Kybernetika

Prem Nath Arora; Subhash Chowdhary

Generalised directed divergence without symmetry

Kybernetika, Vol. 20 (1984), No. 2, 147--158
Persistent URL: http://dml.cz/dmlcz/124496

Terms of use:

© Institute of Information Theory and Automation AS CR, 1984
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

GENERALISED DIRECTED DIVERGENCE WITHOUT SYMMETRY

P. N. ARORA, SUBHASH CHOWDHARY

The authors have characterized axiomatically the generalized directed divergence (which is a symmetric function of its variables) by considerably weakening the symmetry.

1. INTRODUCTION

Let

$$
\begin{aligned}
& \Delta_{n}=\left\{\left(p_{1}, p_{2}, \ldots, p_{n}\right) ; p_{k} \geqq 0, k=1,2, \ldots, n, \sum_{k=1}^{n} p_{k}=1\right\}, \quad n=2,3, \ldots \\
& \Delta_{n}^{*}=\left\{\left(p_{1}, p_{2}, \ldots, p_{n}\right) ; p_{k}>0, k=1,2, \ldots, n, \sum_{k=1}^{n} p_{k}=1\right\}, \quad n=2,3, \ldots,
\end{aligned}
$$

and
be the sets of all finite n-component discrete probability distributions with nonnegative elements and positive elements respectively. Let $P=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, $Q=\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ and $R=\left(r_{1}, r_{2}, \ldots, r_{n}\right) \in \Delta_{n}$. The generalized directed divergence of three probability distributions P, Q and R is defined as

$$
\begin{gather*}
F_{n}\left(p_{1}, p_{2}, \ldots, p_{n} ; q_{1}, q_{2}, \ldots, q_{n} ; r_{1}, r_{2}, \ldots, r_{n}\right)=\sum_{k=1}^{n} p_{k} \log \frac{q_{k}}{r_{k}}, \tag{1.1}\\
b_{k} \geqq 0, q_{k} \geqq 0, r_{k} \geqq 0, k=1,2, \ldots, n, \sum_{k=1}^{n} p_{k}=1=\sum_{k=1}^{n} q_{k}=\sum_{k=1}^{n} r_{k} .
\end{gather*}
$$

where $F_{n}: S_{n} \rightarrow \mathbb{R}, n=2,3, \ldots$, and S_{n} be a set of $3 n$-tuples of the form $\left(p_{1}, p_{2}, \ldots\right.$ $\left.\ldots, p_{n} ; q_{1}, q_{2}, \ldots, q_{n} ; r_{1}, r_{2}, \ldots, r_{n}\right)$ such that $q_{i}=0$ and $p_{i}=0$ for all those indices i for which $r_{i}=0$ and also $p_{i}=0$ whenever $q_{i}=0, i=1,2, \ldots, n$.
(Here the base of the logarithm is taken as 2).
Kannappan and Rathie [3] characterized (1.1) by assuming the following set of postulates.

Postulate \mathbf{I}_{n} (Recursivity). For all probability distributions P, Q and $R \in \Delta_{n}$, and $n \geqq 3$,

$$
\begin{align*}
& \text { (1.2) } \quad F_{n}\left(p_{1}, p_{2}, \ldots, p_{n} ; q_{1}, q_{2}, \ldots, q_{n} ; r_{1}, r_{2}, \ldots, r_{n}\right)= \tag{1.2}\\
& =F_{n-1}\left(p_{1}+p_{2}, \ldots, p_{n} ; q_{1}+q_{2}, \ldots, q_{n} ; r_{1}+r_{2}, \ldots, r_{n}+\right. \\
& +\left(p_{1}+p_{2}\right) F_{2}\left(\frac{p_{1}}{p_{1}+p_{2}}, \frac{p_{2}}{p_{1}+p_{2}} ; \frac{q_{1}}{q_{1}+q_{2}}, \frac{q_{2}}{q_{1}+q_{2}} ; \frac{r_{1}}{r_{1}+r_{2}}, \frac{r_{2}}{r_{1}+r_{2}}\right) \\
& \text { with } p_{1}+p_{2}>0, q_{1}+q_{2}>0 \text { and } r_{1}+r_{2}>0 .
\end{align*}
$$

Postulate $\mathrm{II}_{n}(n=3) . F_{3}\left(p_{1}, p_{2}, p_{3} ; q_{1}, q_{2}, q_{3} ; r_{1}, r_{2}, r_{3}\right)$ is a symmetric function of its variables $\left(p_{i} ; q_{i} ; r_{i}\right), i=1,2,3$.

Postulate III (Derivibility). The mapping $(x, y, z) \rightarrow f(x, y, z),(x, y, z) \in J$ possesses continuous first order partial derivatives with respect to each variable $(x, y, z) \in$ $\in(0,1)$, where $f(x, y, z)=F_{2}(x, 1-x ; y, 1-y ; z, 1-z)$ and $J=(0,1) \times(0,1) \times$ $\times(0,1) \cup\{(0, y, z), 0 \leqq y<1,0 \leqq z<1\} \cup\left\{\left(1, y^{\prime}, z^{\prime}\right), 0<y^{\prime} \leqq 1,0<z^{\prime} \leqq 1\right\}$.

Postulate IV (Normalization).

$$
f\left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right)=\frac{1}{3} \text { and } f\left(\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right)=0 .
$$

Postulate V (Nullity).

$$
f(p, p, p)=0, \quad p \in(0,1) .
$$

The main object of this paper is to axiomatically characterized (1.1) by considerably weakening the symmetry Postulate $\Pi_{n}(n=3)$ assumed by Kannappan and Rathie [3] and by many other research workers.
Instead of Postulate $\mathrm{II}_{n}(n=3)$, we assume the following postulate:
Postulate VI_{n}. For all probability distributions P, Q and $R \in \Delta_{n}-\Delta_{n}^{*}$, and $n \geqq 3$,
(1.3) $\quad F_{n}\left(p_{1}, p_{2}, \ldots, p_{j}, \ldots, p_{n} ; q_{1}, q_{2}, \ldots, q_{j}, \ldots, q_{n} ; r_{1}, r_{2}, \ldots, r_{j}, \ldots, r_{n}\right)=$ $=F_{n}\left(p_{j}, p_{2}, \ldots, p_{1}, \ldots, p_{n} ; q_{j}, q_{2}, \ldots, q_{1}, \ldots, q_{n} ; r_{j}, r_{2}, \ldots, r_{1}, \ldots, r_{n}\right)$, $2 \leqq j \leqq n, \quad$ if $\quad r_{1}>0$ and $r_{j}=0$ or $q_{1}>0$ and $q_{j}=0$ or $p_{1}>0$ and $p_{j}=0$ holds.

