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K Y B E R N E T I K A - V O L U M E 20 (1984), N U M B E R 5 

OPTIMIZATION OF MEASUREMENTS FOR STATE 
ESTIMATION IN PARABOLIC DISTRIBUTED SYSTEMS 

EWARYST RAFAJLOWICZ 

The aim of this paper is to consider the optimal, from the viewpoint of a state estimation ac
curacy, measurement location problem in linear distributed-parameter systems with white Gaus
sian noises. In contrary to earlier works the proposed approach consists of two steps. Namely, 
to find closed form solution for the optimal measurement weighting function (MWF), assuming 
measurements continuous in space, and then to approximate this solution using point sensors. 
At the first step it was also shown that the Green function of the system can be used as a subopti-
mal MWF. State estimation in one-dimensional heat transfer problem illustrates the results. 

1. INTRODUCTION 

Theory of optimal state estimation for linear distributed parameter systems (DPS) 
has reached a certain degree of completeness (see [4] and the bibliography therein). 
As it is pointed out by several authors (see e.g. [4], [8] and confirmed by simulation 
studies [8], [ l]) , applications of this theory are strongly dependent on measurements 
type and locations. A problem of sensors locations, from the viewpoint of observ
ability and state estimation accuracy, has been considered in a number of papers 
(see e.g. [ l ] , [2], [3], [7], [8]). A common feature of methods applied in these 
papers is their computationally-oriented character, i.e. they present different numeri
cal algorithms for an estimation accuracy maximization with respect to spatial 
location of sensors. An approach of this kind, although valuable from a practical 
point of view, can give only limited insight into a nature of the problem. 

The aim of this paper is to propose an alternative approach, which consists of 
two steps. Namely, to find explicit (or almost explicit) formulas for an optimal weight
ing functions of measurement devices acting continuously in space and then to ap
proximate them basing on point observations. Realisation of the first step is possible 
if we assume that both measurement and equation errors are the Gaussian white 
noises and that the system is described by the linear parabolic partial differential 
equation (PDE) with point spectrum and complete set of eigenfunctions. These 
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assumptions are precisly described in Section 2, where the problem of choice of mea
surements weighting functions (MWF) so as to minimize spatially averaged asympto
tic variance of a state estimator is also stated. In Section 3 the optimal solution is 
expressed in the form of an infinite series and uncoupled algebraic equations for its 
coefficients are derived. Approximate solutions of these equations lead to the sub-
optimal MWF, which occur to be directly proportional to the system Green's 
function. This important relationship between the suboptimal MWF and properties 
of the system itself is a consequence of the fact that the noises, being white, do not 
corrupt internal characteristics of the system. The results of Section 3 are used in 
Section 4 in order to find positions of point sensors for which basic properties of the 
optimal (or suboptimal) MWF are approximately retained. An illustrative example 
is also given in this section. 

2. ACCURACY OF STATE ESTIMATION AND PROBLEM 
STATEMENT 

System description. Consider a linear stochastic DPS described by 

(2.1) M 3 - i ) = Axq(x, t) + w(x, t):t>0,xeQ 
dt 

defined on the open spatial domain Q <= Rk. Above q(x, t) is one dimensional state 
of the system, Ax is a linear spatial differential operator whose parameters may 
depend on x but not on t (further restrictions on Ax will be imposed later). w(x, t) is 
the Gaussian stochastic process with zero mean and the covariance function 

(2.2) E[w(x, t) • w(y, -)] = 5(t - t) . 5(x - y) 

where 5(t) and d(x) are the Dirac delta functions in time and space. The initial and 
boundary conditions for (2.1) are of the form: 

(2.3) q(x, 0) = q0(x) for xeQ 

(2.4) Bxq(x, r) = 0 for t > 0, x e T 

where F is the boundary of Q, Bx is a linear time-invariant spatial differential opera
tor while q0(x) is the Gaussian function with the mean q0(x) and the covariance 
function: 

(2.5) E[(d0(x) - §0(x)) (q0(y) - $„(y))] = P0(*. y) • 

It is assumed that the solution of (2.1), (2.3), (2.4), understood in the weak sense [4], 
exists and is unique. 

