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KYBERNETIKA — VOLUME [0 (1974), NUMBER 3

An Application

of Logical-Probabilistic Expressions
to the Realization

of Stochastic Automata

ToMAS HAVRANEK

In this paper some methods are suggested for the realization of stochastic automata and prob-
abilistic operators. These methods are based on the notion of logical-probabilistic expression.
Knowledge of papers [4] and [5] is eesential for the understanding of the following considerations.

1. REALIZATION OF PROBABILISTIC OPERATORS

The notion of a probabilistic operator, as we shall use it in the following considera-
tions, was introduced in paper [4] as follows: consider a triplet o = [4, 2,, B],
where A = {a,, a,, ..., a,} is the input alphabet, B = {b,, b,} is the output alphabet
and #, = {P‘,}HEA is a system of probabilities on B; we call this triplet the probabilis-
tic operator with binary output. Analogously, the probabilistic operator with multiple
valued output was defined (B = {by, ..., b;}). The problem of the realization of these
operators is understood here as a problem of how to find a probabilistic operator
o' =[A', ?'., B]-with a previously given structure, that would be probabilistically
equivalent to the original, i.e. such &', for which there exists a one-to-one mapping
Y of A on A’ for which P, = P, ae A. Ke will now use logical-probabilistic
expressions (LP-expressions). These expressions were introduced in the paper [4]
as well. An LP-expression is a triplet & = [F, 2y, Qp), where: (1) F is a logical-
-probabilistic form (LP-form), i.e., a form of propositional calculus in which a new
kind of unary logical connective is used (¢4, @z, ...), (2) Qp is a finite space of random
events; the values of associated functions of probabilistic connectives are determined
by these random events, (3) 25 is a system of probabilities, 2, = {P,},, on Q,
where the values of parameter y are given by the values of such subexpressions as F’
for which ¢(F’) is a subexpression of F (given a value on input variables). For further
useful details see [4].

Probabilistic properties of an LP-expression @ can be described by the characteristic
Vector py;

Po = (Pa(Ql))ae{OJV" >
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where ¢ are possible evaluations of the variables and 2, is a subset of @, such that
funcg (6, ®) = 1 for @ € Q,, where funcy is the associated function of F (see [4];
Def. 8). Analogously the properties of &/ can be described by the vector p,, =
= (P.b,))sea- We shall now try to find a probabilistically equivalent operator
in a form corresponding to a LP-expression to a given probabilistic operator. Further,
this LP-expression should be in simple probabilistic disjunctive normal form
(SPDNF, sce [4]; Def. 12).

Theorem 1. Consider a probabilistic operator with binary output (s/ = [4, 24, B])
There exists a natural number m, a mapping  of 4 to {0, 1}™ and an LP-expression
@ = [F, Qp, #], being in SPDNF, such that for every a € A P,(b,) = Py, where
DPyay is @ member of pg.

The vector pg, in which the members for which o ¢ y(A4) are left out, we denote
S Poyca)- Then we can write poycay = Pz

Proof. Let 4 = {a,, e ak}, let m be the smallest natural number for which
k < 2™ We construct ¥ in the following way: let ¥/(a;) = o, where ¢ is the binary
form of the number i — 1. We put p, = (P, (b,), ..., Po(b2))" and py = (P, (b,), ...
. Po(b,), 0, ..., 0)T (dimension p;, = 2™). According to Theorem 4 from [4] we can
construct an LP-expression @ = [F, Qr, #;] in SPDNF, such that py = p,,. There is

k N N
) FoaVo(x3)&xy &.. . &x5',
i=1
where

e P i g= 1,
! ~x; if e =0, & =y(a)
and the probabilistic parametres of ¢, are (0, p;), p; = P, (b,) (P,(0; 1) = 0, P,(151) =
k

= p;); moreover, Z; = {P(y; ®)},e0,1y» Where P(y; @) =[] P(y;; w;) for every
y € {0, 1}* (the stochastical independence of ®). bt O

For computation of the characteristic vector of ¢ see also Example 3 from [5].

This LP-expression can be physically realized by a logical net with probabilistic
elements (LP-net). The numbers of elements of the corresponding net (or connectives
in the expression) will be denoted as D(&), D(v), D(~), D(¢) respectively. For this
realization according to the previous theorem we need D(&) = k(m — 1), D(v) =
=k —1,D(~) < m2" ! and D(o) = k.