Postulate VI_{n} allows the simultaneous interchange of p_{1} with p_{j}, q_{1} with q_{j} and r_{1} with $r_{j}, 2 \leqq j \leqq n$ is such that either $p_{1}>0$ and $p_{j}=0$ or $q_{1}>0$ and $q_{j}=0$ or $r_{1}>0$ and $r_{j}=0$ holds. It is obvious that Postulate $\mathrm{II}_{n}(n=3)$ implies Postulate $\mathrm{VI}_{n}(n=3)$. But the converse is not true. For example: Consider $F_{n}: S_{n} \rightarrow \mathbb{R}$ defined

as

$$
\begin{aligned}
F_{n}\left(p_{1}, p_{2}, \ldots, p_{n} ; q_{1}, q_{2}, \ldots, q_{n} ; r_{1}, r_{2}, \ldots, r_{n}\right) & =p_{1} q_{1} r_{1} \quad \text { if } P, Q \text { and } R \in \Delta_{n}^{*} \\
& =1 \text { if } P, Q \text { and } R \in\left(\Delta_{n}-\Delta_{n}^{*}\right)
\end{aligned}
$$

Then it is easy to check that F_{n} satisfies VI_{n} but not $\mathrm{II}_{n}(n=3)$. Thus VI_{n} does not imply that $F_{n}, n \geqq 2$, is a symmetric function.

2. CHARACTERIZATION THEOREM

Theorem. Let $F_{n}: S_{n} \rightarrow \mathbb{R}, n=2,3, \ldots$, satisfy Postulates $\mathrm{I}_{n}(n \geqq 3)$, III, IV, V and $\mathrm{VI}_{n}(n \geqq 3)$. Then F_{n} is of the form

$$
\begin{gather*}
F_{n}\left(p_{1}, p_{2}, \ldots, p_{n} ; q_{1}, q_{2}, \ldots, q_{n} ; r_{1}, r_{2}, \ldots, r_{n}\right)=\sum_{k=1}^{n} p_{k} \log \frac{q_{k}}{r_{k}} \tag{2.1}\\
p_{k} \geqq 0, q_{k} \geqq 0, r_{k} \geqq 0, k=1,2, \ldots, n ; \sum_{k=1}^{n} p_{k}=1=\sum_{k=1}^{n} q_{k}=\sum_{k=1}^{n} r_{k}
\end{gather*}
$$

Proof. Before proving the main theorem, we shall prove the following lemmas:
Lemma 1. Postulates $\mathrm{I}_{n}(n=3)$ and $\mathrm{VI}_{n}(n=3) \Rightarrow$

$$
\begin{equation*}
F_{2}(0,1 ; 0,1 ; 0,1)=0=F_{2}(1,0 ; 1,0 ; 1,0) \tag{2.2}
\end{equation*}
$$

Proof. From Postulate $\mathrm{VI}_{n}(n=3)$, we have

$$
\begin{align*}
F_{3}\left(\frac{1}{2}, \frac{1}{2}, 0 ; \frac{1}{2}, \frac{1}{2}, 0 ; \frac{1}{2}, \frac{1}{2}, 0\right)= & F_{3}\left(0, \frac{1}{2}, \frac{1}{2} ; 0, \frac{1}{2}, \frac{1}{2} ; 0, \frac{1}{2}, \frac{1}{2}\right)= \tag{2.3}\\
& =F_{3}\left(\frac{1}{2}, 0, \frac{1}{2} ; \frac{1}{2}, 0, \frac{1}{2} ; \frac{1}{2}, 0, \frac{1}{2}\right)
\end{align*}
$$

which by Postulate $I_{n}(n=3)$ in (2.3), we get (2.2).
Lemma 2. Postulates $\mathrm{I}_{n}(n \geqq 3)$ and $\mathrm{VI}_{n}(n \geqq 3) \Rightarrow$

$$
\begin{gather*}
F_{n}\left(p_{1}, p_{2}, \ldots, p_{n} ; q_{1}, q_{2}, \ldots, q_{n} ; r_{1}, r_{2}, \ldots, r_{n}\right)= \tag{2.4}\\
=F_{n+1}\left(0, p_{1}, \ldots, p_{n} ; 0, q_{1}, \ldots, q_{n} ; 0, r_{1}, \ldots, r_{n}\right), \quad n \geqq 2 .
\end{gather*}
$$

Proof. Let p_{j} be the first non-zero element in the probability distribution P such that $p_{j}>0 \Rightarrow q_{j}>0 \Rightarrow r_{j}>0,1 \leqq j \leqq n$, and using Postulates $\mathrm{VI}_{n}(n \geqq 3)$, $I_{n}(n \geqq 3)$ and (2.2), we get

$$
\begin{gathered}
F_{n}\left(p_{1}, p_{2}, \ldots, p_{n} ; q_{1}, q_{2}, \ldots, q_{n} ; r_{1}, r_{2}, \ldots, r_{n}\right)= \\
=F_{n}\left(p_{j}, \ldots, p_{n} ; q_{j}, \ldots, q_{n} ; r_{j}, \ldots, r_{n}\right)= \\
=F_{n}\left(0+p_{j}, \ldots, p_{n} ; 0+q_{j}, \ldots, q_{n} ; 0+r_{j}, \ldots, r_{n}\right)+p_{j} F_{2}(1,0 ; 1.0 ; 1,0)= \\
=F_{n+1}\left(p_{j}, 0, \ldots, p_{n} ; q_{j}, 0, \ldots, q_{n} ; r_{j}, 0, \ldots, r_{n}\right)= \\
\stackrel{(1,3)}{=} F_{n+1}\left(p_{1}, 0, \ldots, p_{j}, \ldots, p_{n} ; q_{1}, 0, \ldots, q_{j}, \ldots, q_{n} ; r_{1}, 0, \ldots, r_{j}, \ldots, r_{n}\right)= \\
\stackrel{(1,3)}{=} F_{n+1}\left(0, p_{1}, \ldots, p_{n} ; 0, q_{1}, \ldots, q_{n} ; 0, r_{1}, \ldots, r_{n}\right) .
\end{gathered}
$$

Lemma 3. Postulates $\mathrm{I}_{n}(n \geqq 3)$ and $\mathrm{VI}_{n}(n \geqq 3) \Rightarrow F_{n}$ has $n!, n=2,3, \ldots$, permutations $\Rightarrow F_{n}, n \geqq 2$, is a symmetric function.

Proof. Here we prove the symmetry of $F_{n}, n \geqq 2$, by the method of induction on n.

When $n=2$. We have the following cases:
Case 1. When $0<r_{1}<1$ holds in F_{2} :
Then, $0<r_{2}<1$ also holds in F_{2} and it implies that either
(i) $q_{1}=0 \Rightarrow p_{1}=0, p_{2}=q_{2}=1$ in F_{2}; or (ii) $0 \leqq p_{1}<1,0<p_{2} \leqq 1$, $0<q_{1}<1,0<q_{2}<1$ in F_{2}.
The proof of (i) is as follows:
(2.5) $\quad F_{2}\left(0,1 ; 0,1 ; \dot{r}_{1}, r_{2}\right) \stackrel{(2.4)}{=} F_{3}\left(0,0,1 ; 0,0,1 ; 0, r_{1}, r_{2}\right) \stackrel{(1.3)}{=} F_{3}(1,0,0 ; 1,0,0$; $\left.r_{2}, r_{1}, 0\right) \stackrel{(1,2)}{=} F_{2}(1,0 ; 1,0 ; 1,0)+F_{2}\left(1,0 ; 1,0 ; r_{2}, r_{1}\right) \stackrel{(2.2)}{=} F_{2}\left(1,0 ; 1,0 ; r_{2}, r_{1}\right)$.
Similarly, the proof of (ii) follows.
Case 2. When either $r_{1}=0$ and $r_{2}=1$ or $r_{1}=1$ and $r_{2}=0$ holds in F_{2} :
Then, it implies either $p_{1}=0=q_{1}$ and $p_{2}=q_{2}=1$ or $p_{1}=q_{1}=1$ and $p_{2}=q_{2}=0$ in F_{2}.
This case is obviously true from (2.2).
Thus we have proved the symmetry of F_{2} over S_{2}.
When $n=3$. We have the following cases:
Case 1. When $0<p_{i}<1,0<q_{i}<1$, and $0<r_{i}<1, i=1,2,3$ holds in F_{3} :
Then by Postulate $I_{n}(n=3)$ and (2.5), we have

