
Kybernetika

Karel Vosátka
Intermittent-assertion method as a structural induction

Kybernetika, Vol. 15 (1979), No. 2, (122)--135

Persistent URL: http://dml.cz/dmlcz/124478

Terms of use:
© Institute of Information Theory and Automation AS CR, 1979

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124478
http://project.dml.cz

KYBERNETIKA —VOLUME 15 (1979), NUMBER 2

Intermittent-Assertion Method
as a Structural Induction

KAREL VOSATKA

This paper formulates intermittent-assertion method for program verification as a structural
induction. It analyses the inductive mechanism of the proof. The relation of the method to other
known methods for program verification is studied. The paper also formulates verification
conditions which represent the proof intermittent-assertion method.

1. INTRODUCTION

The intermittent-assertion method (IAM) is a method for proving total correctness
of programs. It uses assertions, which are placed at some points in program structure.
As opposed to invariants, they need not hold always at that point but only sometimes.
This technique was suggested by Burstall [1] and later it was described by Manna
and Waldinger [2]. In both of them ([1] and [2]) the IAM was not described formally.
It was only illustrated with a number of examples. In the paper [2] the authors also
showed that a correctness proof using the invariant assertion method (Floyd [3]) or
the subgoal induction method (Morris and Wegbreit [4]) can be expressed by using
IAM. They noted that the reverse is not always possible. This paper should aid better
understanding of connections between these methods.

We shall show easily that IAM can be expressed by means of structural induction
of Burstall [5]. Structural induction is used to prove properties of data structures.
We shall distinguish two types of proofs according to induction on the domain of the
program:

In the first type of proof, the inductive structure is derived from the structure
of program itself.

In the second type of proof, the inductive structure is derived from the specifica
tions of the program. The natural structure of the domain or the structure of expected
function of program can be used.

We shall show that the first type can be expressed by using subgoal induction
method and then by using invariant method, too. What the IAM contributes to is
just the second type of proofs.

It is advantageous for the reader to know the paper [2], but it is not requirement.

2. INTERMITTENT-ASSERTION METHOD

Let P be a program, J(x0) be an input specification and K(x0, x) be an output
specification, x is a program variable (or vector of variables) and x0 is its input value.
We are to prove the total correctness of program P with respect to J and K.

We shall place cutpoints to the program P : at the entrance and at each exit of P
and at least one inside of each loop.

Intermittent assertion at some cutpoint A is written in the form:

Sometime (At A and T(x))

and it is read:

"Sometime the computation is at the cutpoint A and T(x) holds."

If we denote the cutpoint at the entrance of P by A and the cutpoint at the exit
by B (for simplicity we suppose only one exit of P) we shall express the total correctnes
of P as a theorem:

Theorem.

(2.1) If Sometime (At A and J(x0))

then Sometime (At B and K(x0, x)).

Note that the theorem involves also the request for termination of P, because it
says that the computation will occur sometime at the end of program.

The theorem is proved with the help of lemmas which are formulated for each
loop and which describe intended behaviour of the loops.

Let C be a cutpoint of a loop, then

Lemma.

(2.2) If Sometime (At C and a = x and Ql(a))

then Sometime (At C and g2(a, xj).

expresses a relation between two values of variable x at two states of computation
at C. It is possible to prove the theorem with the help of relation between the values
of x at the first and the last passage through C.

The proof of the lemma involves complete induction over a well-founded set.
Thus the essential condition for the proof of the theorem is a good choice of a lemma
and of a well-founded set for each loop. We shall show that this choice determines
the types of proof as was told in the introduction.

3. STRUCTURAL INDUCTION

Let (S, •<) be a partially ordered set and let it be well-founded; which means that
it contains no infinite decreasing sequence a0 >» at >- a2 >» . . . of its elements.
Thus each subset S' of S contains a minimal element (we call it <-least element
ofS').

Let cp be a total predicate over S. Then q> is inductive on S iff the following condi
tion holds:

(Va e S) {[(V6 e S such that b < a) <p(b)] z> cp(a)} .

Then by structural induction (see Manna [6]):

If (p is inductive on S then (Vc e S) 9(c).

If we are to prove some property <P of elements of S it will do to verify if $ is in
ductive on S. But if it is not the case, then we must find a predicate cp that is inductive
on S and show that

(Va e S) (3c e S) (<p(c) => 0(a))

holds (we shall say that cp is sufficient for & on S).