If we consider the numbers in binary forms, we need 2"~ more zeros for numbers
from 0 to 2™~! — 1, than for numbers from 2"~! to 2™ — 1. By the coding ¥ to
{0, l}'" in the same way as in the theorem, we need the first kK numbers for the forms
(p,«(x'i‘i)& &xf,;"i‘ The occurence of 0 corresponds to occurence of an element
of negation. It is much more useful to code from the top down, i.e., ¥(a,) = (1, ..., 1),



W(a,) = (L, .., 1,0), ¥(as) = (1, ..., 1,0, 1) etc. By logical subexpression of an LP-
-expression we mean an LP-subexpression without any probabilisti connective.
If we substitute the subnets corresponding to equivalent logical subexpressions
by one subnet of the net corresponding to the form F of LP-expression (1) with the
help of elements of forkjunction (see Fig. 1), then the number of used elements

X, X
1
X ,X,,—‘ 0, (X6 X,8 X3k X, [

50 %y
LTk ke L_

a) b)
Fig. 1.

is considerably lower. By the substitution we do not change the corresponding LP-
-expressions, nor the computation of probabilities. The LP-expressions remains
stochastically independent. Then D(&) < 2™~' — 4 and the other numbers are
without change. The preceding inequality follows from the fact that the number
of distinct logical expressions of the form x&mo1 & xom' occuring in expression (1)
is less than 22 + 1, and the number of distinct logical expressions of the form
xEm3 & ... & xt is less than 23 + 1 etc.; if we have such a subexpression of a given
lenght, we need only one new conjunction to construct two new longer and distinct
subexpressions. Then

D(&)§22+23+'”+2m=2m+1_4.

The equality in preceding inequalities occurs if and only if all members of (py, ..., p.)
are different and positive. If p; = 0 for some ie {I, e k}, then we leave out the
form @,(x5) & ... & x5,

Further simplifications with the help of the element of forkjunction are posible
if for some i, j, i # j, we have p;, = p;

Lemma 1. Consider a characteristic vector p,, and let there exist i,j € {L, ..., k},
i # j, such that p; = p,. If we replace in LP-cxpression (1) o/(x§'') & ... & x;7" and
ox7') & ... & X"’ by subexpressions with the forms

oy
14

~ X & &) &L & X

and

*y
14

o X &L &) &L & X

where [ is the indice for which ¢} = ¢f and ¢}, ¢} are functionally equivalent, then the
equality P = Popwa) is preserved.
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Proof. We have
2) P(func Fa) = 1, func F{a) = 1) =
= P05 1) Pas.oicitiorsinon

. 11
+ Pi(ah 0) Po11eis01-1,0,014 110000 3
where

Il
—_

1if & &C&.. &
and xV&.. . &{&...&x =1
for x=o0,

0 in other cases ,

Pay,.voi- 100015 150

because P; (o, 0, 1,0) = 0. .
Further the right hand side of (2) is equal to 0, because pL! . = 0 for every &

and {, if we consider the form of F,and F;. Thus T

P(func F{e) = 1 U func F{o) = 1) =
if o=¢ or o6=4¢,

= P(func F(a) = 1) + P(func F{a) = 1) = {”"

0 in other cases.

The stochastic independence and distinctness are preserved with respect to other
conjunctive members from the form (1). O

In the corresponding net we can then replace the subnets corresponding to F;
and F; by a single net with an element of forkjunction. In more complicated cases
suchas p; = p;, i ¢ {is,.... i,} = {l,..., k}, we proceed in the analogous way.

For other method see [ 1], [2], [3], [6], [8], [11]. The methods from [8] and [11]
for binary outputs are similar to the method suggested here.

We now give our attention to the realization of the probabilistic operators with
multiple values output. Then we have to consider characteristic matrices of the form
(P,(b))scs, i-e., characteristic matrices of such an operator.

Analogously, we can consider characteristic matrices (;f the vectors of LP-expres-
sions, i.e., matrices of the form

(P(func, (0, ®) = {4, ..., funcg,(o, ©) = L0

(see [4]; Def. 14).
Theorem 2. Consider a stochastic matrix P = (p; j)ji‘,"‘_‘_ 2" Then a vector of LP-ex-

pressions @ = [F, Qg Pp), where F = (F(x,,..., x,,,); vvos Fily, o0y X,)), exists
such that Py, = P.

