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KYBERNETIKA — VOLUME 29 (1993), NUMBER 1, PAGES 80-101

STABILITY IN STOCHASTIC PROGRAMMING —
THE CASE OF UNKNOWN LOCATION PARAMETER

VLASTA KANKOVA

The assumption of a complete knowledge of the distribution in stochastic optimization
problem is only seldom justified in real-life situations. Consequently, statistical estimates
of the unknown probability measure, if they exist, can be only utilized to obtain some
estimates of the optimal value and the optimal solution.

The empirical distribution function is usually used everywhere when the theoretical
distribution function is fully unknown [1], {5], [17]. This substitution leads to the “good”
statistical estimates [2], [9], [10], [14], [16]. However, unfortunately, it is also well-known
that the corresponding approximative problem need not be a concave problem even in the
case when the theoretical original one possesses this property. In particular, this happens
rather often in the case of the chance constrained stochastic programming problems.

If we can assume that the theoretical distribution function belongs to a parametric fam-
ily, then we can employ estimates of the unknown parameter to get some estimates of the
optimal value and the optimal solution [3], [16]. In this paper, we shall consider the case
when the unknown parameter can be introduced as a location parameter. We obtain the
estimates of the optimal value and the optimal solution with statistical properties fully
determined by the properties of the original parameter estimates. Moreover, the approxi-
mative problems belong to the same type of the optimization problems as the original one.
However, to obtain these results we have to study the stability problem with respect to the
location parameter, first.

At the end of the paper we shall try to apply some obtained results to stochastic opti-
mization problem counsidered with respect to the discrete time interval 1+ N. Namely surely,
the main importance of the former results will be found just in such dynamic models.

1. INTRODUCTION

Let (Q, S, P) be probability space, £ = £(w) = [€1(w), . .., &(w)] be an s-dimensional
random vector defined on (2, S, P), gi(z,2), 1 =0,1,2,..., ¢, be real-valued, contin-
uous functions defined on E, x Es, X C E,, be a nonempty set (E,, n > 1 denotes
an n-dimensional Euclidean space).

The general optimization problem with random elements can be introduced as
the problem to find

max{go(z,&(w)) |z € X : gi(z,&(w)) <0, i=1,2,...,£}. (1)
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If the solution z has to be found without knowing realization of the random vector
&(w), then it is necessary, first, to determine the decision rule. This means to assign
to the original stochastic optimization problem (1) some deterministic one, called
the deterministic equivalent. Two well-known types of deterministic equivalents can
be introduced as the following problems (cf. [4]):

I. Find
max{Eg(z, {(w))|z € X}.

This type includes, among others, the problems with penalty function and two-stage
stochastic programming problems.

IL. Find
max{Eg(z,{(w)) |z € X()},
such that X(a)={z € X : P{w:gi(z,w)) <0, i=1,2,...,} > a}.

This deterministic equivalent is called the chance constrained stochastic program-
ming problem in the literature.

In what follows, & € (0,1) is a parameter, §(z, z), 9(z, z) are some real-valued
functions defined on F, x E,, E denotes the operator of mathematical expectation.

Remark. In detail, the introduced definitions of deterministic equivalents are
given in [4] for linear case only.

We shall restrict our investigation to the special form of the function gi(z, z),
i = 1,2,...,¢ in the case of the deterministic equivalent I1I. In detail, we shall
assume in this case that

L=s, gi(z,z)= filz)~—z, i=12,...,6 z=(z,. .., 2), (2)

where f;(z), i=1,2,...,¢, are real-valued, continuous functions defined on E,.

If (generally) A C F; is a nonempty parametric set,
Fo(z) is an s-dimensional distribution function,
Pa, a € A, denotes a parametric family of distribution functions such that

Fo € Pa, a €A <= Fyu(z) = Fo{z — a), (3)
then we can denote the set X () by Xa(«), that is
X(o)=Xo(a)={r € X : Po{w: filz) <&(w), i=1,2,... 8} >0}, (4)

where P, is the probability measure corresponding to the distribution function Fj.

Remark. 1t is evident that there exists an inaccuracy in relation (4).
form should be

X(@) = Xa(a) = { € X : Pufw: fi(a) S &), i=1,2,...,0)
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where £4(w) = (£f(w), ..., £¢(w)) is some random vector with the distribution func-
tion Fu(z). .
If in addition &(N) = a(N,w), N = 1,2,..., denote some statistical estimates of

the parameter a € A, then it is easy to see that n?j\}'( Eacvy 72, €(w)) estimates the
Ea
value max E, 7(z,&(w)) in the case of the deterministic equivalent I. In the case of
r
the deterministic equivalent II the theoretical value ){n?\() Eqg(z,E(w)) can be esti-
o

mated by the value _ a)(( )Eﬁ(N)g(m,é(w)) (Eq denotes mathematical expectation
a(nyle
considered with respecé t)o the distribution function P,).