Now let us return to the IAM.

We shall consider the following simple one-loop abstract program P:

A: input (x0);

x- = f(x0);

(3.1) C: while t(x)do x:=g(x);

x: = h(x);

B: output (x).

If P(x) is a function of P, we shall express the Theorem (2.1) as a property V(x0)
of the input value x0 of the variable x:

(3.2) V(x0) = [J(x0) 3 P(x0) is defined A K(X0, P(X0))] .

Similarly we shall express the Lemma (2.2) as a property of value x at C:

(3.3) cp(x) = [Ql(x) 3 (3n) Q2(x, g"(x))] ,

where g is a function of one passage through the loop and g" means n-th power 125
of g.

We shall call the range of values of x at the cutpoint of the loop as a domain of the
loop. If we find a well-founded set on the domain D of the loop and a predicate cp of
the form (3.3) and if we verify that cp is inductive on D and that it is sufficient for V
on the domain of P, then the total correctness of P with respect to J and K is proved.

We can verify the latter by proving:

(3.4) W [# o)) ^ W] .

To verify the former, we need an inductive structure of the domain D of the loop
so that the program decomposes D according to that structure. A well-founded set
will define such structure.

More formally, perform a decomposition of the set D (well-founded decomposi
tion) into subsets Dp according to a well-founded set (5, -<s), where

Dp = {x : x £ D A r(x) = p}

and peS and r : D -> S is a representation.

We can define an ordering of D (well-founded ordering):

b < a iff be Dp, a e Dq and p,qeS and p <sq.

Thus the set (D, <) will be well-founded and we are to verify:

(3.5) (\/a e D) {[(Vfc e D such that b < a) cp(b)~\ = cp(a)} .

4. THE FIRST TYPE OF PROOF

The inductive structure of the domain is derived from the structure of the program
itself. See again the program (3.1). A well-founded ordering of D is looked for so that
g(x) < x can hold for each x e D. If there is such well-founded ordering, the com
putation will terminate, because there is no infinite decreasing sequence x > g(x) >-
> 92(x) > • • • We can compare this approach with the proof of termination by
Floyd [2]:

The computation will terminate, if for a well-founded set (5, <s) and an expression
E(x), the following holds:

(Vx € D) [E(x) e 5 A (t(x) = E(g(x)) <, E(x))~] .

It offers directly a well-founded decomposition of D into the following subsets:

Dp = {x : x £ D A E(x) = p} .

We can see that -<-least elements of D are just those for which n t(x) holds.

126 The following conditions are clearly sufficient for verification that cp is inductive
on D:

(4.1) (VxeD)(lt(x)=xp(x)),

(4.2) (VxeD)(t(x)^g(x)<x),

(4.3) (Vx e D) (t(x) A cp(g(x)) => <p(x)) .

The condition (4.2) is stated for justification of that the < ordering was well
chosen.

We have four verification conditions for the total correctness of P now: (3.4),
(4.1), (4.2) and (4.3).

As examples of such proof, see the proofs of the programs for finding a zero of an
array or for the greatest common divisor of two numbers in [2]. The latter proof
will be analysed in detail in the seventh section (Example 1).

5. FORMAL EQUIVALENCE TO OTHER TECHNIQUES

We shall show that the first type of the proof IAM (of course only with respect to
the proof of partial correctness) is formally equivalent to subgoal induction method
and thus also to invariant method.

Suppose that the computation will always terminate. Then the well-founded
decomposition of D is easily found:

D, = {x : x e D for which the computation terminates after i iterations} .

The decomposition is defined according to well-founded set (N, <) : natural numbers
with "less than" ordering. Of course, g(x) < x always holds and we can leave out
the (4.2) verification condition.

Subgoal induction is structural induction on the cartesian product D x H (see
Reynolds and Yeh [7]), where D is a domain of the loop and if is a range of output
values of the loop. Well-founded ordering of D x H is defined:

<*i» J i> -<• <*2» yi> iff x1eDi, x2eDj, yuy2eH and i<j,

where Dt, D} was defined above. Output values yx, y2 are 0'(x<), gJ(x2), respectively,
as it directly follows.

