, r3, ..., r„) . 

Since qt + q2 = q2 + <Ji and i\ + r2 = r2 + ru Postulate IV„ implies 

(6) T„(0,0,p3, ...,p„; qu q2,q3,..., q„; rur2,r3, ...,r„) = 

T„(0, 0, p3,..., p„; q2,quq3, . . , , ? , ; r2) ru r3,..., rB). 

4. THEOREM ON SYMMETRY 

The main result of this paper is the following theorem. 

Theorem 1. Let T„: Gn -» R, n = 2, 3 , . . . satisfy the Postulates II,„, for some fixed 
m > 4, III„ (/I > 3) and IV„ (n = 4) then T„: Gn -> R is symmetric under the simul
taneous permutation of p;, <7; and r ; (z = 1, 2 , . . . . «). 

To prove the above theorem, we need the following lemma: 

Lemma 1. Postulates IIm for some fixed m = 4, III„ (n = 3) and IV„ (n = 4) imply 

(7) T2(l, 0; 1, 0; 1, 0) = 0 = T2(0, 1; 0, 1; 0, 1) 

(8) Tn+J(pu p2,..., pn, 0, 0 , . . . , 0; qu q2, ..., q„, 0, 0,..., 0; ru r2,..., r„, 

J - t imes j - t i m e s 

0, 0 , . . . , 0) = T„(Pl, p2,..., p„; flli c72, ..., a„; r1; r2, ..., r„) , 

j - times 

Pi + P2 > 0 , / = 1,2,...; « = 2 , 3 , . . . 
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(9) T2(pi, p2; qu q2; rt, r2) = T2(p2, pu q2, qu- r2, rx) 

(10) T3(pu p2, p3; qu q2, q3; ru rz, r3) = T3(p2, pu p3; q2, qu q3; r2, ru r3) 

(11) T3(Pu p2, p3; qu q2, q3; ru r2, r3) = T3(p3, p2, pu q3, q2, qu- r3, r2, rx) 

Proof. Fix m = 4 arbitrarily. Then, by IIra, with p e [0,1) 

(12) Tra(0, 0, ...,0,\ - p,p; 0,0, ...,0,1 - p,p; 0,0, ...,0,1 - p, p) = 

Tm(p,l - p,0, . . . , 0 , 0 ; p , 1 - p,0, . . . , 0 , 0;p , 1 - p, 0 , . . . , 0, 0) 

Using IV„ (4 < n < m) repeatedly, the L.H.S. of (12) reduces to T3(0, 1 - p, p; 
0, 1 - p, p; 0, 1 - p, p). The R.H.S. of (12), after the repeated use of III„ (n = 3), 
reduces to (m - 2) T2(l, 0; 1, 0; 1, 0) + T2(p, I - p; p,l - p; p,\ - p). Thus, 
(12) reduces to 

(13) T3(0,1 - p, p; 0,1 - p, p; 0 ,1 - p, p) = (m - 2) T2(l, 0; 1, 0 ; l, 0) + 

+ T2(p, 1 - p; p, 1 - p; p, 1 - p) 

Applying III3 to the L.H.S. of (13), we obtain 

(14) T2(l -p,p;l-p,p;l-p,p) + (l- P) T2(0,1; 0 , 1 ; 0, i) = 

= (m - 2) T2(l, 0; 1, 0; 1, 0) + T2(p, 1 - p; p, 1 - p; p, 1 _ p) 

Choosing p = 0 and p = \ respectively in (14), we get (m - 3) T2(l, 0; 1, 0 ; 1, 0) = 0 
and 

T2(l, 0; 1, 0; 1, 0) = iT2(0, 1; 0, 1; 0,1) 

from which (7) follows. 

Equation (8) follows by the successive application of 111,,+*, £> = J, j — 1, . . . , 1; 
n = 2, 3 , . . . and (7). 

To prove (9), we divide our discussion into four cases. 

Case I. px = 0, p2 = 1; qx = 0, q2 = 1; rx = 0, r2 = 1. 

Case II. pt = 1, p2 = 0; qx = 1, q2 = 0; rx - 1, r2 = 0. In both these cases, 
(9) follows from (7). 

Caselll. 0 < p ! < 1,0 < p2 < 1; 0 < qx < 1,0 < q2 < 1 ;0< rx <z l , 0 < r 2 < 1. 
Then 

T2(pup2; qu q2; ru r2) =<8' Tm(Pl, p2, 0, ..., 0; qu q2, 0, .... 0; ru r^ 0> .... 0) 

= (3 ) Tm(0,..., 0, p2, pu 0,..., 0, q2, qu 0, ..., 0, r2, rx) 

= ( 5 ) I , 3 ( 0 , p 2 , P l ; 0 , ? 2 , a 1 ; O . ^ . r , ) 

= (7> T2(p2,Pl; qi,qu r2,rx). 

