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THE CENTRAL LIMIT THEOREM 
FOR RANDOM FIELDS 

MARTIN JANZURA 

The appropriate version of the central limit theorem for random fields derived from the 
Gibbs distributions is proved. The approach is based on a general Rosenblatt's theorem 
which is shown to be well suited to the case of Gibbs underlying distributions, whenever 
Dobrushin's uniqueness condition is satisfied. 

1. INTRODUCTION 

The problem of the central limit theorem (CLT) for random fields can be considered 
as a special case of the CLT for dependent variables. Such problem has been studied 
by many authors, a survey of results can be found e.g. in [1]. The crucial point of 
any approach consists in formulating conditions of weak dependence (such as mixing, 
decay of correlations, etc.). 

For the random fields, i.e. the stochastic processes on a multi-dimensional integer 
lattice, the standard conditions cannot be, unfortunately, adapted directly, but they 
must be somehow modified (for the discussion cf. [6]). 

For the particular case of derived random fields, i.e. those obtained by shifting a 
functional defined on some underlying random field, there exist long known general 
conditions given by [7]. Nevertheless, in spite of following the basic intention of 
control over the dependence structure, these conditions (cf. Theorem 2.1 below) are 
mostly technical and rather difficult to interpret. The aim of the present paper is to 
show that these conditions can be verified for the natural subclass of derived random 
fields with the Gibbsian type of underlying random fields. 

The Gibbs random fields were originally studied in the frame of statistical me­
chanics. But, since they can be understood as an infinite-dimensional extension of 
the exponential probability distributions, their application to the problems of image 
processing and the statistical analysis of spatial data is straightforward (cf. e.g. 
[1]). Then the derived fields are consequently obtained by repeating observations of 
some relevant statistics. 

The final result of the present paper, i.e. the appropriate version of the CLT, 
obeys a natural interpretation of its assumptions. Moreover, it can be considered as 
a generalization of Theorem 4.1 in [5], which is obtained on the basis of a different 
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version of the general CLT, and which contains two moment type conditions. In the 
present version (cf. Theorem 4.8 below) one of the conditions is relaxed and the 
other is completely removed. The main results of the paper are given in Section 4, 
while Sections 2 and 3 contain definitions and some preliminary results. 

2. CENTRAL LIMIT THEOREM FOR RANDOM FIELDS 

Let T = Zd denote the d-dimensional lattice. For a given underlying random field 
(r.f.) 

(U,A,P,Y = {Yt: (n,A)—>(X,F)}teT) 

and a real-valued Borel-measurable functional 

/ : (XT,FT)—>(R,B(R)) 

we define the derived r. f. by 

(xT,FT,ft = PY~\ Y* = [Y/ = fo9t: (XT,FT) - (R,B(R))}^ ) , 

where 9t is the corresponding shift for every t £ T, i. e. the transform on XT defined 
through 

[0t(x)]s = xt+s for every s € T, x £ XT. 

The r.f. Y is called stationary if its distribution ft is shift invariant, i.e. 

/. Qt
 x = [i for every t £ T. 

If moreover fi(B) = 1 for every B £ FT satisfying /<(5) > 0 and B = 9t
x B for 

every t £T, then the r. f. Y is called ergodic. 
For every S C T we denote Ts = ?r^lFs C FT, where P r 5 : XT -» Xs is the 

corresponding projection function. 
Further, let us denote by L2(S) = L2(XT,fs,fi) the space of square integrable 

^ -measurable functions. 
Let us provide the lattice T with the lexicographical ordering "<". For every 

t £ T let t~ denote its immediate predecessor. We set 

T(t~)={s£T; s<t}, T(t) = T(r)U{t} 

and define 
Ht = L2(T(t))QL2(T(r)). 

Thus, Ht is the subspace of L2(T) given by the orthogonal complement of L2(T(t~)) 
in L2(T(t)). 

For every / € L2(T) and positive integer k let us denote 

/(*) = Proj (©tf,| (/) 
yev"-



The Central Limit Theorem for Random Fields 79 

where Proj (H) means the projection onto the subspace H, and 

Vk = {t € T; \U\ < k for every i = 1 , . . . , d} 

is the corresponding cube. 