Let f be a total (subgoal) predicate over D x H, \j/ will be inductive on
(D x H, <.) if

(5.1) (VxeD)(lt(x)=>\l/(x,x)),

(5.2) (Vx e D) (t(x) A ^(g(x), y) => iy(x, y))

hold.

If the predicate cp of the form (3.3) is inductive on (D, -<), then the following 127
predicate ip will be inductive on (D x / / , -< .) :

,/<x, y) = (3n)(3k) [(Ql(x) => Q2(x, g"(x)) A H t(g"+k(x))) A y = g"+k(x)] .

The conjuct (3 k) ~lt(g"+*(x)) means that there is a last value of x at C so that the
output condition of the loop holds. Then the validity of (5.1) and (5.2) follows from
(4.1) and (4.3).

On the contrary, if if/ is inductive then <p(x) = (3n) \j/(x, g"(x)) is also inductive.
The condition (3.4) of sufficiency can be transformed in a similar way. Let z be

an output value of x in P. We will write an output-input relation

(5.3) W(x0, z) = V(x0) A P(x0) = z .

Then ij/ is sufficient for W iff

(^0)(^(f(x0),y)^W(x0,h(y))).

The mutual transformation of subgoal induction and invariant method is well
known (see Morris and Wegbreit [4] or Reynolds and Yeh [7]).

Remember J(x0) to be an input and -K(x0, x) an output specification. On the
assumption of termination W(x, z) = (J(x) => K(x, z)), as follows directly from
(3.2) and (5.3). Then an invariant of the loop at cutpoint C that is adequate to J
and K is

/(x0 , x) = (Vy) OKx, y) ~ W(x0, h(y))).

On the contrary:

•A(x, y) ~ (Vx0) (/(x0, x) =, W(x0, h(y))) .

The transformation of the IAM to the invariant method is as follows:

I(x0,x) -(Vy)[(3n)(3k)[(Ql(x) => Q2(x, a"(x)) A ~ t(g"+k(x))) Ay =

= g" + k(x)-] => W(x0, h(y))] .

The opposite transformation:

cp(x) = (3n) (Vx0) [/(x0, x) = (J(x0) =» K(x0, h(g"(x)))] .

Because

-lt(g*(x)) A I(x0, g"(x)) = K(x, h(g"(x))),

we can strengthen

<p(x) = (3n) (Vx0) [/(x0, x) A J(x0) 3 H<fl"(x)) A / (X 0 , g"(x))] .

Note that <p, when rewritten to intermittent-assertion form, is just the lemma that
is stated by Manna and Waldinger [2] for that transformation.

6. THE SECOND TYPE OF PROOF

Let us have all the assumptions stated in Section 3: a one-loop program P,
a property V(x0) and a predicate cp(x) of the forms (3A), (3.2) and (3.3), respectively.
The predicate cp is sufficient for V((3.4) holds) and it should be inductive on (D, <),
where D is a domain of the loop again but -< is an ordering that does not follow
the program structure. It is derived from the specifications J and K, specially given
for the loop at cp.

A. The ordering of D can be derived from input data structure, which should be
decomposed by the computation.

For instance, let us have a set S* of strings over S as a domain, with ordering:

tail(x) -< x for each x e S* , x dp A (empty string),

Now cp is inductive on (S*, -<) if all the following conditions hold:

(Vx e S*) (x = A => (p(x)),

(Vx e S*) (x * A => g(x) < x) ,

(Vx e S*) (x 4= A A <p(g(x)) => cp(x)) .

As an example of such proof, see the proof by IAM of an imaginary sequential
operating system presented in [2],

B. The ordering of D can be derived from a structure of the expected function

of the loop.

For instance, let <p specify (3n) g"(x) = F(x) and function F is defined recursively

F(x) = if B(x) then G(F(S(xjj) else H(x)

for a predicate B and some functions G, S, H.

A decomposition of D is again looked for so that S(x) «< x for each xe D. Such
ordering is well-founded iff the function F(x) is defined for each xe D.

The verification conditions will be now:

(VxeZ))(nB(x) = cp(x)),

(Vx e D) (B(x) = o(x) < x) ,

(\/XBD)(B(X) A cp(g(x)) ^ <p(x)).

As examples of such proofs see the proofs of the programs for counting the tips
of a tree or for computing the Ackermann function in [2]. The latter will be analysed
in detail in the next section (Example 2).