Proof. We define logical expressions

Gx(,"n cees yl'l)’ cees Gn(yl7 cees J’r—l) , I=2",



in such a way that their associated functions are given by the table: 45

Y= iey) ‘ Gy, ... G,

L1 ‘ B l=¢

7 \ 2

Yi-1 ‘ Gy

" |

: | &

vs !

where each y,, ..., y,-, contains only one member equal to 0, and y,, ..., y,~, are

different. The expressions are defined so that

P((GA(_V), s Gn()’)) = (1—1) = P(-V = 71~1),

P((Gy(»), - Gi¥)) = L))

I
_
i
01
=
~
N
I
=
R

According to Theorem 1 we can find LP-expressions @, ..., ®,_,, stochastically
independent, such that (if ¢; is the binary form of j — 1 and P; is the probability
determined by 2, = {P, . }) P/(o;; Q7) is equal to pjforr =1,..,1 - 1,j =1, ...

., 2". We considered the LP-expressions ®, = [F,, 2,, #,] and P(o; of, ..., ) =

-1
=[] Pi(o; @}). We now define a vector of LP-expressions given by a vector of LP-

r=1
-forms F = (Fi(x), ..., F;(x)), where F} = G,(F}, ..., Fj_,) and F} are functionally
equivalent to F, forr =1,.., I = 1,j=1,...,n.
If p}, i = 1, ..., 2", are solutions of the equations
(3) €183 - &1y = Piy
€j8j, 8y, — Pt =Pu»> J=2,.,1-1,
where j,, ..., j,_, are those indices for which

W=1 (=009,

then the above mentioned vector of LP-expressions fullfils the assertion of the theorem.
This is because (considering the definition of LP-expressions @; by forms F}) we have

-1
@ e, = 11 Pl @)

€=,



246

where p,, ¢, is @ member of the characteristic matrix of @, and the right hand side
of (4) is equal to p}...pi™" = p;, for j =1, to p}...pi"*(1 — p{' V) = p,, for
j =2, etc.

For j = [ we obtain the value of probability as a complement. O

If we have a probabilistic operator with matrix P, = (p;;) of the type k x I,
we find the smallest natural number n for which I < 2" and a one-to-one mapping ¢
of B to {0, 1}". Then we find a vector of LP-expressions such that p;; = pyse,»
where py s, 15 @ member from P

Example 1. Consider a probabilistic operator with the characteristic matrix

1P11,<--,P15
Py=1 " ; k=3,1=5.
P31 -+ P3s

Thenn=3, m=2,/— 1= 4and

y ‘ Gy G G;
111 ‘ 1 1 1
1110 l 1 0 0
1101 0 1 0
1011 0 0 1
0111} .

0 0 0

Then G((»)=y; &y, &y3,G,00) = y; & y3 &y, and G3(») = y; & ¥, & y4. To obtain Gy, G,
and G, in a simple form we construct 3 in another way: (b)) = (1, 1, 1), 9(b,) = (1, 0, 0), etc;
we construct ¥ in the usual way. For x(a;) we obtain equations

£1828384 = Pi1>

813253(1 — &) Piz >
eyl — ﬁs) € = Piz»
gy(1 — &) e384 = Pia -
Then
e = (Pis + Po2) (Pir + Pis) (Pix + Pia)[Pa s
& = (P + i)' Pus»
&3 = (P + Piz) ' Pars
e = (pi + P2) ™ Pt -



For i=1, ...,k we obtain p}, ..A,p’i"1 and therefore the characteristic vectors of @, ..., &,

Po, = (p{, .4.,p£)1'. The desired vector of LP-expressions has the following vector of LP-forms:
F,(x) & Fz(x) & F(x)
F(x) = | Fy(x) & Fo(x) & Fy(x) | .
Fy(x) & Fz(x) & Fy(x)

For the construction of the corresponding net it is possible to use elements of fork-
junction: (]) In the nets corresponding to @, ..., ,_ we can use the same method
as in the case of a net with binary output (see above). (2) In the nets corresponding
to @y, ..., P,_, we can use common subnets corresponding to subexpressions
x%' & ... & x’ which in all F,, ..., F,_, are identical. (3) The vector of LP-expres-
sions was constructed so that the subexpressions substituted in distinct expressions
G, ..., G, in the places of y,,..., y,_; are structurally equivalent (therefore func-
tionally equivalent). Then we need only one (I — 1)-tuple of the nets corresponding
to @, ...,P,_,.