$$
\begin{equation*}
F_{3}\left(p_{1}, p_{2}, p_{3} ; q_{1}, q_{2}, q_{3} ; r_{1}, r_{2}, r_{3}\right)=F_{3}\left(p_{2}, p_{1}, p_{3} ; q_{2}, q_{1}, q_{3} ; r_{2}, r_{1}, r_{3}\right) . \tag{2.6}
\end{equation*}
$$

and

$$
\begin{gather*}
.7) \quad F_{3}\left(p_{1}, p_{2}, p_{3} ; q_{1}, q_{2}, q_{3} ; r_{1}, r_{2}, r_{3}\right) \stackrel{(2.4)}{=} F_{4}\left(0, p_{1}, p_{2}, p_{3} ; 0, q_{1}, q_{2}, q_{3} ;\right. \tag{2.7}\\
\left.0, r_{1}, r_{2}, r_{3}\right) \stackrel{(1.3)}{=} F_{4}\left(p_{3}, p_{1}, p_{2}, 0 ; q_{3}, q_{1}, q_{2}, 0 ; r_{3}, r_{1}, r_{2}, 0\right) \stackrel{(2.5)}{=} \\
F_{4}\left(p_{1}, p_{3}, p_{2}, 0 ; q_{1}, q_{3}, q_{2}, 0 ; r_{1}, r_{3}, r_{2}, 0\right) \stackrel{(1.3)}{=} F_{4}\left(0, p_{3}, p_{2}, p_{1} ; 0, q_{3}, q_{2}, q_{1} ;\right. \\
\left.0, r_{3}, r_{2}, r_{1}\right)^{(2.4)} F_{3}\left(p_{3}, p_{2}, p_{1} ; q_{3}, q_{2}, q_{1} ; r_{3}, r_{2}, r_{1}\right) .
\end{gather*}
$$

Therefore,
(2.8) $F_{3}\left(p_{1}, p_{2}, p_{3} ; q_{1}, q_{2}, q_{3} ; r_{1}, r_{2}, r_{3}\right) \stackrel{(2.6)}{=} F_{3}\left(p_{2}, p_{1}, p_{3} ; q_{2}, q_{1}, q_{3} ; r_{2}, r_{1}, r_{3}\right)=$ $\stackrel{(2.7)}{=} F_{3}\left(p_{3}, p_{1}, p_{2} ; q_{3}, q_{1}, q_{2} ; r_{3}, r_{1}, r_{2}\right) \stackrel{(2.6)}{=} F_{3}\left(p_{1}, p_{3}, p_{2} ; q_{1}, q_{3}, q_{2} ; r_{1}, r_{3}, r_{2}\right)=$ $\stackrel{(2.7)}{=} F_{3}\left(p_{2}, p_{3}, p_{1} ; q_{2}, q_{3}, q_{1} ; r_{2}, r_{3}, r_{1}\right)^{(2.6)} F_{3}\left(p_{3}, p_{2}, p_{1} ; q_{3}, q_{2}, q_{1} ; r_{3}, r_{2}, r_{1}\right)$.
From (2.8), we get the symmetry of F_{3} over S_{3}.

Case 2. When
(i) $p_{i}=0, i=1,2,3,0<p_{j}<1, j \neq i=1,2,3,0<q_{j}<1,0<r_{j}<1$, $j=1,2,3$ holds in F_{3} :
(ii) $q_{i}=0 \Rightarrow p_{i}=0, \quad i=1,2,3, \quad 0<p_{j}<1, \quad 0<q_{j}<1, \quad j \neq i=1,2,3$, $0<r_{j}<1, j=1,2,3$ holds in F_{3} :
or
(iii) $r_{i}=0 \Rightarrow q_{i}=0 \Rightarrow p_{i}=0, i=1,2,3,0<p_{j}<1,0<q_{j}<1,0<r_{j}<1$, $j \neq i=1,2,3$ holds in F_{3}.
In these subcases, the proof is similar to case 1 .
Case 3. When
(i) $p_{i}=0, p_{j}=0, i \neq j=1,2,3, \quad p_{k}=1, \quad k \neq i \neq j=1,2,3,0<q_{k}<1$, $0<r_{k}<1, k=1,2,3$ holds in F_{3} :
or
(ii) $p_{i}=0, q_{j}=0 \Rightarrow p_{j}=0, j \neq i=1,2,3, \quad p_{k}=1, \quad k \neq i \neq j=1,2,3$, $0<q_{k}<1, k \neq j=1,2,3, \quad 0<r_{k}<1, k=1,2,3$ holds in F_{3} :
or
(iii) $p_{i}=0, \quad r_{j}=0 \Rightarrow q_{j}=0 \Rightarrow p_{j}=0, \quad i \neq j=1,2,3, \quad p_{k}=1, \quad k \neq i \neq j=$ $=1,2,3, \quad 0<q_{k}<1, \quad 0<r_{k}<1, k \neq j=1,2,3$ holds in F_{3} :
or
(iv) $q_{i}=0 \Rightarrow p_{i}=0, q_{j}=0 \Rightarrow p_{j}=0, i \neq j=1,2,3, p_{k}=q_{k}=1, k \neq \mathrm{i} \neq$ $\neq j=1,2,3, \quad 0<r_{k}<1, k=1,2,3$ holds in F_{3} :
or
(v) $q_{i}=0 \Rightarrow p_{i}=0, r_{j}=0 \Rightarrow q_{j}=0 \Rightarrow p_{j}=0, i \neq j=1,2,3, p_{k}=q_{k}=1$, $k \neq i \neq j=1,2,3, \quad 0<r_{k}<1, k \neq j=1,2,3$ holds in $F_{3}:$
In case (i), we have
(2.9) $\quad F_{3}\left(0,0,1 ; q_{1}, q_{2}, q_{3} ; r_{1}, r_{2}, r_{3}\right) \stackrel{(1.3)}{=} F_{3}\left(1,0,0 ; q_{3}, q_{2}, q_{1} ; r_{3}, r_{2}, r_{1}\right)$ $\stackrel{(2.6)}{=} F_{3}\left(0,1,0 ; q_{2}, q_{3}, q_{1} ; r_{2}, r_{3}, r_{1}\right) \stackrel{(2.7)}{=} F_{3}\left(0,1,0 ; q_{1}, q_{3}, q_{2} ; r_{1}, r_{3}, r_{2}\right)$ $\stackrel{(2.6)}{=} F_{3}\left(1,0,0 ; q_{3}, q_{1}, q_{2} ; r_{3} . r_{1}, r_{2}\right) \stackrel{(2.7)}{=} F_{3}\left(0,0,1 ; q_{2}, q_{3}, q_{1} ; r_{2}, r_{3}, r_{1}\right)$.
Thus (2.9) shows that F_{3} is a symmetric function. Similarly, the proof of other sub-cases follows from sub case (i).
Case 4. When $r_{i}=0 \Rightarrow q_{i}=0 \Rightarrow p_{i}=0, \quad r_{j}=0 \Rightarrow q_{j}=0 \Rightarrow p_{j}=0, \quad i \neq j=$ $=1,2,3, p_{k}=q_{k}=r_{k}=1, k \neq i \neq j=1,2,3$ holds in F_{3} :
Then, by Postulate $\mathrm{VI}_{n}(n=3)$, we have

$$
\begin{gathered}
F_{3}(0,0,1 ; 0,0,1 ; 0,0,1)=F_{3}(1,0,0 ; 1,0,0 ; 1,0,0)= \\
=F_{3}(0,1,0 ; 0,1,0 ; 0,1,0)
\end{gathered}
$$

Hence we have proved the symmetry of F_{3} completely.