Similarly, we denote V(a) = {( 6 T; 0 < <; < a* for every i = 1 , . . . , d} for every 
a € T and we write a —* oo for min{a,-; i = 1 , . . . , d} —* oo. 

We say that the central limit theorem (CLT) holds for the derived r.f. Y' if there 
exists a2 £ [0, oo) such that 

|V(o) | - i J Z ( y / ~ - 5 M - ' / ) =-> N(Q^2) in distribution [/«] for a -> oo, 
t£V{a) 

where At(0, a2) stands for the normal distribution with the zero mean value and the 
variance equal to a2. (For a2 = 0 we deal with the distribution concentrated to the 
zero point.) 

Theorem 2 .1 . (Rosenblatt [7]) Under the assumptions 

i) y is ergodic, 

ii) / € L2(T), 

iii) E l c o v ( y / , y / ) | < o o , 

t e T i \ i \ 

iv) y / - EYi e e t G T ^> 

V) E |cov (y/ - (y/)fc, [y/ - (y/)fc] o t?t)| —* o for jb - oo, 
the CLT holds for the derived r.f. Y* with 

<r2(Y')^cov(ү/,YІ). 

The proof for d < 2 is given in [7] (Theorem 3.2) but the generalization for higher 
dimensions is straightforward. 

3. GIBBS RANDOM FIELDS 

Let us denote by A the system of all subsets of T, and by K. the system of finite 
non-void subsets. 

A specification is a class of probability kernels 

n = {nv(|-): FTxXT^[0,l]}VeK 

satisfying the following conditions: 

a) UV(B\-) is J^\ v-measurable for every B e ^ , 
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b) nv(B\-) = XB for every B E jW, 

c) Uv(B\) = JWw(B\x)Wv(dx\) for every B G ^ and V, W 6 K, W C V. 

A specification is stationary if 

nv(B\x) = nv-t(etB\etx) 

for every V G K, t G T, fi£ JFT, z G A"7". 
A probability measure /. defined on ( A T , E T ) is called the Gibbs distribution 

with respect to the specification II (we write /< G G(II)) if 

Etl[XB\FT\v](-) = nv(B\.) 

holds a.s. [fi] for every V E K and B G FT. A r. f. is called Gibbs r.f. if its 
distribution is a Gibbs distribution. 

For a, 6 G T we define 

7ab = i s u p { | n J J ( . | x ) - I I $ ( . | z ) | T v ; x,ze XT, xt = zt for t ± b} 

where the total variation is meant by the norm, and X\™ for W C T is the restriction 
of IIv to the <r-algebra Tw. 

If S i e T 7 a i — 7 < 1 f° r every a G T, the specification is said to satisfy Do-
brushin's condition. 

For a stationary specification we may write j a b = ya-b, and the Dobrushin's 
condition may be rewritten in the form 

5>.=-7<l. 
a£T 

From now let us suppose (X, F) to be a compact metric space with its Borel 
cr-algebra, and denote by C(XT) the space of continuous functions on the product 
compact space XT. Moreover, for / G C(XT) and s G T we set 

¥>.(/) = sup {|/(x) - / ( - ) | , E i = zt for . -4 S} , 

and denote 

C = lfeC(XT); p(f) = J2<Ps(f)<oo\. 

Note that Cv is a dense subset of C(XT). 
A specification H is said to be continuous if 

/ f(x)uv(dx\-)eC(xT) 

holds for every / G c(*T) and V G K. 
Let us emphasize that if a continuous specification II satisfies Dobrushin's con­

dition then the Gibbs distribution fi is uniquely determined, i.e. G(II) = {fi} (cf. 
e.g. Corollary 2.3 in [5]). If the specification II is stationary then the unique Gibbs 
distribution \i is stationary and ergodic. 
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Propos i t ion 3.1 . A continuous specification satisfying Dobrushin's condition can 
be uniquely extended to a system of kernels 

n = {n s ( - | - ) : FTXXT->[O,I]}S€A 

with the same properties, i.e. a),b),c) in the definition of specification remain true 
with A instead of K, and / / ( * ) ttS(dx\-) G C(XT) equals to E„ [f\^s] (•) a.s. 
[ft] for every / G C(XT). 

