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K Y B E R N E T I K A - V O L U M E 27 (1991), N U M B E R 2 

ON THE PENALTY APPROXIMATION 
OF QUADRATIC PROGRAMMING PROBLÉM 

ZDENĚK DOSTÁL 

An upper bound for the difference of the exact solution of the problem of minimization of 
quadratic functional on a subspace and its penalty approximation has been given. The paper 
is supplied with a numerical example. 

1. INTRODUCTION 

It is an easy consequence of the general theory of the penalty method [1] that the 
solution 3c of the problem 

min {/(*): x e i T } , (1) 

where f(x) — \xTAx — bTx is a convex quadratic functional and "V is a subspace 
of the real Euclidean space IR", may be approximated by the solution xz of the problem 

min {f{x) + | e _ 1 x T P x : x e R"} (2) 

where e > 0 and P is any n x n matrix with the range "f". 
Even though there is a number of exact methods for transformation of the problem 

(l) to the unconstrained one [3], hardly any of them is as simple and cheap from the 
point of view of numerical realisation as the penalty approximation (2). In a special 
case when P is diagonal its application consists simply in overwriting corresponding 
diagonal entries of A by a large number and is widely used [2]. In a more general 
case, when values of constrained variables are not fully determined by constraints, 
the application is complicated by the fact that adding a too large matrix to A may 
destroy the corresponding part of A. This has motivated us to examine in detail the 
difference x — xe and to carry out some numerical experiments in order to assess 
the applicability of the penalty approach. 

2. AN ESTIMATE 

Let f(x) = \xTAx — bTx where 4 e K " x " is a real positive semidefmite matrix 
and b e IR". Denote by *f and % a subspace of ^" a n d its orthogonal complement. 
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Let Ve WXm and U eWx("~m) be two matrices whose columns are formed by the 
orthonormal bases of T and (SU, respectively. Denote by P a conjugate projector 
on "V. Let us remind that a matrix P is a conjugate projector on a subspace 'f iff 
P2 = P and PTA(I — P) = 0. In this case / — P is a conjugate projector on the null 
space of P. Notice that AP is symmetric and positive semidefinite as PTA = PTAP. 

Theorem. Let / , U, V. "V be defined as above, let x be the solution of the problem 
min/(x), and let xE denote for each e > 0 the solution of the problem min (/(x) + 

if 

+ 1
is~xxTUUTx). 

If VTAVis invertible, then 

|x - x8| = s(\P - WT\ + l)2 \b\ , (3) 

where P = V(VTAVyx VTA is a conjugate projector on 'f. 

Proof. Under the assumption of the theorem, obviously x = V(VTAVyx VTb and 
A + &~XUUT is positive definite. 

Now notice that Q = (V, U) is an n x n orthogonal matrix, so that 

(A + s~xUUTyx = Q(QT(A + s~xUUT) Q)~x QT. 

As 

OT(A + S-XUUT)O-(VTAV> VTAU \ 

Q(A + s UU )Q- \jjiAVi VTAU + s-ij) . 

we can apply the formula for the inverse of 2 x 2 block matrix to get 

= x + VCZTVTb - VCZUTb - UZCTVTb + UZUTb , (4) 

where 

and 

c = (vTAvyx VTAU 

Z = (UTAU + £ - 1 / - UTAV(VTAVyx vTAuy1. 

Let us now estimate the norm of Z. First notice that 

Z = s(l - sUTA(V(VTAVyx VTA - I) U)'1 . (5) 

Since P = V(VTAVyx VTA is a conjugate projector on "f, we can rewrite Z into 
the form 

Z = s(I + sUTA(I - P)U)~X , 

where the inverted matrix is obviously positive definite with all the eigenvalues 
greater or equal to 1. It follows that 

lZl = e • 
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Further, notice that 

\VC\ = \V(VTAV)~l VTAU\ = \PU\ = \P(I - VVT)\ = 

= \P - PVVT| = \P - WT\ . 

Taking into account that both \u\ fS 1 and |V| S 1, we get 

\x - xe\ - \VCZCTVTb - VCZUTb - UZCTVTb + UZUTb\ <, 

S (\VC\2 + 2\VC\ + 1) \Z\ \b\ ^ s(\VC\ + l)2 \b\ = 

= s(\P - VVT\ + l)2\b\. 

Consider the following trivial example: A = I, b = (1,0 ...)T, r is the set of all 
vectors with the first coordinate equal to 0. Then obviously \b\ = 1, 

\x — xe\ = e(l + e) _ 1 , 

while (3) yields 

\x — xe\ ^ s . 

This shows that the constant (\P - VVT\ + l)2 can not be improved without addi­
tional assumptions. D 

The following corollary gives us an idea about the constant in (3) in terms of the 
spectrum of A. 

Corollary. Let/ , U, V, A, x and x£ be those of the theorem, and let A be invertible. 
Then 

|x - xE\ ^ s(x(A) + l )2 \b\ , (4) 

where x(A) is the spectral condition number of A. 

Proof. Notice that 

\p _ VVT\ = \(P - VVT)(UUT + VVT)\ = \PUUT\ s \P\ 
and 

\P\ = ^ ( ^ A V ) - 1 VTA\ ^ K ^ A F ) - 1 ! | A | ^ | A _ 1 | \A\ . 

Thus \P - VVT\ ^ x(A), which substituted into (3) yields (4). D 

3. NUMERICAL EXAMPLE 

As an illustration, consider the problem 

min ^xTAx — bTx , 
xe-T 

where 
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Direct computations show that x(A) = (1 + >/-0/(1 — V-0» s o t*13-* w e § e t th e 

estimate 
|x - ;c£| ^ 80-778 . 

The values of both sides are tabulated in Table 1. All the penalty computations were 
carried out in double precision and no serious effect of computer arithmetics has 

Table 1. 

£ Ю " 1 1 0 " 4 10~ 7 

\x- xt\ 1-716E-1 1-837E-4 1-837E-7 

£(1 + x(A))2 \b\ 8-Ô77EO 8-077E-3 8-077E-6 

been observed with s"1 ^ 1010. We conclude that the estimate (4) may give us some 
idea about the error of penalty computations, though in many cases it will be too 
pesimistic. 

(Received June 14, 1989.) 
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