Example 2. Let k = 6,/ =5, then m = 3, n == 3 and

6
F; :.V{/’ij(xi‘ Y) & Gifxz, X3)
i=
where

’ i e3t
Gilxy, x3) = xF & x5 .

This example is continuation of Example 1, only the number of inputs is changed. The corres-
ponding net is drawn in Fig. 2.

Let us now consider the numbers of used elements. Consider a probabilistic opera-
tor with [-valued output and k-valued input. The realizing net will consist: (1) / — 1
nets corresponding'to @y, ..., ®,_;, (2) n nets corresponding to Gy, ..., G,

(1) The common subnets for @, ..., &,_, have the number of elements corres-
ponding to & equal to (m - 2) k and every @, has in addition k elements correspond-
ing to &. Then D,(&) < (m — 2) k + (I — 1) k = k(m — 3). For every net the
number of elements v is equal to k — 1, then Dyy(v) < (I — 1) (k — 1). We use
the negationes only on the input variables, then D,/ ~) = m. .

(2) We know that it is possible to express every boolean function G in the form
Ve =1¥1" & ... & yi-y'. Therefore for the given table of values of the function
we can construct a logical expression. With the help of minimalization (see, e.g., [7])
we obtain

Gl(.V) = (.V1 &y, &y & ,V4)& ((.Vs & }’6) v }’7) B
Gz(y) = (Y1 &y, &ys& }’6)& (()’3 & YA) v ,V"/) »

Gy(¥) = (11 & y3 & ys & y6) & (12 & Vi) V ¥7)s

247
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if the table is e.g.,

¥ G, G, G,

i 1 1 1 8b,)
1111110 1 1 0 8(by)
111101 1 0 1 9b3)
1ol | 1 0 0 8(by)
ot | o 1 1 8(bs)
HoItiL | 0 1 0 9bg)
ottt | oo 0 1 (62
011111 1} ‘

....... [ o 0 0 H(bg)

(the usual coding for A4, B, n = 4). Minimalization is possible because we choosc
the value of functions equal to 0 for y equals to (0111]1]) and any other vector
with two or more zeros.

Analogously if n is a higher number. Then: (a) all negationes are omitted, (b) every
G; contains 2" "' & connectives and less then 2"”? conjuctive members (each with
2"~1 — 3) variables) and each with 2"~ ! — 4 connectives. Then for G; we have

D& S 2t 27t =34 (27— 4) (272 - 2).

Without minimalization it would be D(&) < *"~' — 2". Analogously we obtain
D v)s 2 t—1

Conclusion 1. The realizing net for a probabilistic operator with k-valued input
and I-valued output needs the following numbers of elements: ‘

D(&) < Km + 1= 3) + (21 — 2" £ 2773 4 1),

D(v)< (I = 1) (k= 1) + n(2"2 — 1),
D(~) < m,
D(p) = k(I -1).

In particular cases, some simplifications are possible.

Theorem 3. Consider a stochastic matrix P of the type k x I. Suppose that there
exists vectors p', ..., p'™Y, p = (pi, .... pi)", such that

py= Tl 7 Il (1-7),

r.B(r.jy=1 r,B(r,j)=0

where B(r, j) is the r-th member of binary form of j — 1.
Then we can find a vector of LP-expressions @ = [F, Qp, ﬂ;] such that P = P,

249



250 andif F = (Fy,..., F,) (2" = I), then
pi; [1 Plos @) forevery i=1,...kj=1,..1
i}

(¢, =(C.....¢}) isbinary formof j— 1,0, isbinary formof i — 1).
In the realization using this theorem we have the following

D(&) = k(m + n —2),
D(v) £ n(k — 1),
D(~) =m,

D(¢) < k(n —1).

Consider now the realization of the stochastic automata. Given Mealy stochastic
automaton, 4 = {a,, ..., a,}, B = {by, ..., b} Q = (q;, ..., g,), and transition matri-
ces

Py = (P%,p,i) , Pa= (p?,p.q) >
i=1..,kp=1..,s5j=1...Lqg=1..s,
let m, n, r be the smallest natural numbers for which k < 2™, ] £ 2", s < 2"; we can
define three one-to-one mappings ¥: A — {0, 1}, 9: B — {0,1}" and 7: ¢ — {0, 1}
and find a vector of LP-expressions @ = [F, Qg, 2] such that
® F = (F\(x,y), F(x, ),
where
Fi(x,y) = (Fi(x,p), ... F(%, ), Fox,9) = (Gi(x, ), ..., G(%,¥),
(ii) pi‘-v.i = p;ggr(qp) g piz,vvq = pflll((q;c))f(qp) ]
where pj, . and p;, . are members of the characteristic matrices of @, and &,, and
(i) Py(y; @) = Pyy(313 @1) - Pyalya; @)

For the nets realizing @, and @, we can use common subnets realizing subex-
pressions like
(5) P &L & Gy &L &y
without violating the condition of stochastical independence.