The aim of this paper is to study the just introduced estimates, first. (Of course,
it will be done under the assumptions that the theoretical distribution function of the
random vector &(w) belongs to the parametric family of the distributions given by
(3).) Further, we shall apply these results to time dependent sequences of stochastic
optimization problems.

Remarks.

1. The choice of the functions g(-,) and g(-,-) depends on the character of the
original stochastic problem.

2. It can generally happen that some symbols mentioned above are not reasonable.
However, this situation cannot appear under the assumptions considered in this

paper.

2. SOME AUXILIARY ASSERTIONS AND DEFINITIONS

Lemma 1. Let X C E,, A C E; be nonempty sets. If

1. (=, ) is a continuous function on X x Ej,

2. for every z € X, §(z,2) is a Lipschitz function of 2 € E; with Lipschitz constant
L independent of z € E,,

3. for every & € X there exists a finite Eo g(z, {(w)),

then _
[Ea(1) 7(2, €(w)) = Ea2) (2, £@))| < T [|a(1) — a(2)]|
for every z € X, a(1), a(2) € A (]| - |} denotes the Euclidean norm in E).

Proof. First, it follows from the assumptions 2, 3 of Lemma 1 that for every
z € X,a € A there exists a finite E, g(z,&(w)). Furthermore, we get immediately
from the definition of mathematical expectation that in virtue of (3)

|Eacty 3(z, £(w)) ~ Ea2) 92, EW))| =
- ‘ [ st b+ = a0~ [ o2, 4P (2

5

and hence we obtain the assertion of Lemma 1 on the bases of the assumption 2. O
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Lemma 2. If « € (0,1), X = E},a,@ € A are arbitrary such that ¢ < @ compo-
nentwise, then
Xa() C Xala). (5)

(Ef ={ze€eE.:z=(x1,...,20),2i >0, 1= 1,2,...,n}.)

Proof. Let ¢ = (ay,...,4,), @ = (@1,...,a), o be arbitrary fulfilling the
assumptions of Lemma 2.
If Xo(a) = 0 relation (5) is trivially fulfilled, so in the rest of the proof we assume
that X,(o) # 0. To verify the assumption (5) (in this case) it is sufficient to prove
the validity of the implication

€ Xolo) = z € Xz(a). (6)
However, since for every x € X4(«) it holds

a < Pi{w: file) <&ilw), i=1,2,...,8} =
Priw: fi(z)+ @G —q; <&(w), i=1,2,...,6) (M

1

and since @ — a > 0 componentwise, we obtain the validity of the implication (6)
immediately. u]

Lemma 3. Let e €(0,1),a,a€ A, a=(a),...,q),a=(@,...,a), X = E}.
If

1. there exists a € Ef, a>0suchthat g, +a=7a,i=1,2,...,¢

2. there exists real-valued constant 71 > 0, such that fi(z') — fi(z) > Y7, (2} -
zj), 1= 1,2,...,¢ for every ¢ = (x1...,2,), 2’ = (2},2%,...,2,) € E,, ¢ < 2’
componentwise,

3. the probability measure corresponding to the distribution function Fo(-) is abso-
lutely continuous with respect to the Lebesgue measure in Ey,

4. Xq(a) # 90,

then Xz(a) # 0, and

AlXa(@), Xa(@)] € v/

!
(A[, ] denotes the Hausdorff distance of sets, see e.g. [10].)
Proof. It follows from the definition of the Hausdorff distance and from the

assertion of Lemina 2 that to prove the assertion of Lemma 3 it is enough to prove
the following inequality

. a —
sup inf  p(z,z') < —/7, 8
zeXr{(a) T €Xa () =) 1 ®

where p(-,-) denotes the Euclidean metric in E,.
So let ¢ € Xg{«) be arbitrary. It is easy to see that to prove relation (8) it is
sufficient to find &’ = 2'(x), 2’ € X,(«) such that

plz,2) < =/,
T
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If z € Xg(a), ¢ = (21,...,25), then we can set ¢’ = z, evidently. It remains to
consider the case z ¢ Xq(a). If we define in this case the point z* = (z},3,...,2})
by af =zi— & i= 1,2,...,n, we get |z —z*|| < \/;[;Ya—l Two different cases can
happen

a) there exists an r € {1,2,...,n} such that ¥ > 0,
b) 2} <0 for every j € {1,2,...,n}.