Measurements. The state q(x, t) is estimated from measurements: 

(2.6) s(x, t) = c(x, x) q(x, t) dx + v(x, t) : t e (0, T0), xeQ 
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where c: Q x Q -» R is a measurement operator kernel (MOK) to be described later. 
v(x, t) is the Gaussian white noise with zero mean and 

(2.7) E[v(x,t).v(y,i)] = S(t-T)5(x-y). 

It is also assumed that the stochastic processes w, v and q0 are mutually independent. 

Estimation accuracy. Let q(x, t) denote the optimal (in the mean square sense) 
estimate of q(x, t) based on measurements s(x, T), X e Q T e (0, t). As is known (see 
[4], [8]) q(x, t) can be obtained by using equations of the Kalman-Bucy filter and 
the estimate covariance function, defined as P(x, y, t) = E[(a(x, t) — q(x, t)). 
• (q(y> t) — q()!> t))]> fulfills the following equation: 

(2.8) 8F(X' y ^ = AxP(x, y, t) + AyP(x, y, t) + 8(x - y) -

P(x, x, t) e(x, /?) P(y, ^, t) dx d^ : t > 0, x, y e Q 
njfl 

with the initial and boundary conditions: 

(2.9) P(x, y, 0) = P0(x, y); x, yeQ 

(2.10) BxP(x, y, t) = 0, x e T, y e Q u r, t > 0 

where 

(2.11) e(x,ri) = c(x,v).c(v.»j)dv. 

We assume that the steady state covariance function, defined as P(x, y) = 
= lim P(x, y, t) exists, is unique and fulfills the equation: 

t^OO 

(2.12) 0 = AxP(x, y) + AyP(x, y) + S(x - y) - P(x, x) e(x, (?) P(n, y) dx d>\ 

for x, y e Q with the boundary condition: BxP(x, y) = 0, x e F, y e Q u F. Sufficient 
conditions for existence of P(x, y) can be found in [4]. 

The following restrictions are imposed on the operator Ax: 
Aj) The operator Ax is defined on the Hilbert space V, which is dense subset of 

l3(Q) with elements fulfilling the boundary condition Bxv = 0, v e V. 
A2) Derivatives in Ax are understood in the generalized sense and Axv e l3(Q) for 

veV 
A3) Ax is symmetric and eigenvalues Xu X2,... of the equation: 

(2.13) Axcp = -X.cp, cpGV 

are real and positive, while associated eigenfunctions q>u (p2, ••• form complete 
and orthonormal sequence in l}(Q). 

Remark 1. A typical example of Ax and V, for which Aj), A2), A3) hold is the 

415 



Laplace operator with homogenous boundary condition of the first kind if V is 
the Sobolev space Hl(Q) (see [5], where sufficient conditions for operators Ax to 
possess complete set of eigenfunctions can also be found). 

Problem formulation. Our aim is to minimize the averaged steady-state estimation 
error defined as 

(2.14) P(x,x)åx 

by suitable choice of MOK c(x, y). It is assumed that the choice of c is restricted to 
a class of functions of the form: 

(2.15) c(x, y) = f c,. <pfa). <Pi(y) 
i = i 

and such that. 

(2-16) tc>SNe 
i= 1 

where cf # 0, / = 1, 2, . . . are real numbers to be chosen, while 0 < Ne < oo is 
a given number. 

Remark 2. If the signal g e L2(Q) is measured without a noise by using MOK of 
the form (2.15).then the resulting signal w is given by 

(2.17) w(x) = f c(x, y) g(y) dy = f ct. g,. <p{x) 
Jn ;=i 

where 

9Ì = g(x). ę{x)áx, i = 1,2, .. 