When $n=4$. We have the following cases:
Case 1. When $0<p_{i}<1,0<q_{i}<1$ and $0<r_{i}<1, i=1,2,3,4$ holds in F_{4} :
Then, we have

$$
\begin{align*}
& F_{4}\left(p_{1}, p_{2}, p_{3}, p_{4} ; q_{1}, q_{2}, q_{3}, q_{4} ; r_{1}, r_{2}, r_{3}, r_{4}\right)= \tag{2.10}\\
& =F_{4}\left(p_{2}, p_{1}, p_{3}, p_{4} ; q_{2}, q_{1}, q_{3}, q_{4} ; r_{2}, r_{1}, r_{3}, r_{4}\right)
\end{align*}
$$

and

$$
\begin{align*}
& \quad F_{4}\left(p_{1}, p_{2}, p_{3}, p_{4} ; q_{1}, q_{2}, q_{3}, q_{4} ; r_{1}, r_{2}, r_{3}, r_{4}\right)= \tag{2.11}\\
& \stackrel{(2.4)}{=} F_{5}\left(0, p_{1}, p_{2}, p_{3}, p_{4} ; 0, q_{1}, q_{2}, q_{3}, q_{4} ; 0, r_{1}, r_{2}, r_{3}, r_{4}\right) \\
& \stackrel{(1,3)}{(2.35} F_{5}\left(p_{3}, p_{1}, p_{2}, 0, p_{4} ; q_{3}, q_{1}, q_{2}, 0, q_{4} ; r_{3}, r_{1}, r_{2}, 0, r_{4}\right) \\
& \stackrel{(2.10)}{=} F_{5}\left(p_{1}, p_{3}, p_{2}, 0, p_{4} ; q_{1}, q_{3}, q_{2}, 0, q_{4} ; r_{1}, r_{3}, r_{2}, 0, i_{4}\right) \\
& \stackrel{(1.3)}{=} F_{5}\left(0, p_{3}, p_{2}, p_{1}, p_{4} ; 0, q_{3}, q_{2}, q_{1}, q_{4} ; 0, r_{3}, r_{2}, r_{1}, r_{4}\right) \\
& \stackrel{(2.4)}{=} F_{4}\left(p_{3}, p_{2}, p_{1}, p_{4} ; q_{3}, q_{2}, q_{1}, q_{4} ; r_{3}, r_{2}, r_{1}, r_{4}\right) .
\end{align*}
$$

Similarly, we can show

$$
\begin{align*}
& F_{4}\left(p_{1}, p_{2}, p_{3}, p_{4} ; q_{1}, q_{2}, q_{3}, q_{4} ; r_{1}, r_{2}, r_{3}, r_{4}\right)= \tag{2.12}\\
& =F_{4}\left(p_{4}, p_{2}, p_{3}, p_{1} ; q_{4}, q_{2}, q_{3}, q_{1} ; r_{4}, r_{2}, r_{3}, r_{1}\right) \\
& \quad F_{4}\left(p_{1}, p_{2}, p_{3}, p_{4} ; q_{1}, q_{2}, q_{3}, q_{4} ; r_{1}, r_{2}, r_{3}, r_{4}\right)= \\
& \stackrel{(2.11)}{=} F_{4}\left(p_{3}, p_{2}, p_{1}, p_{4} ; q_{3}, q_{2}, q_{1}, q_{4} ; r_{3}, r_{2}, r_{1}, r_{4}\right) \\
& \stackrel{\left(2.11^{2}\right)}{=} F_{4}\left(p_{4}, p_{2}, p_{1}, p_{3} ; q_{4}, q_{2}, q_{1}, q_{3} ; r_{4}, r_{2}, r_{1}, r_{3}\right) \\
& \stackrel{(2.1 .0)}{=} F_{4}\left(p_{2}, p_{4}, p_{1}, p_{3} ; q_{2}, q_{4}, q_{1}, q_{3} ; r_{2}, r_{4}, r_{1}, r_{3}\right) \\
& \stackrel{(2.11)}{=} F_{4}\left(p_{1}, p_{4}, p_{2}, p_{3} ; q_{1}, q_{4}, q_{2}, q_{3} ; r_{1}, r_{4}, r_{2}, r_{3}\right) \\
& \stackrel{\left(2.11^{2}\right)}{=} F_{4}\left(p_{3}, p_{4}, p_{2}, p_{1} ; q_{3}, q_{4}, q_{2}, q_{1} ; r_{3}, r_{4}, r_{2}, r_{1}\right) \\
& \stackrel{(2.10)}{=} F_{4}\left(p_{4}, p_{3}, p_{2}, p_{1} ; q_{4}, q_{3}, q_{2}, q_{1} ; r_{4}, r_{3}, r_{2}, r_{1}\right) \\
& \left(\stackrel{(2.12)}{=} F_{4}\left(p_{1}, p_{3}, p_{2}, p_{4} ; q_{1}, q_{3}, q_{2}, q_{4} ; r_{1}, r_{3}, r_{2}, r_{4}\right)\right.
\end{align*}
$$

Using Postulate $\mathrm{I}_{n}(n=4)$ and symmetry of F_{2} and F_{3} in I, II, III, IV, V and VI of (2.13), we have $4!=24$ permutations of $F_{4} \Rightarrow F_{4}$ is symmetric.
Case 2. When
(i) $p_{i}=0, i=1,2,3,4, \quad 0<p_{j}<1, i \neq j=1,2,3,4, \quad 0<q_{j}<1, \quad 0<r_{j}<1$, $j=1,2,3,4$ holds in F_{4} :
or
(ii) $q_{i}=0 \Rightarrow p_{i}=0, i=1,2,3,4,0<p_{j}<1,0<q_{j}<1, i \neq j=1,2,3,4$, $0<r_{j}<1, j=1,2,3,4$ holds in F_{4} :
or
(iii) $r_{i}=0 \Rightarrow q_{i}=0 \Rightarrow p_{i}=0, i=1,2,3,4,0<p_{j}<1,0<q_{j}<1,0<r_{j}<1$, $j \neq i=1,2,3,4$ holds in F_{4} :
The above sub-cases follows from case 1 .