C. As a special instance, the function of the loop can be specified by another itera
tive program. The decomposition is done according to the structure of the second
program. This is the case of proving equivalence of two iterative programs.

Let us give some remarks.
In proofs of second type, the domain of proof is decomposed according to the

structure of specifications. But it may happen that such a decomposition merges into
a decomposition according to the structure of program. Then the proof merges into
the proof of the first type.

If the proof differs from a proof of the first type then there is no direct way how to
express it by using subgoal induction or invariant method.

In practice, the predicate cp that is proved in this way can be weaker, because the
proof uses only the properties of the own problem and does not depend on
technical details of the program. That is why such a proof is advantageous especially
for unstructured program segments.

7. PROGRAMS WITH MORE COMPLEX STRUCTURE

In this section we shall try to generalize the above stated verification conditions,
better to say, to find rules for its synthesis.

For the simplicity, we confine ourselves only to structured programs with only
while loops, if-then-else branching and sequential concatenation of statements.

Suppose that each loop has a cutpoint, domain of values at the cutpoint and
a predicate which is total over the domain and which specifies the behaviour of the
loop (its function). If we prove that the predicate is inductive on the domain we can
see the loop as a single command and we do not need to deal with its structure from
now on.

We can decompose the whole program into individual levels of abstraction. At
each level we can distinguish only sequential structure or branching. An arbitrary
program segment in an arbitrary level can be divided into finite number of paths
according to branching.

Some properties are to be proved on a domain of a segment. Such proof requires
finding functions of each path of that segment and on this occasion it uses all specifica
tions of loops (already proved predicates) lying on the path. We can shift such pre
dicates back (by backward substitution) to apply them for data of the domain of the
segment. We shall call the conjunction of all the shifted predicates along a path as
a precondition of the path.

The proof of the whole program will be performed level by level from the bottom
up.

Let us prove that a predicate cp is inductive on (D, <) where D is a domain of a loop
at a certain level and -< ordering was defined according to the loop structure (the
first type of proof). Let the tail of the loop be divided into i paths. Let tut2, .. .,tt

130 be their conditions, gi,g2, • ••,«,• be their functions and let <Pi,<P2, ..-,^i be
their preconditions. Now we can state the verification conditions for that level:

(VxeD)(-\t1(x) A 1t2(x) A . . . A ~]t,(x) => cp(x))

and for each k = 1,2, . . . , i

(VxeD)(tk(x)=>gk(x)<x),

(Vx e D) (tk(x) A $k(x) A cp(gk(x)) => <p(x)) .

At the highest level, let the program have just j paths, their conditions be tlt t2, ...
.. .,tj and their preconditions be &u 4>2, ..., <Pj. It must be verified for each path
that its precondition is sufficient for the required property V:

(V x 0) (t 1 (x 0) A ^ 1 (x 0) 3 V (x 0)) ,

(Vx0)((,(x0) A $, (x 0) = V (x 0)) .

Example 1. (Manna and Waldinger [2]) The following program computes the
greatest common divisor of two positive integers, defined as follows:
gcd(x, y) = max {u : u | x and u | y} .

A: input(x, y);

CI: while x =1= y do begin

C2: while x > y d o x : = x — y ;

C3: while x < y do y : = y — x ;

end ;

B: output(y)

We want to prove

Theorem.

If Sometime (At A and x = a, y = b and a, b > 0)

then Sometime (At B and y = gcd(a, b))

with the help of following lemmas:

Lemma 1.

If Sometime (At CI and x — <*«., y = b. and x, y > 0)

then Sometime (At CI and x = y and y = gcd(au &«))••

Lemma 2 .

If Sometime (At C2 and x = a2, y = b2 and x, y > 0, x > y)

then Sometime (At C2 and x < a2, y = fr2> * = y, x, y > 0

and gcd(x, y) = gcd(a2, b2)) .

Lemma 3 .

If Sometime (At C3 and x = a3, y = b3, x, y > 0, x < y)

then Sometime (At C3 and x = a3, y < b3, x ^ y, x, y > 0

and gcd(x, y) = acd(a3, b3)).

If we transform them to our formalism we shall get

V(x,y), (p\(x,y), <p2(x,y), cp 3(x, y).

We can see that the domain of the whole program and of each loops is a set of ordered

pairs <x, y>.