As one can see from (2.17) kernels of the form (2.15) do not lead to aliasing between 
different modes in w, i.e. each mode of a has its own amplification factor c,. Further
more, reconstruction of g from given w is a simple task since 

9i = w(x) ^i(-x) d x / c< > ; = 1,2,... . 

Note that (2.16) and the Schwarz inequality implies that vv e l3(Q). 

3. PROBLEM SOLUTION 

From (2.12) it can be seen that P(x, y) depends on c(x, y) only through e(x, y) 
defined by (2.11). Hence it is convenient to minimize (2.14) with respect to e(x, y) 
and then to find the corresponding c(x, y). To this end, we note that (2.15), (2.16) 
and (2.11) yield 

(3-1) e(x, y) = f et. cpt(x) . <pt(y) 
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(3.2) Z « i ^ N . 
i = i 

(3.3) e, = c\ > 0 , i = 1,2,... . 

Now, the problem can be reformulated as follows: Find e* e E, for which the 
steady-state covariance function exists and 

(3.4) min \ P(x,x)dx 

is attained, where P depends on e e E through the constraint (2.12). In the above E 
denotes the class of functions, for which (3.1), (3.2), (3.3) hold. 

Our approach to the optimization problem (3.4) is based on eigenfunction ex
pansion of the function P(x, y). 

Let e e E be arbitrary but fixed. Taking (3.1) into account, we look for the solution 
of (2.12) in the form: 

(3-5) P(x, y) = f pk. cpk(x). <pk(y) 
i = i . 

where pk, k = 1, 2, ... are chosen in such a way that (2.12) holds. Substitution of 
(3.5) into (2.12), multiplication of both sides by (Pj(x). <Pj(y) and integration twice 
over Q yield 

(3.6) -2 . Pj .Aj + l - pj .ej = 0, j = 1, 2, . . . . 

We have to find nonnegative solutions of (3.6) since P(x, y) is nonnegative definite. 
These are of the form: 

(3-7) Pj = [-kj + V(A? + ej)]Jej, j = 1, 2, . . . . 

Thus, for every e e E, for which (3.3) holds, the unique solution of (2.12) is of the 
form (3.5) with pj given by (3.7). We impose (3.3) since if c; = 0 then the information 
concerning ith mode is not gained. 

The above considerations and substitution of (3.5) into (2.14) imply that our 
problem can be equivalently reformulated as follows: Find ej, j = 1,2, ..., which are 
positive and such that 

(3.8) min { £ [ -A , + J(X) + e^fo} 
( C j > 0 ) j = l 

is attained under the constraint (3.2). 

It is easy to verify that each member of the sum (3.8) is decreasing function of e,-
for ej > 0, j = 1, 2, .... Thus it is sufficient to consider the optimization problem 
under the constraint 

(3-9) tej = Ne. 

417 



Using the Lagrange multiplier method we can decompose (3.8) as follows 

(3.10) min [L,(e,)], j - 1 , 2 . . . 
ej>0 

where 

(3.11) L,(e,) = [ -A, + V W + ej)]lej + ye, 

while y is the Lagrange multiplier to be determined from (3.9). 

Now, we can look for the solutions of the optimization problems (3.10), (3.11), 

(3.9) using different approaches. We discuss only two of them. 

Optimal solution. Analysis of the function (3.11) shows that the value e*(y) which 
minimizes (3.11) for a given y is a root of the equation: 

(3 r ) dL-(g-) _ ;* y/(% + e*) ~ ;* ~ °'5e* + - = o 
dek el x/(;.

2 + ~) 
and y is determined from the condition (3.9), i.e. 

(3-13) f e*(y) = Ne. 
* = i 

One can notice that by substitution zk = ^/(A2 + et) the equation (3.12) can be con
verted into a third order algebraic equation. Closed form formulas for roots of such 
equations, although available, are too complicated for analysis and this approach 
is recommended when high precision of numerical results is necessary. 