Case 3. When

(i) $p_{i}=0, \quad p_{j}=0, \quad i \neq j=1,2,3,4, \quad 0<p_{k}<1, \quad k \neq i \neq j=1,2.3,4$, $0<q_{k}<1,0<r_{k}<1, k=1,2,3,4$ holds in F_{4} :
or
(ii) $p_{i}=0, q_{j}=0 \Rightarrow p_{j}=0, \quad i \neq j=1,2,3,4, \quad 0<p_{k}<1, \quad k \neq i \neq j=$ $=1,2,3,4, \quad 0<q_{k}<1, \quad k \neq j=1,2,3,4, \quad 0<r_{k}<1, \quad k=1,2,3,4$, holds in F_{4} :
or
(iii) $p_{i}=0, r_{j}=0 \Rightarrow q_{j}=0 \Rightarrow p_{j}=0, i \neq j=1,2,3,4,0<p_{k}<1, k \neq i \neq$ $\neq j=1,2,3,4,0<q_{k}<1,0<r_{k}<1, k \neq j=1,2,3,4$ holds in $\mathrm{F}_{4}:$ or
(iv) $q_{i}=0 \Rightarrow p_{i}=0, q_{j}=0 \Rightarrow p_{j}=0, i \neq j=1,2,3,4,0<p_{k}<1,0<q_{k}<$ $<1, k \neq i \neq j=1,2,3,4, \quad 0<r_{k}<1, k=1,2,3,4$ holds in F_{4} :
or
(v) $q_{i}=0 \Rightarrow p_{i}=0, r_{j}=0 \Rightarrow q_{j}=0 \Rightarrow p_{j}=0, i \neq j=1,2,3,4,0<p_{k}<1$, $0<q_{k}<1, k \neq i \neq j=1,2,3,4,0<r_{k}<1, k \neq j=1,2,3,4$ holds in F_{4} : or
(vi) $r_{i}=0 \Rightarrow q_{i}=0 \Rightarrow p_{i}=0, \quad r_{j}=0 \Rightarrow q_{j}=0 \Rightarrow p_{j}=0, \quad i \neq j=1,2,3,4$, $0<p_{k}<1,0<q_{k}<1,0<r_{k}<1, k \neq i \neq j=1,2,3,4$ holds in $F_{4}:$

Let us assume $p_{1}=0=p_{10}, p_{2}=0=p_{20}$ in (i) and using (2.10), (2.11) and (2.12) in F_{4}, we get
$\quad F_{4}\left(p_{10}, p_{20}, p_{3}, p_{4} ; q_{1}, q_{2}, q_{3}, q_{4} ; r_{1}, r_{2}, r_{3}, r_{4}\right)=$
$\stackrel{(2.11)}{=} F_{4}\left(p_{3}, p_{20}, p_{10}, p_{4} ; q_{3}, q_{2}, q_{1}, q_{4} ; r_{3}, r_{2}, r_{1}, r_{4}\right)$
$\stackrel{(2.12)}{=} F_{4}\left(p_{4}, p_{20}, p_{10}, p_{3} ; q_{4}, q_{2}, q_{1}, q_{3} ; r_{4}, r_{2}, r_{1}, r_{3}\right)$
$\stackrel{(2.10)}{=} F_{4}\left(p_{20}, p_{4}, p_{10}, p_{3} ; q_{2}, q_{4}, q_{1}, q_{3} ; r_{2}, r_{4}, r_{1}, r_{3}\right)$
$\stackrel{(2.11)}{=} F_{4}\left(p_{10}, p_{4}, p_{20}, p_{3} ; q_{1}, q_{4}, q_{2}, q_{3} ; r_{1}, r_{4}, r_{2}, r_{3}\right)$
$\left(\stackrel{\left(211^{2}\right)}{=} F_{4}\left(p_{3}, p_{4}, p_{20}, p_{10} ; q_{3}, q_{4}, q_{2}, q_{1} ; r_{3}, r_{4}, r_{2}, r_{1}\right)\right.$
$\left(\stackrel{(2.10)}{=} F_{4}\left(p_{4}, p_{3}, p_{20}, p_{10} ; q_{4}, q_{3}, q_{2}, q_{1} ; r_{4}, r_{3}, r_{2}, r_{1}\right)\right.$
$\stackrel{(2.12)}{=} F_{4}\left(p_{10}, p_{3}, p_{20}, p_{4} ; q_{1}, q_{3}, q_{2}, q_{4} ; r_{1}, r_{3}, r_{2}, r_{4}\right)$.

Now we shall show below that I of (2.14) contributes 4 permutations of F_{4} which are as follows:
(2.15) (a)
(a) $\quad F_{4}\left(p_{10}, p_{20}, p_{3}, p_{4} ; q_{1}, q_{2}, q_{3}, q_{4} ; r_{1}, r_{2}, r_{3}, r_{4}\right)=$ $\stackrel{(2.4)}{=} F_{5}\left(0, p_{10}, p_{20}, p_{3}, p_{4} ; 0, q_{1}, q_{2}, q_{3}, q_{4} ; 0, r_{1}, r_{2}, r_{3}, r_{4}\right)$
${ }^{(1,3)} F_{5}\left(p_{20}, p_{10}, 0, p_{3}, p_{4} ; q_{2}, q_{1}, 0, q_{3}, q_{4} ; r_{2}, r_{1}, 0, r_{3}, r_{4}\right)$
$\stackrel{(2.4)}{=} F_{6}\left(0, p_{20}, p_{10}, 0, p_{3}, p_{4} ; 0, q_{2}, q_{1}, 0, q_{3}, q_{4} ; 0, r_{2}, r_{1}, 0, r_{3}, r_{4}\right)$
$\stackrel{(1,3)}{=} F_{6}\left(p_{10}, p_{20}, 0,0, p_{3}, p_{4} ; q_{1}, q_{2}, 0,0, q_{3}, q_{4} ; r_{1}, r_{2}, 0,0, r_{3}, r_{4}\right)$

$$
\begin{align*}
& \stackrel{(1,3)}{=} F_{6}\left(0, p_{20}, 0, p_{10}, p_{3}, p_{4} ; 0, q_{2}, 0, q_{1}, q_{3}, q_{4} ; 0, r_{2}, 0, r_{1}, r_{3}, r_{4}\right) \\
& \stackrel{(2.4)}{=} F_{5}\left(p_{20}, 0, p_{10}, p_{3}, p_{4} ; q_{2}, 0, q_{1}, q_{3}, q_{4} ; r_{2}, 0, r_{1}, r_{3}, r_{4}\right) \\
& \stackrel{(1,3)}{=} F_{5}\left(0, p_{20}, p_{10}, p_{3}, p_{4} ; 0, q_{2}, q_{1}, q_{3}, q_{4} ; 0, r_{2}, r_{1}, r_{3}, r_{4}\right) \\
& \stackrel{(2.4)}{=} F_{4}\left(p_{20}, p_{10}, p_{3}, p_{4} ; q_{2}, q_{1}, q_{3}, q_{4} ; r_{2}, r_{1}, r_{3}, r_{4}\right) \text {. } \\
& \text { (b) } \quad F_{4}\left(p_{10}, p_{20}, p_{3}, p_{4} ; q_{1}, q_{2}, q_{3}, q_{4} ; r_{1}, r_{2}, r_{3}, r_{4}\right)= \tag{2.16}\\
& { }^{(2.4)}{ }_{=} F_{5}\left(0, p_{10}, p_{20}, p_{3}, p_{4} ; 0, q_{1}, q_{2}, q_{3}, q_{4} ; 0, r_{1}, r_{2}, r_{3}, r_{4}\right) \\
& \stackrel{(1,3)}{=} F_{5}\left(p_{3}, p_{10}, p_{20}, 0, p_{4} ; q_{3}, q_{1}, q_{2}, 0, q_{4} ; r_{3}, r_{1}, r_{2}, 0, r_{4}\right) \\
& (2.4),(1.3) F_{6}\left(p_{4}, p_{3}, p_{10}, p_{20}, 0,0 ; q_{4}, q_{3}, q_{1}, q_{2}, 0,0 ; r_{4}, r_{3}, r_{1}, r_{2}, 0,0\right) \\
& { }^{(1.3),(2.4)}{ }^{(} F_{5}\left(p_{3}, p_{10}, p_{20}, p_{4}, 0 ; q_{3}, q_{1}, q_{2}, q_{4}, 0 ; r_{3}, r_{1}, r_{2}, r_{4}, 0\right) \\
& { }^{(1.3),(2.4)} F_{4}\left(p_{10}, p_{20}, p_{4}, p_{3} ; q_{1}, q_{2}, q_{4}, q_{3} ; r_{1}, r_{2}, r_{4}, r_{3}\right) \text {. }
\end{align*}
$$