Case IV. Pl = 1, p2 = 0; 0 < qt < 1, 0 < q2 < 1; 0 < rx < 1> ° ^ r2 < 1. Now 

(15) Tm(0, 1,0,..., 0; 0,quq2,0,..., 0; 0, ru r2,.. •, °) 

= (3) r m (0 , . . . . 0. 1, 0; 0 , . . . , 0, q2, qu- 0, ..., r2,
 ri, 0) 
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The LHS of (15) by using III,, (n __ 3) and (7) reduce to Tm_ ,(1, 0 , . . . , 0; qu q2, ... 
..., 0; ru r2,..., 0) which by the use of (8), reduces to 

T2(l, 0; <__, q2; ru r2). The RHS of (15), by using IV„ (n ^ 4), reduces to 

T3(0,1, 0; q2, qu 0; r2, ru 0) which by using III3 and (7), gives T2(0, 1; q2, qu-
r2, r_). Thus (9) is proved. 

To prove (10), we have the following cases: 

Case I. Pl + p2 = 0, p3 = 1; 0 __ qt + q2 < 1; 0 < rx + r2 < 1. Then 

T3(p!, p2, P3l 1u 0.2, q3l ru r2, r 3 )= T3(0, 0, 1; qu q2, q3; ru r2, r3) 

= <5> Tm(0,..., 0, 0, 1; 0, . . . , <__, q2, q3; 0, . . . , r., r2, r3) 

= <3) Tm(l, 0, 0, ..., 0; q3, q2, qu ..., 0; r3, r2, r_,..., 0) 

= $ Tm(0,1, 0 , . . . , 0; q2, q3, <..,..., 0; r2, r3, r_,..., 0) 

= <3) Tm(0, ..., 0, 1, 0; 0, ..., qu q3, q2; 0, ..., r_, r3, r2) 

= ( 5 )T3(0, 1,0; quq3,q2irur3,r2) 

= {t]T3(l,0,0;q3,quq2;r3,rur2) 
= (S)Tm(l,0,0,0,...,0;q3,quq2,0,...,0;r3,r1,r2,0,...,0) 

= (3> T„(0, ..., 0, 0, 0, 1; 0, ..., 0, q2, qu q3; 0, ..., 0, r2, r „ r3) 

= <5 )T3(0,0,1; q2,quq3,r2,rur3) 

= T3(p2, pi, p3; ?2> __, -3 ; r2) r l f r3) 

Case II. 0 < p. + p2 _g 1; 0 < _/_ + #2 < 1; 0 < r_ + r2 _g 1. 

In this case, (10) follows from (4) and (9). 

To prove (11) we have the following cases: 

Case I. p_ + p2 = 0,p3 = 1; 0 < qt + q2 < 1; 0 __ r_ + r2 < I. 

Thew 

T3(Pi, p2, P3; -i> ?2, <?3; r_, r2, r3) = T3(0, 0, 1; qu q2, q3; ru r2, r3) 

= <5> Tm(0, ..., 0, 0, 1; 0, ..., qu q2, q3; 0, ..., ru r2, r3) 

= <3> T„(l, 0, 0 , . . . , 0; <jr3, «_2, <?_, 0 , . . . , 0; r3, r2, r_, ..., 0) 

= <») T3(l, 0, 0; q3, q2, qt; r3, r2, r_) 

= T3(p3, p2, pi; 23, «2, ? i ! r3, r2, r t ) . 

Case//. 0 < p_ + p2 < 1; 0 < qt + q2 < 1; 0 < r_ + r2 _g 1. 

Then 

T3(pi, p2, Psl 1u 12, <?3; r_, r2, r3) 

= <8) Tm(pup2,p3,0, ..,0; quq2,q3,0,...,0; ru r2, r3, 0 , . . . . 0) 

= ( 3 ) T _ 1 ( 0 , . . . , 0 , p 3 , p 2 , p 1 ; 0 , . . . , 0 , 4 3 , ? 2 , 4 1 ; 0 , . . i , 0 , r 3 ) r 2 , r 1 ) 

= (5) T3(p3,p2,puq3,q2,qi; r3, r 2 , r . ) if p3 = 0 

= {¥)T3(p3,P2,Pi;q3,<]2,qur3,r2,rl) if 7>3 > 0. 

Thus Lemma is proved. 
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Proof of the Main Theorem. 