Prove the bottom level. We can define a well-founded orderings, as follows

<*i, yi> <2 <x2, y2> iff x1<x2,

< * i . yi> <3 <*2, y 2> iff yi < y2,

for the domain of the second and the third loop, respectively. Verification conditions:

(V<x,y»(x<y^<p2(x,y)),

(V<x, y» (x > y => « x - y, y> <2 <x, y» ,

(V<x, y» (x > y A cp2(x - y, y) = q>2(x, y));

(V<x,y»(x^y^(p3(x,y)),

(V<x, y» (x < y ^ <x, y - x> <3 <x, y» ,

(V<x, y» (x < v A ?)3(x, y - x) r= (?3(x, y))

are easy to verify. So p2, </>3 are inductive on (D, <2), (D, <3), respectively.

Now prove the higher level. The tail of the outer loop involves just three paths:
either the first inner loop is gone through or the second inner loop or both.

Let as denote the function of the first and the second inner loop as G2 = <G2X,
G2y> and G3 = <G3X, G3y>, respectively. (You can see that cp2 determines that

132 (3 n) G2x(x, y) = x - n . y and G2y(x, y) = y, similarly <p3 determines G3.) The
conditions of the three paths are:

t,(x, y) _ (x > y A G2x(x, y) ^ G2y(x, y)) ,

t2(x, y) = x < y,

.3(x, y) _ (x > y A G2,(x, y) < G2,(x, y)) ,

their preconditions:

$i(x, y) = <?2(x, y) ,

. 2(x, y) = <p3(x, y) ,

<2>3(x, y) _ <p2(x, y) A <p3(G2(x, y))

and their functions:

fll(x, y) = G2(x, y) ,

<72(x, y) = G3(x, y) ,

g3(x, y) = G3(G2(x, y)) .

If -<! is an ordering (defined below) of the domain D then the verification conditions
are:

(7.1) (V<x, y » (x = y _ <pl(x, y)) ,

(7.2) (V<x, y » (f.(x, y) _ ffl(x, y) < x <x, y » ,

(7.3) (V<x, y » (tt(x, y) A d> ,(X, y) A cpl(gi(x, y)) _ <pl(x, y)) ,

(7.4) (V<x, y » (*2(x, y) _ g2(x, y) -<. <x, y » ,

(V<x, y » (t2(x, y) A <_ 2(x, y) A <pl(«2(x, y)) _ <pl(x, y)) ,

(7.5) (V<x, y » (f3(x, y) _ a3(x, y) < . <x, y » ,

(V<x, y»(f 3 (x , » A _> 3(x, y) A <pl(fl3(x, y)) - <. l(x, y)) .

Note that from - t _ <p2 (see Lemma 2) G2X <, G2y holds. Then from the con
junction tx A _ j , it follows G2X = G2, and thus the same for gu Then it follows
directly from (7.1) that (pl(gt(x, y)) is true. Thus cpl(gt(x, y)) is redundant in (7.3)
and so the condition (7.2), too.

We can define -<. ordering in that case only to fit (7.4) and (7.5):

<- i» . i> -<i <^2,y2> iff y i < y a -

That is why the IAM-approach is more effective than the Floyd's technique for
proving termination (see this example at [2]) in some cases.

For the highest level, it will do to prove

(^x,yy)(cpl(x,y)=> V(x,y)),

what is straightforward.

Let us return to a level of complex program, where we want to prove that some
predicate is inductive on the domain by a proof of the second type. The proof will go
through the tail of the loop just only according to a structure given by its specification.
See the next example:

Example 2. (Manna and Waldinger [2]) The computation of the Ackermann
function:

A(x, y) = if x = 0 then y + 1
else if y = 0 then A(x - 1 , 1)

else A(x - 1, A(x, y - 1))

The program uses an array stack s:

A: input(x0, y0);
s[l] := x 0 ;
s[2]:=;vo;
i : = 2 ;

C: while i + 1 do if s[i - l] = 0
then begin s[i - 1] : = s[i] + 1 ;

i : = i - 1
end

else if s[i] = 0
then begin s[i - l] : = s[i - l] - 1 ;

s [i] : = l
end

else begin s[i + 1] : = s[f\ _ 1 ;
s [i] : = s [i - l] ;

s [; - _ l] : = s [i - l] - l ;
i : = i + 1

end;
B: output(s[l])

We want to prove

Theorem.