For @, we then obtain the following numbers of used elements

Dy(&) Shks(m+r+1—3)+n2"t =20 +27% 1+ 1),
D(v)=(ks—1)(I - 1) +n2"*-1),
Di~)sm+r, Die) <ks(i-1),



for @, we obtain
Dy&) Sks(m+r+s—3)+ (27— 27+ 2773 + 1),
Dy(v)s(ks —1)(s — 1)+ r22 - 1),

Dy(~)Em+r1, Dyp) < ks(s —1).

It is not possible to make the number of probabilistic connectives needed for
realization lower without further conditions concerning some probabilistic character-
istic of the automaton; the number corresponds to the number of independent sto-
chastic parametres. This fact is also true for other estimates of the number of pro-
babilistic connectives in Part I of this paper.

Conclusion 2. If we consider the common subnets for the nets corresponding to (5)
then we have:

D(&) £ ks((max (m,r) + 1+ s — 3)
+n(2t - 2r 4 2P )
G2t =2 2 g ),

D(v)

IIA

(ks = (I +s=2) + 022 = 1)+ 12772 = 1),
D(~)sm+r, Do) < (ks —1)(I+s—-2).

For a general stochastic automaton we cannot separate nets for outputs and states.
We have the four-dimensional array

P = (pi,n,j,q) >

i=1..,kkp=1L.,s5ji=1..,Lg=1,..5s.

We must define one-to-one mappings ¥, 3, w as in the preceding case and we can
find a vector of LP-expressions @, where F = (F, F,), F, = (Fy(x, y), ..., F.{x, y)),

F, = (G1(xx y), cen G,,(x, J’) B
such that
Pin.ia = Pilay sy -
We can find this vector in the following way: we construct new alphabets
A =y(4) x «(Q), 4 ={0,1}"", ai, = (V) (q,)>

and
B =8B) x «(Q), B ={0,1}""", bj,=(9(b) 7(q,)>
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252 and we obtain then a matrix P’ = (p{%) where p/% = p, , ; ,. According to Theorem 2
we can find a vector of LP-expressions @ such that
P =Py p-

Conclusion 3. We obtain the following estimates of the numbers of used elements:
D(&) = ks(m +r —Is = 3) + (n + r) (2772 — 2vFr 4 2204073 ),
D(v)Z (sl = 1)(sk — 1) + (n + r) (2"~ + 1),

D(~)sm+r and D(p) < sk(sl — 1).

A

‘We have proved that, if we have the partition of the set of all probabilistic operators
(or stochastic automata) according to probabilistic equivalence, then it is possible
to find a representative of every class from the set of vectors of LP-expressions formed
with help of &, v, ~ and stochastically independent probabilistic connectives
(in the case of stochastic automata moreover, we need to use delay elements).

II. REALIZATION OF PROBABILISTIC CONNECTIVES

In the previous part of this paper we assumed the probabilistic connectives (realiz-
ing elements) with all possible probabilistic parametres. We will now turn our atten-
tion to the case when we have only independent probabilistic connectives with given
and equal probabilistic parametres.

The expression of the form ¢(x;) will now be called the elementary LP-expression.

Theorem 4. Consider an elementary LP-expression ¢(x), p,,, = (0, p;).

We can find (in a finite number of steps) a stochastically independent LP-expres-
sion @ (in SPDNF) containing only probabilistic connectives ¢ with probabilistic
parametres (0, 0-1) such that Po(@,) = 0 and |P,(2,) — p| £ &, where z, is a given
real number, ¢, > 0.