For n = 2, the theorem follows from (9). For n = 3, it follows from (10) and (11). 
We prove the theorem for all n = 4 by induction on n. We assume that T„ is symmetric 
under the simultaneous permutation of ph qt and rt (i = 1, 2 , . . . , / ) , j = n = 3 
and then prove that T„+1 is symmetric. For this, it is enough to prove the following: 

(16) T„+i0?i,p2, . . . ,p»+i; qi,q2,---,qn+i, rur2,...,rn+x) 

= T„+1(p2,pu ...,p„ + 1; q2,qu •••,q„+i; r2,
ri, •••,r„+1) 

(17) T„+S(pup2,p3,...,pn+1; quq2,q3, ...,q„ + 1;
 r

u
r

2 , r 3 , • • • , r „ + 1 ) 

= Tn+l(Pl, P2, Vk(i), •; Vk(n+l)l 1l, <?2, <?i(3), •••, «k(»+D> 

rl, r 2 , rk(3), ••; rk(n+l)) 

where k is an arbitrary permutation of 3, 4 , . . . , (n + 1) and 

(18) T„ + 1(pup2,p3,p4,...,pn+1; quq2,q3,q4, ...q„+1;
 r

ur2,r3,r4, ...,r„+1) 

= T„ + 1(p1,p3,p2,p4,...,pn+1; quq3,q2,q4, ••-, 4«+il ru r3, r2, r4,..., r„+1) 

To prove (16), we have the following cases: 

Case I. p1 + p2 = 0. In this case, (16) follows from (6). 

Case II. 0 < pi + p2 = 1. In this case, (16) follows from III„ and (9). 

To prove (17), we have the following cases: 

Case I. Pi + p2 = 0. In this case, (17) follows from (5) and the induction hypothesis. 

Case II. 0 < py + p2 = 1. In this case, (17) follows from III„ (n = 3) and the induc

tion hypothesis. 

To prove (18), we have the following cases: 

Ca.se 7. pj + p2 = 0; 0 < qx + q2 < 1; 0 = rt + r2 < 1. 
Then 

T„+1(p1,p2,p3,p4, ...,pn+1;qu q2, q3, q4, ..., q„+1,
r
u r2, r3, r4, ..., r„+1) 

T„+1(0, 0, p3,p4, ...,p„+1; quq2,q3,q4, ..., q„+1; rurz,r3,r4, . . . , r„+ 1 ) 

= (5) T„ + 2(0,0,0,p3,p4,...,p„+1; 0,quq2,q3,q4, ...,qn+u 

0, r j , r2,r3,r4, ..., r„ + 1) 

= ( l 7 ) T„+2(0, 0, p3, 0, p4, ..., p„ + 1; 0, qu q3, q2, q4, ..., q„+u 

0,ru r3,r2,r4, . . . ,r„ + 1) 

= (5> T„+1(0, p3,0, p4,...,p„+1; qu q3, q2, q4,..., q„+uru r3, r2, r4, ..., r„ + 1) 

T„+1(p1,Pi,P2,P4; ••;Pn + llQl, «3 , « 2 , « 4 . • • ; In+l', rl, r3, r2, r4, •••, r „ + i ) 

Cose II. 0 < px + p2 = 1; 0 < qt + q2 < 1; 0 < r t + r2, < 1. 

In this case, (18) (« ^ 4) follows from III,, (n § 3) and the symmetry of T3 by 
proceeding in the same way as on page 60 in [2]. 

This completes the proof of the theorem. 
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COMMENTS 

A code is defined to be reversible if its code-word set is invariant under a reversal 
of the digits in each code word. An important subclass of the BCH codes consists 
entirely of reversible codes. 

Suppose that information has been encoded into a block code and the code word 
placed in a storage medium. It may be advantageous to read out the stored data 
beginning from either end of the stored block. 

Suppose, however, that the code can be decoded digit-by-digit by feeding the block 
into a sequential circuit. If the code is reversible, then the same decoding circuit 
can be used regardless of which end of the block is processed first. But it is possible 
that much greater potential utility lies in exploiting the additional symmetry provided 
by reversibility to simplify the decoding procedure for a reversible code. 

Just as a reversible code remains invariant under a reversal of the digits in each 
code word; in an analogous way, the average amount of information H„ (p t , p2, ..., pn) 
associated with the probability distribution also remains unchanged if the elements 
of (pup2,.•.,pn) are reversed so that H„(pn, •••,p2,Pi) is the average amount of in
formation associated with (pn, pn_1, ..., p2, pt) i.e. 

H„(Pl, pi,..., p„) = Hn(p,„ ...,p2,Pi) 

This property of Hn is known as the reversible symmetry of the Shannon entropy Hn. 
This sort of analogy can be extended to other measures of information like directed 
divergence and generalized directed divergence also. In this paper, we have exhibited 
such an analogy between the reversible codes and the reversible symmetry pertaining 
to generalized directed divergence. 
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