Suboptimal solution. The fact that in typical cases lirn /,k = co together with (3.9) 
k^m 

implies that lim ek = 0. Thus, the term N/(A2 + ek) in (3.12) can be approximated 

by lk, k = 1 ,2 . . . . This yields 

(3.14) 4 = l / ( 2 y A t ) , !c = 1,2,. . . 

further called the suboptimal solution, where y is determined by 

(3.15) y = (2iVe)-
1.f I/A,. 

In order to evaluate \e* — ek\ one can use two terms of Taylor's expansion of the 
function dLk(ek)jdek at the point e*. This and bounds, upper for dLk(ek)jdek and lower 
for the second derivative, lead to the inequality \e* — ek\ ^ C\lk, k = 1 ,2. . . , 
C > 0. Summarizing, the approximate solution of the problem (2.14) is 

(3-16) e(x, y) = % ek<pk(x) (pk(y) 
k=l 

where ek is given by (3.14). On the other hand, the Green function G(x, y) of the 
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operator Ax, which is the solution of AxG(x, y) = 5(x — y), is of the form: 

(3-17) G(x,y) = fj<Pk(x)(pk(y)llk. 
k=i 

Comparing (3.16), (3.14) and (3.17) we have: 

Collorary. The suboptimal solution e(x, y) is directly proportional to the Green 
function of the system elliptic operator Ax. 

Using (2.11) and (3.16) it is easy to verify that the suboptimal MOK t(x, y), 
corresponding to e(x, y), is given by 

(3-18) c(x, y) = t V''(4) <pk(x). <pk(y). 
k=l 

It is clear that the optimal solution of (2.14) is also of the form (3.16) with ek replaced 
by «?*, k = 1, 2 ..., while for the corresponding optimal MOK we have 

(3.19) c*(x,y) = ij(e*)<pk(x).<pk(y). 
k= I 

4. POINT MEASUREMENTS AND ILLUSTRATIVE EXAMPLE 

The above results form a basis for finding sensors positions and a method of discrete 
in space measurements processing, which ensure the estimation accuracy close to 
the optimal one i.e. attainable for continuous in space measurements. The idea of 
proposed discretization is based on the fact that the sequence e*. k = 1, 2, ... ap
proaches rapidly to zero. Hence, nearly the same estimation accuracy can be expected 
if the positions £, e Q, i = 1, 2,..., of point sensors and the symmetric and non-
negative definite matrixD = [dim];,m=i,2...M a r e chosen in such a way that for the 
function: 

(4-1) ed(x, y) = I] dimd(x - Q 5(y - cm) 

we have 

(4-2) [ f ed(x, y) cpk(x). <pt(y) dx dy = 1°. [°V ) # ' 
JQJQ [e* for k = 1 

where fc, I = 1, 2,... M. To this end it is sufficient to choose <;,- for which 

(43) i<Pm<piQ = \l [°r k*1' k,l = l,2...M 
i=i {pk for fc = I 

and the matrix D of the form: 
M * 

(4.4) D = X f ipfij 
k=i pk 
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where ipj = l<Pi(£i), (pt(c2), '•••, <P;(£M)]- It i s worthwhile to notice that for typical 
eigenfunctions (e.g. Jacobi polynomials and sinusoidal functions) the points £,-, 
i = 1, 2, • •., M, for which (4.3) holds are known. It is clear that if e*, k = 1, 2 , . . . , M, 
in (4.2), (4.4) are replaced by ek then the above considerations are valid for the sub-
optimal e(x, y). It should be noticed that for the function (4.1) the condition (2.16) 
does not hold and in practical applications the Dirac delta function must be replaced 
by a square integrable approximation. 

Illustrative example. Let us consider the system described by (2.1) with Ax = 
= d2Jdx2, Q = (0, TI) and the boundary conditions: q(0, f) = q(n, t) = 0 for t > 0. 
Eigenfunctions and eigenvalues of this operator are of the form: (2/TT)1/2 sin kx 
and A-2, k = 1, 2, .... Substitution of ),k = k2 into (3.12) and (3.14) allows to cal
culate the Fourier coefficients e* and ek of the optimal and suboptimal solution, 
respectively. These values, obtained for Ne = 65 with y* = 0-001 and y = 001 , 
are summarized in Table 1, together with the corresponding values p* and pk defined 
by (3.7). 