Proof. Denote

<P(b)(x) = (PL(X) &...& %(X) »
Vio(x) = @i(x) v ... v g)(x),

where @,, ..., ¢, have equal probabilistic parametres and are stochastically inde-
pendent. We try to find & of the form
F(x) = V" o(x) v V2 0D(x) v V" ¢Ix) v ...
We proceed in the following way:

1) by: we compute succesivelly P(\V® ¢(1) = 1), b = 0, 1, ... until we find b, such
that (V" (1) = 1) £ p < P(V*'* 1 (1) = 1),



2) b,: we compute succesively P(V" (1) v V? (1) =1) for b=0,1,... 253
until we find b, such that

PV o(1) v V2 oD(1) = 1) < p < P(V" ¢(1) v V" o2(1) = 1).

Analogously we find b, by, ... until we find k such that [P(V* (1) v ... v V™.
cp®(1) = 1) - p| < .
‘We must prove that such a k exist (that there is a finite number of steps). We have
PV o(1) v ... v V(1) = 1) < PV (1) v ... v V"1 (1) = 1),
because P(p'(1) = 1) = 01 > 0 and ¢}’ (1) = 1 do not imply V"' (1) v ...

v VP e(1) = 1.
1) For the first step we have

(6). PV o(l)=1) =PV o(l)=1)+ 1071 = 107'P(V p(1) = 1) .

Remark that P(V* @(1) = 1) £ p (if b, is not found yet, i.e., a £ b,) and thus the
right hand side of (6) is greather or equal to P(V* ¢(1) = 1) + 107" + 10~ 'p. Then
PVt (1) = 1) — P(V* ¢(1) = 1) 2 107'(1 — p), and after the finite number
of steps p must be surpassed.

2) We have, analogously, for the I-th step

)
PV (1) v .. v YV o0(1) = 1) = PV o(1) v ... v Vo)1) = 1) 2
210741 - p). ‘

3) We have P(V* o(1) v...v V""" L o0(1) = 1) = P(V* p(1) v...v V" o!I(1) =
= 1) < 107" and then it is sufficient to make k number of steps, where k is such

a number that 107% < g, O

In the last step is better to choose b, = by or by = b| + 1 according to, such
a case for which [P(V" ¢(1) ... = 1} — p) is smaller. The error is then less or equal
to 4107% .

The estimation of the number of used elements:

‘We have

by < 10p(1 — p)™*, b; S 10(1 — p)~*
for j=2,...k — 1 and b, = 10(1 — p)~* + 1. Then
(8) D(&) <k — 1+ 310k(k —1)(1 —p)~*,
D(v)s1+10(p+(k—1)(1—-p7*,
D(p) <k + 10(p + k(k — 1)) (1 — p)7L.
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We have to find k such that 3107* < ¢, then k = [—log 2¢ + 1] (the integer part
of the number). For p > 0-5 it is better to construct F = ~F’, where F’ is the ex-
pression for 1 — p. We assume then p < 0-5.

Conclusion 5. The we obtain the following estimates:

D(&) < [—log2e] (1 + 10[—log2e + 1]),
D(v)=1+20(4+ [—log2]), D(~)=1

and
D(p) < [—log2e + 1] + 10(1 + [—log 26] [—log 2¢ + 1]).

The proof of estimate (8): Denote the increase of probability in the case of transi-
tion from b to b + 1 by 4,. For the first step: 107! = 4, = 107*(1 — p). Let us
denote the number of members in the disjunction needed for the minimal increase
as bj, for the maximal increase as bj. We have then (b + 1)107'(1 — p) = p =
> b7 10711 — p), and thus bf < 10p(l — p)~%, and b7 = 10p — 1. Therefore
10p(1 — p)™* = b, = 10p — 1. We obtain 107" = 4, = 1071 — p) for the I-th
step and it implies

by b <107 (p — PV (1) v ...
oV VPTG = 1) (1= )7t S 1001 = )t

For the k-th step b, < 1 + 10(1 — p)~*. Then

k-1
D&) < (k—1)+Y j10(l —p)*,
Jj=1
D(v)=k+b —1+b,—1+.. +b—-1Z
Sk+10p(1 — p)t =1+ (10(1 — p)~* — 1)(k — 2) + 10(1 — p)~*
and y

D(¢) = by +2b, + ... + kb, £

i

A

k-1
0p(1 —pyt+ Y j10(l - p)* + k. m}
i=1

Some other methods of the synthesis are given by R. L. Schirtladze in [9] and [10],
and by J. Wartfield in {11]. All these methods are based on “white 'sources”, i.e.,
on probabilistic connectives with parametres (po, po).