If Sometime (At A and x0>)'o > Q)

then Sometime (At B and s[l] ' = 4(xo> y°))-

with the help of the following lemma.

Lemma.

If Sometime (At C and i = index, index ^ 2, s[l : index - 2] =

= stack, s[index — l] = a , s[index] = b)

then Sometime (At C and i = index — 1, s[l : index — 2] =

= stacfc and s[index — 1] = A(a, b)) .

If we transform them to our formalism we will get V(x0, y0) and cp(s, i).
The domain of the whole program is a set of ordered pairs <x0, y0y and the domain

D of the loop is a set of ordered pairs <s, i>, where i is a positive integer and s is an
array stack of size i.

We can then easily prove that <p is sufficient for V:

(V<x0, y0y) (fl»(-o. 2) => F(x0, jo)).

where s0[l] = x0 and s0[2] = y0.

The domain D of the loop is decomposed according to the structure of A(s[i — 1],

-M):
<-i. ii> < <s2, i2> iff <Si[»'i - 1]. - i [' l]> <L <s2[i2 - 1], s2[i2]> ,

where -<L is the lexicographic ordering.
Recursive definition of A(s[i — 1], s[i]) involves three paths. Their conditions are

Bt(s, i) = s[i - 1] = 0,

B2(s, i) = s[i - 1] * 0 A s[i] = 0,

B3(s, i) = s[i - 1] 4= 0 A s[i] 4= 0.

Note that Bt is a condition for -< -least elements of D.
Let glt g2, g3 denote the functions of the paths, which correspond to the conditions

Bit B2, B3, respectively. Let G denote the function of the loop which is determined
by the predicate q>.

Now we can write the verification conditions:

(V<s,.»(B1(s,0 = 9»(-.0).
(V<s,iy)(B2(s,i)z>g2(s,i)<(s,iy),

(V<s, i » (B2(s, i) A cp(g2(s, 0) =» <p(s, i)) ,

(V<s , i» (B 3 (s , i)^a3(s , i)<<s , i» ,

(V<s, i » (B3(s, i) => G(>,(,, 0) -< <s, i » ,

(V<s, iy)(B3(s, i) A <p(a3(s, 0) A cp(G(g3(s, i))) b <p(s, i)) •

In the last condition, the two applications of the inductive hypothesis answer to the 135
double recursive call in the definition of the Ackermann function for the condition £ v

8. CONCLUSION

We can see that intermittent-assertion method is more powerful than other known
methods for program verification, because it involves the others and even something
more. Its proof need not depend on the program structure but only on the problem
itself. That is the main advantage of the method.

Our expressing of IAM as a structural induction served only for an analysis but
not for a practical hand-verification. Intermittent assertions are more simple and
more intelligible.

The presented rules for synthesis of verification conditions could serve for the
control of mechanical proofs.

(Received August 11, 1978.)

ACKNO WLEDG MENT

I wish to thank Dr. V. Rajlich ior his critical reading of this paper.

REFERENCES

[1] R. M. Burstall: Program Proving as Hand Simulation with a Little Induction. Information
Processing 74, North-Holland Publ. Comp., 1974, 308-312.

[2] Z. Manna, R. Waldinger: Is "sometime" sometimes better than "always"? Intermittent
assertions in proving program correctness. Stanford Artif. Intel. Lab. STAN-CS-76-558,
June 1976 (also in CACM 21 (1978), 2, 159-179).

[3] R. W. Floyd: Assigning meanings to programs. Proceedings of Symposium in Applied
Math., American Math. Soc. 1967, 19—32.

[4] J. H. Morris Jr., Ben Wegbreit: Subgoal induction. CACM 20 (1977), 4, 209-220 .
[5] R. M. Burstall: Proving properties of programs by structural induction. The Comp. Jour. 12

(1969), 1 , 4 1 - 4 8 .
[6] Z. Manna: Mathematical Theory of Computation. McGrow-Hill Book Comp., New York

1974.
[7] C. Reynolds, R. T. Yeh: Induction as the basis for program verification. IEEE Tran. on Soft

ware Engineering SE-2 (1976), 4, 244-252.

RNDr. Karel Vosdtka, Vyzkumny ustav matematickych stroju (Research Institute for
Mathematical Machines), Loretdnske nam. 3, 118 55 Praha 1. Czechoslovakia.

		webmaster@dml.cz
	2012-06-05T05:58:41+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