P r o o f . Following Section 3 in [4] we observe that for every 0 ^ S C T the 
conditional distribution 

M ( - | ^ S ) ( X ) 

exists, being a.s. [/t] equal to IIs(-|.t:) which is the unique Gibbs distribution with 
respect to the specification 

ns'* = {n^oi, xns)} 

(for USx the Dobrushin's condition is satisfied as well). 
Due to Corollary 2.4 in [5] 

/ f(x) ñs(dx\ 

is a uniform limit of f f(x) Uv(dx\-) for V / S and / G C*. 
Since C* is dense in C(XT) it holds 

/ f(x)ns(dx\)eC(xT) 

for every / G C(XT). 
For S — 0 we simply set 170 equal to the indicator function. • 

4. CLT FOR GIBBS RANDOM FIELDS 

Let us suppose that (X, F) is a compact metric space with its Borel <r-algebra and 
the distribution ft of the underlying r.f. Y is the Gibbs distribution with respect to a 
continuous and stationary specification II that satisfies Dobrushin's condition. Note 
that the condition i) of Theorem 2.1 is immediately satisfied. Before formulating 
the main theorem we introduce several auxiliary results. 

For the sake of brevity we shall write fr\s instead of 

/(x)ns(dx|-) / 
A* 

for every / G C(XT) and S G A. 

KNIHOVNA J j 
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For every S G A and / G Cv we denote 

Kf(S) = J2Y^X<b(p»(V 
c€Sb£T 

where 
oo 

* = £ > " , r = {70t}«,teT. 
r>=0 

Note that 
*7(s) < Kf(T) = (1 - 7YV(/) < oo, 

and 
Kfo6t(S) = Kf(S-t) 

for every S G A and t G T. 

Lemma 4.1. Let / G o«\ 

i) Then fs G C^ for every S G -4. Namely 

ft(fs) < Kf({t}) for every <GT and therefore ^ ( / s ) < Kf(T). 

ii) For every .S'i C 52; si, 52 G A it holds 

l l / s , - /5 2 | |< /</ (s 2 \S ' i ) . 

iii) Let also g G Cv. Then 

*6T 

P r o o f . The statements i) and ii) follow from Corollary 2.4 in [5] while the 
statement iii) follows from Theorem 3.2 [5]. D 

Corollary 4 .2 . Let / G C5. Then <p(f - fvu) -> 0 for Jfc -» oo. 

P r o o f . Let us fix k°. Then it holds 

<p(f-fv) < 2|V*°|||/-/HI + J2 Mf) + Mfv>)< 
s€T\V° 

< 2\Vk°\Kf(T\Vk) + 2Kf(T\Vk°) 

by i) and ii) of Lemma 4.L 
Thus, for k -* oo and subsequently for i ° -+ oo we obtain the result since 

obviously Kf(T \ Vk) -» 0 for Jfc -> oo. D 
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Propos i t ion 4.3. Suppose / , /„ G C? and tp(fn - / ) -» 0 for n -> oo. If the CLT 
holds for every derived r.f. y^n then it holds also for Yf 

Proof . Due to the well-known theorem (cf. e. g. [2], Theorem 4.2) it is sufficient 
to prove that 

\<T2(YS»)-<T2(YS)\ for » - > oo 

and 
5 3 cov ( y / " _ / , y / _ / ) —• 0 for n — oo. 
teT 

But, according to Lemma 4.1 iii), the first expression may be bounded e.g. by 

(1 - 7 ) - 2 [2<p(f) + <p(f - /„)] <p(f - /„) 

and the second one by 
( l - 7 ) ~ 2 M / - / n ) ] 2 . D 

R e m a r k 4.4. From Proposition 4.3 and Corollary 4.2 it follows that if we prove 
the CLT for all "local (cylinder) functions" from Cv, i.e. those measurable with 
respect to some Ts, S G fC, then the CLT remains valid for every / G Cp. 

Since it is well known that 

Proj (Ht) f =. EM [ / | ^ W ] - £7, [ / | ^ ( 0 ] a . s . [/4] 

we may fix 

Proj (//«) / = fT{t) - h(t-) for every t G T and / G C(*T), 

and, consequently, 

f(k) _ ^ [/T(() - /T(.-)] = 53 [/T(r,t) - /T(r,-*-l)] • 
<6V* revj-i, 

By re-arranging we also obtain 

rk) = h(kd) - 5 3 [/r(r,-fc-i) - Zr(r-,fc)] - fT(-kd-!,-k-i) 
r e ^ . ^ - f c , , , } 

where kd = {k,... ,k} £ Zd. 