Remark 1. The method suggested in Part II of this paper can be modified in the
following way (using the notions from [10]): we substitute @,(¢;_ (... (¢,(x)) ...)) for
¢(x) (note that P(¢¢;—4(... (@5(1))...)) = 1 = 107%). Then D(&) = 0, but the
LP-expression is not in SPDNF. .



In[11] D(&) < 2", D(v) < 2", D(~) < }(2*) and D(p) < ko + 1 is obtained
for the number of used elements, if k, = [log ¢flog 2].

Some more general considerations are contained in paper [9] This paper deals
with connectives with parametres (po, po) Where p, € (0, 1), and solves the problem
of how for every p € (0, 1) to find a logical expression f(x) such that |p - P(f(ey, -
e (p,,) = 1[ =< &, where ¢, ..., @, are stochastically independent and have character-
istic vectors (po, po)- The estimate of used elements is then (in our form):

D&) £3(n—1)(n-2),
D(vysn—1,

D(~) €4~ 1)(n~2),
and

A

Dip) sn,

where n = n(e, po), if n(e, po) = max (n(g), n(p,)), where n(e) = [1 + log (2¢/po) :
log (1 — po)), a(po) = [[logs (1 — po)| 1] for po e (0,4, and n(e) = [1 + log.
(2e/(1 = po))log po], n(po) = [|10g2 pol_l] for po e (4, 1).

Remark 2. Tt is possible to generalize Theorem 4 for connectives ¢y, ..., @, with
Py, = (0, po) (in this theorem we used po = 0-1). Then we have

PVt o(1) = 1) = P(V (1) = 1) 2 po(l — p)
and
PV (1) v ... v VT o) = 1) — P(VP (1) v ... v Vo 2(1) = 1) =
z po(l - p)
in the proof.

It is necessary to find k for which 1pk < &. The estimate of the number of used
elements is then

D(&) < ko + - kolko + )
2po
D(v) £ 1+ 1po (1 + ko)
and

A

1
ko + — (1 + tkolko + 1)),
Po

D(¢)
where
ko = [log 2eflog p,] .

For the method modified as in Remark 1 we have D(&) = 0.
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For illustration, we can now make a comparison of the method mentioned above.
We denote Wartfield’s method W, Schirtladze’s method S, our method from Theorem
4 (or modified by Remark 2) as 1, and this method modified by Remark 1 (or modi-
fied by Remarks 1 and 2) as 2. We obtain the following tables:

For p, = 0-1:
&= 0-001 &= 0-0001
1 2 S 1 2 S
D&) = 32 0 1553 43 0 3081
D(v) =< 51 51 58 71 71 79
-D(~) = 1 1 1553 1 1 3081
D(p) = 73 73 59 134 134 80
‘ )
} ko=2 n< 59 ko=3 n<80

for py = 0-5 and & = 0-0001:

| 1 2 S w

D(&) = | 276 0 45 106 496
D(v) < 51 51 i1 8192
D(~) £ 1 1 45 4096
Dlp) < 279 279 12 14
ko= 12 n=12 ky=13

The last problem is this: we realize probabilistic connectives with an error. We ask
how big this error can be provided the error of the whole net realizing a probabilistic

operator should be lower then ¢, given in advance.
For the operator with binary output we could require the satisfaction of the fol-

lowing condition:
Y Plx=0)|P(0,2) — p,| S .

oeuld)
We will require a stronger condition:
©) |P'(6,Q,) — p.| S &0 forevery oey(A).

Our realizing LP-expression 1) is such that to satisfy (9) it is sufficient that |p; — p,| <
< & (o is binary form of i — 1). For the probabilistic operator we will require

|ppeh — py| S8 for i=1,.,kj=1,..,1.



it |P(y(ar); ) — p’,.| <e(r=1,...,1— 1), where p} are solutions of equations 257
(3), then

I:lj P((a;); Q1) ~ Pnl =

(I-De+ (=D + ... +(I—1)e2+¢1 I Gt [ i 1)1(1 —e e
— &

IIA

if we neglect &', Then we need (I — 1)¢(1 — &'7?) (1 — &)7! < . A sufficient
condition is (I — 1)&(1 — €)™ < &, (thus we eliminate the influence of having
neglected &'~*, and we obtain & < &o/l; for stochastic automaton we obtain fol-
lowing inequality: & < go/ls.

(Received January 3, 1972.)
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