Table 1. 

k 1 2 3 4 5 6 7 8 9 10 

e*k 
1 50-5 14-5 2 . Ю - 5 0+ 0+ 0+ 0 + 0+ 0+ 0 + 

P* •1223 •1050 •0550 •0312 •0200 •0130 •0102 •0078 •0055 •0050 

Єk 41-38 10-12 4-63 261 1-66 1-15 0-85 0-65 0-51 0-42 

Pk ! -1333 •1094 •0547 •0300 •0199 •0138 •0102 •0077 •0060 •0049 

The symbol 0 + in Table 1 means that the corresponding number is not greater than 
10~6. Fig. 1 shows the optimal and suboptimal solution of the problem (2.14) at 
the point x = jt/2 i.e. e*(n]2, y) and e(nj2, y). As one can see the values <?* and ek, 
k = 1, 2, ..., as well as the functions e*(nj2, y) and e(nj2, y) are not very close to 
each other. Nevertherless, the corresponding values of the optimality criterion, 
which are equal to Q* = 0-3764 and Q = 0-3787, are almost the same. 

In order to approximate e*(x, y) by point measurement we use (4.1), (4.2), (4.3), 
(4.4) for M = 2, q>x(x) = sin x, cp2(x) = sin 2x and £. = TT/3, £2 = 2rt/3 what yields 

(4.5) 
[41-5 15-591 

L 1 5 ' 5 9 23'5 J 
We remark that ed defined by (4.1) with D given by (4.5) provides only a basis for 
finding a realizable method of estimation from point measurements. A necessity of 
dealing with Dirac delta functions implies that such a method can lead to MOK 
cd(x, y), for which the equality 

(4.6) Єd(*, У) = cd(x, v). cd(v, y) àv 
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Fig. 1. Optimal 0 and suboptimal * measurement operator kernel in Example 4. 

holds only approximately. In order to illustrate a way of finding such approximation 

let us look for cd of the following form: 

(4.7) cd(x,v)= X rij.hi(x).d(v- čj) 

where r^ and ht(x); i,j = 1, 2, ..., M, are to be chosen. Hence 

ф , v) ф , y) àv = X rijrkmhi(x) hk(Q . д(y - č,„). 
! І . У , J i , ш = l 

If we choose ht(x) = d£(x — c,), /' = 1, 2 , . . . , M, where 

Ux) l/б for 
0 for 

ś e/2 
> є/2 

then for sufficiently small £ > 0, such that \ct — ck\ > e for i & k; i, k = 1, 2 , . . . , M, 
we obtain 

(4.8) [ Q (x , ») c,(c, y) dv=l Z 5£(x - c,-). 5(y - Q £ / V > „ . 
J f i £ l,m = l 7 = 1 

One can notice that (4.8) approximates ed(x,y) if we take rtJ; i,j = 1,2, . . . , M, 
such that 

(4.9) CҺm — ~ У, ГijГjm, U ,П = 1, 2, ..., M, 
£ У - l 

It is to be noticed that symmetry of D implies that factorization (4.9) can always 
be done. In particular the matrix R = [r,/] can be chosen lower triangular. For D 
given by (4.5) equalities (4.9) hold for 

(4.10) i-i, = 6-44 Je , r12 = 0 , r 2 1 = 2-42 v
;£ , r22 = 4-2 Je 
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and the desired MOK is given by 

(4.11) cd(x,v)= £ riJSe(x-it)d(v-tj) 
i,j=l 

We remark that exactly the same way can be used for approximation of e(x, y) 
b>y point measurements. In this case however M has to be greater in order to retain 
comparable accuracy. 

(Received October 3, 1983.) 
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