Proposi t ion 4.5. Let / G C*'. If 

<p ( / - £ „ / - /<*>) —+ 0 for * -> oo 

then the CLT holds for the derived r. f. Y*. 

P r o o f . For f(k) the assumptions iv) and v) of Theorem 2.1 are easily satisfied, 
while the assumptions ii) and iii) hold for every / G Cv (thanks to Lemma 4.1 iii)). 

Since /(*) G C* for every k by Lemma 4A i), the statement follows from Propo­
sition 4.3. D 
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Proposit ion4 .6 . Let \Vk\-Ks(T\Vk) - . Ofor k -> oo, then y. ( / ~ _ .„ / - /(*)) -> 
0 for _ —> oo. 

P r o o f . We have 

f~Elif~fM = f-fnki) + 

+ E [/T(r,-_-l) - / r ( r - , _ ) ]+ /T( -*__ , , -_ - I ) - / 0 . 
r6Vj'_1\{-_ (,_1} 

and therefore 

| / - -?„/ - / ( f c ) | < Kf(T\Vk) by Lemma 4.1 ii) 

and 

VS ( / - E^ - /<*>) < ( 2 | V l j + 1) /_/({«}) by Lemma 4.1 i). 

Thus, using the estimate 

<p(f- E„f -fk)<2- \Vk\ • | | / - E„f - fk\\ + E Mf ~ E,f - f(h)) 
s$Vk 

we conclude 
<p(f-Eflf-f

k)<Z\Vk\Kf(T\Vk) 

which yields the statement. • 

By ll-H for t G T we denote the norm given by \\t\\ = max.^.. . , . |_,-|. 

Proposi t ion 4 .7 . Let / G C^ be .^-measurable , W G /C, and 

£ | | . | | d
7 < = C 7 < o o . 

<eT 

Then 
|V f c | _v(T\V f c ) —»0 forifc^oo. 

P r o o f . Since |J/fc|(2J. + l ) d < 3dfcd and k< \\t\\ fort£T\Vk we may write 

| V f c | A 7 ( T \ V * ) < 3 d £ ll'H" £ W » ( / ) -
. . T \ V k 66W 

Therefore, it is sufficient to prove 

B = £ | | t?Woo. 
t£T 

Let us denote x ( n ) = E"=o r* a n d 5 " = E . £ T Illl^X.o^ W e obtain 

n -

*n = £ £ II' + s i t t - S < (7 B^) i + ( 1=^ Cy) 
1. .CT V ' / 
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by the triangular inequality of the ^-norm. Thus B = hrrin—oo Bn < oo. • 

Now we may formulate the appropriate version of the CLT which is the main 
result. 

T h e o r e m 4.8. Let the underlying Gibbs distribution satisfy moreover 

X>lr*7.<«>. 
t£T 

Then the CLT holds for every Yf, f eC*. 

P r o o f . The statement follows directly from the preceding propositions. • 

Remark 4 .9 . For Markov random fields the additional assumption is easily satis­
fied since then 7, = 0 for t € T \ V with some V G /C. 

5. CONCLUDING REMARK 

The assumption of compact metric space X was made not to complicate the proofs 
too much. But, the substantial estimates contained in Lemma 4.1 can be obtained, 
with the aid of the Vasershtein distance, for non-compact case as well. Therefore 
even the main result can be with some technical difficulties generalized. 

For the image processing or the statistical analysis of spatial data (cf. [1]) we 
usually consider the specifications to be given by a potential (cf. e.g. [5]). The 
potential is a collection of functions which offers our equivalent description of a 
Gibbs random field but it can be directly understood as a parametrization. Thus 
the problem of parameter estimation for Gibbs random fields can be formulated. 
For investigating the asymptotic properties, namely the asymptotic normality, of 
some relevant estimators, the validity of the CLT for appropriate derived random 
fields is crucial. Since the Markov property of the underlying random field can 
be assumed without any major restriction, the additional condition in Theorem 4.8 
does not cause any practical problem. On the other hand the Dobrushin's uniqueness 
condition is really substantial and cannot be easily avoided. 

(Received October 20, 1992.) 
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