Similarly, we can show that

$$
\begin{align*}
& F_{4}\left(p_{10}, p_{20}, p_{3}, p_{4} ; q_{1}, q_{2}, q_{3}, q_{4} ; r_{1}, r_{2}, r_{3}, r_{4}\right)= \tag{2.17}\\
& =F_{4}\left(p_{20}, p_{10}, p_{4}, p_{3} ; q_{2}, q_{1}, q_{4}, q_{3} ; r_{2}, r_{1}, r_{4}, r_{3}\right)
\end{align*}
$$

Now using Postulate $I_{n}(n=4)$ and symmetry of F_{2} and F_{3} in II, III, IV, V and VI of (2.14) and (2.15), (2.16) and (2.17) in I of (2.14) would yield 4! permutations of $F_{4} \Rightarrow$ symmetry of F_{4}. Similarly, the proof of other subcases follows from sub case (i) of case 3 .

Case 4. When
(i) $p_{i}=0, p_{j}=0, p_{k}=0, i \neq j \neq k=1,2,3,4, p_{i}=1, l \neq i \neq j \neq k=$ $=1,2,3,4, \quad 0<q_{l}<1,0<r_{l}<1, l=1,2,3,4$ holds in $\mathrm{F}_{4}:$
or
(ii) $p_{i}=0, p_{j}=0, q_{k}=0 \Rightarrow p_{k}=0, i \neq j \neq k=1,2,3,4, \quad p_{t}=1, l \neq i \neq$ $\neq j \neq k=1,2,3,4,0<q_{l}<1, l \neq k=1,2,3,4,0<r_{l}<1, l=1,2,3,4$, holds in F_{4} :
or
(iii) $p_{i}=0, p_{j}=0, r_{k}=0 \Rightarrow q_{k}=0 \Rightarrow p_{k}=0, i \neq j \neq k=1,2,3,4, p_{i}=1$, $l \neq i \neq j \neq k=1,2,3,4,0<q_{l}<1,0<r_{l}<1, l \neq k=1,2,3,4$, holds in F_{4} :
or
(iv) $p_{i}=0, q_{j}=0 \Rightarrow p_{j}=0, q_{k}=0 \Rightarrow p_{k}=0, i \neq j \neq k=1,2,3,4, p_{i}=1$, $l \neq i \neq j \neq k=1,2,3,4,0<q_{l}<1, l \neq j \neq k=1,2,3,4,0<r_{l}<1$, $l=1,2,3,4$, holds in F_{4} :
or
(v) $p_{i}=0, q_{j}=0 \Rightarrow p_{j}=0, r_{k}=0 \Rightarrow q_{k}=0 \Rightarrow p_{k}=0, i \neq j \neq k=1,2,3,4$, $p_{l}=1, l \neq i \neq j \neq k=1,2,3,4, \quad 0<q_{l}<1, l \neq j \neq k=1,2,3,4$, $0<r_{l}<1, l \neq k=1,2,3,4$ holds in F_{4} :
or
(vi) $p_{i}=0, \quad r_{j}=0 \Rightarrow q_{j}=0 \Rightarrow p_{j}=0, \quad r_{k}=0 \Rightarrow q_{k}=0 \Rightarrow p_{k}=0, \quad i \neq j \neq$ $\neq k=1,2,3,4, p_{l}=1, l \neq i \neq j \neq k=1,2,3,4,0<q_{l}<1,0<r_{l}<1$, $l \neq j \neq k=1,2,3,4$ holds in $F_{4}:$
or
(vii) $q_{i}=0 \Rightarrow p_{i}=0, q_{j}=0 \Rightarrow p_{j}=0, q_{k}=0 \Rightarrow p_{k}=0, i \neq j \neq k=1,2,3,4$, $p_{l}=q_{l}=1, l \neq i \neq j \neq k=1,2,3,4,0<r_{l}<1, l=1,2,3,4$ holds in F_{4} :
or
(viii) $q_{i}=0 \Rightarrow p_{i}=0, \quad q_{j}=0 \Rightarrow p_{j}=0, \quad r_{k}=0 \Rightarrow q_{k}=0 \Rightarrow p_{k}=0, \quad i \neq j \neq$ $\neq k=1,2,3,4, \quad p_{l}=q_{l}=1, l \neq i \neq j \neq k=1,2,3,4,0<r_{l}<1, l \neq$ $\neq k=1,2,3,4$ holds in F_{4} :
or
(ix) $q_{i}=0 \Rightarrow p_{i}=0, r_{j}=0 \Rightarrow q_{j}=0 \Rightarrow p_{j}=0, r_{k}=0 \Rightarrow q_{k}=0 \Rightarrow p_{k}=0, i \neq$ $\neq j \neq k=1,2,3,4, \quad p_{l}=q_{l}=1, \quad l \neq i \neq j \neq k=1,2,3,4, \quad 0<r_{l}<1$, $l \neq j \neq k=1,2,3,4$ holds in F_{4} :
Let us assume $p_{1}=0=p_{10}, p_{2}=0=p_{20}, p_{3}=0=p_{30}$ and $p_{4}=1$, in subcase (i) of case 4 and using (2.10), (2.11) and (2.12), we get

$$
\begin{align*}
& F_{4}\left(p_{10}, p_{20}, p_{30}, p_{4} ; q_{1}, q_{2}, q_{3}, q_{4} ; r_{1}, r_{2}, r_{3}, r_{4}\right)= \tag{2.18}\\
& { }^{(2,11)} F_{4}\left(p_{30}, p_{20}, p_{10}, p_{4} ; q_{3}, q_{2}, q_{1}, q_{4} ; r_{3}, r_{2}, r_{1}, r_{4}\right) \\
& { }^{(2,12)}{ }^{2} F_{4}\left(p_{4}, p_{20}, p_{10}, p_{30} ; q_{4}, q_{2}, q_{1} ; q_{3}, r_{4}, r_{2}, r_{1}, r_{3}\right) \\
& { }^{(2.10)} F_{4}\left(p_{20}, p_{4}, p_{10}, p_{30} ; q_{2}, q_{4}, q_{1}, q_{3} ; r_{2}, r_{4}, r_{1}, r_{3}\right) \\
& { }^{(2.11)} F_{4}\left(p_{10}, p_{4}, p_{20}, p_{30} ; q_{1}, q_{4}, q_{2}, q_{3} ; r_{1}, r_{4}, r_{2}, r_{3}\right) \\
& { }^{(2.12)}{ }^{=} F_{4}\left(p_{30}, p_{4}, p_{20}, p_{10} ; q_{3}, q_{4}, q_{2}, q_{1} ; r_{3}, r_{4}, r_{2}, r_{1}\right) \\
& { }^{(2.10)}{ }_{=} F_{4}\left(p_{4}, p_{30}, p_{20}, p_{10} ; q_{\mathrm{v1}}, q_{3}, q_{2}, q_{1} ; r_{4}, r_{3}, r_{2}, r_{1}\right) \\
& { }^{(2.12)}{ }_{=} F_{4}\left(p_{10}, p_{30}, p_{20}, p_{4} ; q_{1}, q_{3}, q_{2}, q_{4} ; r_{1}, r_{3}, r_{2}, r_{4}\right) .
\end{align*}
$$

Using Postulate $\mathrm{I}_{n}(n=4)$ and symmetry of F_{2} and F_{3} in III, IV and V of (2.18), and (2.15), (2.16) and (2.17) in I, II and VI of (2.18), we get 4! permutations of $F_{4} \Rightarrow$ \Rightarrow the function F_{4} is a symmetric function. Similarly, the proof of other subcases of case 4 follows from subcase (i) of case 4.

Case 5. When $r_{i}=0 \Rightarrow q_{i}=0 \Rightarrow p_{i}=0, r_{j}=0 \Rightarrow q_{j}=0 \Rightarrow p_{j}=0, r_{k}=0 \Rightarrow$ $\Rightarrow q_{k}=0 \Rightarrow p_{k}=0, i \neq j \neq k=1,2,3,4, p_{l}=q_{l}=r_{l}=1, l \neq i \neq j \neq k=$ $=1,2,3,4$ holds in F_{4} :
Then symmetry of F_{4}, obviously, follows by applying Postulate $\mathrm{VI}_{n}(n=4)$ in F_{4}.
From case 1 to case 5, discussed above, we conclude that F_{4} is a symmetric function for all set of values of p 's, q 's and r 's.

When $n=m$
From the above results, we conclude:
(i) If F_{2} has 2! permutations, then F_{2} is a symmetric function;
(ii) If F_{3} has 3! permutations, then F_{3} is a symmetric function;
(iii) If F_{4} has 4! permutations, then F_{4} is a symmetric function;

Assuming that $F_{m-1}, m \geqq 5$ is a symmetric function and thus it has $(m-1)$! permutations, we shall prove that F_{m} has m ! permutations which imply F_{m} is a symmetric function for $m \geqq 5$. We proceed as follows:
Case 1. When $0<p_{i}<1,0<q_{i}<1$, and $0<q_{i}<1, i=1,2, \ldots, m$ holds in F_{m} :
Then we have

$$
\begin{align*}
& F_{m}\left(p_{1}, p_{2}, \ldots, p_{m} ; q_{1}, q_{2}, \ldots, q_{m} ; r_{1}, r_{2}, \ldots, r_{m}\right)= \tag{2.19}\\
= & F_{m}\left(p_{2}, p_{1}, \ldots, p_{m} ; q_{2}, q_{1}, \ldots, q_{m} ; r_{2}, r_{1}, \ldots, r_{m}\right)
\end{align*}
$$

and by Lemma 2 and $\operatorname{Postulate} \mathrm{VI}_{n}(n \geqq 5)$ in the function $F_{m}, m \geqq 5$, we get

$$
\begin{gather*}
\text { (2.20) } \begin{array}{c}
F_{m}\left(p_{1}, p_{2}, \ldots, p_{m} ; q_{1}, \underset{(1)}{(1)}, \ldots, q_{m} ; r_{1}, r_{2}, \ldots, r_{m}\right)= \\
=F_{m}\left(p_{3}, p_{2}, p_{1}, p_{4}, \ldots, p_{m} ; q_{3}, q_{2}, q_{1}, q_{4}, \ldots, q_{m} ; r_{3}, r_{2}, r_{1}, r_{4}, \ldots, r_{m}\right)= \\
=F_{m}\left(p_{4}, p_{2}, p_{3}, p_{1}, p_{5}, \ldots, p_{m} ; q_{4}, q_{2}, q_{3}, q_{1}, q_{5}, \ldots, q_{m} ; r_{4}, r_{2}, r_{3}, r_{1}, r_{5}, \ldots, r_{m}\right)= \\
=F_{m}\left(p_{5}, p_{2}, p_{3}, p_{4}, p_{1}, p_{6}, \ldots, p_{m} ; q_{5}, q_{2}, q_{3}, q_{4}, q_{1}, q_{6}, \ldots\right. \\
\left.\ldots, q_{m} ; r_{5}, r_{2}, r_{3}, r_{4}, r_{1}, r_{6}, \ldots, r_{m}\right)=\ldots= \\
=F_{m-2) \mathrm{th}}^{(m)}\left(p_{m-1}, p_{2}, \ldots, p_{m-2}, p_{1}, p_{m} ; q_{m-1}^{\left.(m-1), q_{2}, \ldots, q_{m-2}, q_{1}, q_{m} ; r_{m-1}, r_{2}, \ldots, r_{1}, r_{m}\right)=}\right. \\
=F_{m}\left(p_{m}, p_{2}, \ldots, p_{m-1}, p_{1} ; q_{m}, q_{2}, \ldots, q_{m-1}, q_{1} ; r_{m}, r_{2}, \ldots, r_{m-1}, r_{2}\right)
\end{array} \tag{2.20}
\end{gather*}
$$

Using Postulate $\mathrm{I}_{n}(n \geqq 5)$ and symmetry of F_{2} in (2,), (3), $\ldots,(m-1)$ th of (2.20), we get

$$
\begin{aligned}
& (2.21) \quad F_{m}\left(p_{2}, p_{3}, p_{1}, p_{4}, \ldots, p_{m} ; q_{2}, q_{3}, \underset{(3)}{(2)}, q_{4}, \ldots, q_{m} ; r_{2}, r_{3}, r_{1}, r_{4}, \ldots, r_{m}\right)= \\
& =F\left(p_{2}, p_{4}, p_{3}, p_{1}, p_{5}, \ldots, p_{m} ; q_{2}, q_{4}, \underset{(m-1), \mathrm{h}}{\left.q_{3}, q_{1}, q_{5}, \ldots, q_{m} ; r_{2}, r_{4}, r_{3}, r_{1}, r_{5}, \ldots, r_{m}\right)=}\right. \\
& \quad=\ldots=F_{m}\left(p_{2}, p_{m}, \ldots, p_{m-1}, p_{1} ; q_{2}, q_{m}, \ldots, q_{m-1}, q_{1} ; r_{2}, r_{m}, \ldots, r_{m-1}, r_{1}\right)
\end{aligned}
$$

Again using Lemma 2 and Postulate $\mathrm{VI}_{n}(n \geqq 5)$ (as used in obtaining (2.11) and (2.12)) in (2), (3),.,$(m-1)$ th of (2.21), we get

$$
\begin{equation*}
F_{m}\left(p_{1}, p_{2}, \ldots, p_{m} ; q_{1}, q_{2}, \ldots, q_{m} ; r_{1}, r_{2}, \ldots, r_{m}\right)= \tag{2.22}
\end{equation*}
$$

$$
=F_{m}\left(p_{1}, p_{3}, p_{2}, p_{4}, \ldots, p_{m} ; q_{1}, q_{3}, \stackrel{(2)}{q_{2}}, q_{4}, \ldots, q_{m} ; r_{1}, r_{3}, r_{2}, r_{4}, \ldots, r_{m}\right)=
$$

$$
=F_{m}\left(p_{1}, p_{4}, p_{3}, p_{2}, p_{5}, \ldots, p_{m} ; q_{1}, q_{4}, q_{3}, q_{2}, q_{5}, \ldots, q_{m} ; r_{1}, r_{4}, r_{3}, r_{2}, r_{5}, \ldots, r_{m}\right)=
$$

$$
=\ldots=F_{m}\left(p_{1}, p_{m}, \ldots, p_{m-1}, p_{2} ; \stackrel{(m-1) \text { th }}{q_{1}, q_{m}}, \ldots, q_{m-1}, q_{2} ; r_{1}, r_{m}, \ldots, r_{m-1}, r_{2}\right)
$$

Using (1) of $(2.20)=(2)$ of (2.20) (i.e. replacement of 1st element of each distribution with third element of each distribution) in (3), (4), $\ldots,(m-1)$ th of (2.22), we get

$$
\begin{align*}
& F_{m}\left(p_{3}, p_{4}, p_{1}, p_{2}, p_{5}, \ldots, p_{m} ; q_{3}, q_{4}, q_{1}, q_{2}, q_{5}, \ldots\right. \tag{2.23}\\
& \left.\ldots, q_{m} ; r_{3}, r_{4}, r_{1}, r_{2}, r_{5}, \ldots, r_{m}\right)= \\
= & F_{m}\left(p_{3}, p_{5}, p_{1}, p_{4}, p_{2}, p_{6}, \ldots, p_{m} ; q_{3}, q_{5}, q_{1}, q_{4}, q_{2}, q_{6}, \ldots\right. \\
& \left.\ldots, q_{m} ; r_{3}, r_{5}, r_{1}, r_{4}, r_{2}, r_{6}, \ldots, r_{m}\right)= \\
= & \ldots=F_{m}\left(p_{3}, p_{m}, \ldots, p_{2} ; q_{3}, q_{m}, \ldots, q_{2} ; r_{3}, r_{m}, \ldots, r_{2}\right)
\end{align*}
$$

Similarly, use of (1) of $(2.20)=(3)$ of (2.20) (i.e. replacement of first element of each distribution with fourth element of each distribution) in (4), (5), $\ldots,(m-1)$ th of (2.22), we get

$$
\begin{align*}
& F_{m}\left(p_{4}, p_{5}, \ldots, p_{m} ; q_{4}, q_{5}^{(4)}, \ldots, q_{m} ; r_{4}, r_{5}, \ldots, r_{m}\right)= \tag{2.24}\\
& =F_{m}\left(p_{4}, p_{6}, \ldots, p_{m} ; q_{4}, q_{6}, \ldots, q_{m} ; r_{4}, r_{6}, \ldots, r_{m}\right)= \\
& =\ldots=F_{m}\left(p_{4}, p_{m}, \ldots ; q_{4}, q_{m}, \ldots ; r_{4}, r_{m}, \ldots\right)
\end{align*}
$$

and so on.
In the end, use (1) of $(2.20)=(m-2)$ th of (2.20) in $(m-1)$ th of (2.22), we get

$$
\begin{equation*}
F_{m}\left(p_{m-1}, p_{m}, \ldots ; q_{m-1}, q_{m}, \ldots ; r_{m-1}, r_{m}, \ldots\right) \tag{2.25}
\end{equation*}
$$

Using Postulate $\mathrm{I}_{n}(n \geqq 5)$, symmetry of F_{2} and F_{m-1} in (2.22), (2.21), (2.23), (2.24), and so on, and (2.25) then each F_{m} in these would yield $2(m-2)$! permutations of F_{m} and (2.22), (2.21), (2.23), (2.24), and so on, and (2.25) would yield 2(m-1) $(m-2)!, 2(m-2)(m-2)!, \ldots, 2(m-2)!$ permutations of F_{m} respectively. Therefore, the algebraic sum of all these permutations of F_{m} is $2(m-1)(m-2)!+2(m-2)$ $(m-2)!+\ldots+2(m-2)!=m!$, which implies that $F_{m}, m \geqq 5$ is a symmetric function. Again, we may come across various cases similar to the one, as discussed in the symmetry of F_{3} and F_{4}. They can be easily verified for the symmetry of $F_{m}, m \geqq 5$. Hence we conclude the symmetry of $F_{n}, n \geqq 2$.
Thus Lemma 3 is proved.
Proof of the main theorem
Now Postulates $\mathrm{I}_{n}(n=3,4)$ and $\mathrm{VI}_{n}(n=3,4)$ gives 3! permutations of $F_{3} \Rightarrow$ \Rightarrow symmetry of F_{3}. Kannappan and Rathie [3] has also taken symmetry of F_{3} as one of the postulate in their proof. Replacing 3-symmetry of F_{3} by our Postulate $\mathrm{VI}_{n}(n \geqq 3)$, the proof of the theorem follows from their lines of action. Hence the theorem is proved.

Remarks.

1. The authors have proved in this paper that the symmetry of generalized directed divergence (1.1) for $n \geqq 2$ follows from Postulates $\mathrm{I}_{n}(n \geqq 3)$ and $\mathrm{VI}_{n}(n \geqq 3)$
and thus have proved that (1.1) can be characterized without symmetry postulate.
2. It has been analytically proved that F_{n} has $n!$, ($n \geqq 2$) permutations $\Rightarrow F_{n},(n \geqq 2)$ is a symmetric function.
(Received December 30, 1982.)

REFERENCES

[1] J. Aczel and Z. Daroczy: On Measures of Information and their Characterizations. Academic Press, New York 1975.
[2] P. N. Arora and Subhash Chowdhary: Shannon's entropy and cyclicity. J. Cybernet. and Systems (to appear).
[3] PL. Kannappan, and P. N. Rathie: An axiomatic characterization of generalized directed divergence. Kybernetika 9 (1973), 4, 330-337.
[4] A. M. Mathai and P. N. Rathie: Basic Concepts in Information Theory and Statistics. John Wiley and Sons, New York 1975.
[5] Prem Nath and Man Mohan Kaur: On characterizing the Shannon entropy without assuming symmetry. Inform. and Control 47 (1980), 3, 213-- 219.

Dr. P. N. Arora, Department of Mathematics, Dyal Singh College, Lodhi Road, New Delhi 10003. India.

Subhash Chowdhary, Department of Mathematics, Hindu College, University of Delhi, Delhi 110007. India.