Let us, first, consider the case a). In this case we can define the point z’ =
/

(], 2%, ..., @) by
z, =y, ¢ =z; for j#r.
It follows from the assumptions that f;(2’) < fi(z), i =1,2,...,£, and moreover
filz) = fi(z") >, i=1,2,...,L

However, it means

fi("y < fi(z)—a, i=1,2,...,¢L
Furthermore, since z € Xz(«) we obtain
a < Prlw:fi(x) S&w), i=1,2,...,8 <
Prlw: fi(z') +a <&(w), i=1,2,... 8} =
Polw: fi(a') < &iw), i=1,2,...,4}

IA

Il

and so also
z' € Xq(a).
Since p(z,2’) = 3+ we have finished the proof of the assertion in the case a).
Now we shall consider the case b). However, since then ||z < /%, the assertion
of Lemma 3 follows from the assumptions 3, 4 and the properties of the probability
measure. u}

Lemma 4. Let a € (0,1), a(1), a(2) € A be arbitrary, Xo)(e) # 0, Xq(zy(a) # 0,
X = E}. Let, further, the assumptions 2, 3 of Lemma 3 be fulfilled. If there exist
vectors @, ¢ € A, @ = (Qy,...,d4), a = (a,...,a¢) such that @; — ¢; = @ — a4,
i=1,2,...,6X.(0) #0, Xg(a) # 0 and simultaneously g < a(l) <d,a <a(2) <@
componentwise, then

AlXay(a), Xeay(a)] < \/ﬁi where ¢ =@ — q;.
n

Proof. First, it follows from Lemma 2 that Xg(a) C Xa)(a) C Xgz(«) and
simultanously Xg(e) C Xa(2)(er) C Xz{er).
Moreover, it follows from the above facts and from the definition of the Hausdorff
distance that
A[Xa(l)(“)v Xa)(@)] £ A[Xg(a)x Xz(a)],
and hence the assertion of Lemma 4 follows immediately from the assertion of Lem-
ma 3. a]



Stability in Stochastic Programming — the Case of Unknown Location Parameter 85

Lemma 5. Let X = E} and A C E; be a nonemipty set. Let further o € (0, 1),
a € A be arbitrary such that X,(«) # 0. If the assumptions 2, 3 of Lemma 3 are
fulfilled, then X,(a) is a compact set.

Proof. Let a, « fulfil the assumptions of Lemma 5. Since it follows from Lemma
4 of [9] that X, () is a bounded set, the assertion of Lemma 5 will be proved if we
verify the validity of the implication

zy € Xa(a), N=1,2,..., Vlim sy =z => z € Xq(a). 9)

It follows immediately from the assumptions that for every € > 0 there exists Ny =
No(€) such that

a< Pw: filen) <&i(w), i=1,2,...,4 <
< Pdw: fiz) <&i(w), i=1,2,..., 0+

+ é:l}’a{w cEi(a)e[file)—e, fi(z)+e], &(w)> fi(x)—e, j#1,7=1,2,...,¢}

for N > No(e).

However, since according to the assumptions it follows from the former inequality
that @ < P{w : fi(z) <&, i =1,2,...,£} too, we see that the assertion of Lemma 5
holds. =}

At the end of this part we shall present one result of convex analysis. However,
first, we shall recall the definition of strongly concave functions [13], [15].

Definition 1. Let i(z) be a real-valued function defined on a convex set
K C E,. h{z) is a strongly concave function with a parameter p > 0 if
R(Azy 4+ (L= N z2) > Me(zy) 4+ (1= Mh(z2) + A1 = Mpllzr — 22|
for every zy,z2 € K, A € (0, 1).
Lemma 6. Let X C E, be a non-empty, compact, convex set. Let further h(z) be

strongly concave with a parameter p > 0, continuous, real-valued function defined
on K. If zg € K is defined by the relation

@ = argmax h(zx) (10)

then 9
|z — 2o ll” < ;[/l(%) = h(z)],
for every ¢ € K.

Proof. Since it follows from the definition of strongly concave functions with a
parameter p > 0 that

h(Azy + (L= A)z2) > Mfzr) + (1 = Dh(z2) + ML = X)pllzr — 2o
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for every z1, z2 €K, A € (0,1), we get
A1 = Mpliz — 2ol < Mh(xo) — h(e)) + ROz + (1 — A) zo) — h(x0)
for zo given by (10) and x € K arbitrary. Since further
hAz + (1 — A)zg) — h(zo) <0 for every A € (0, 1)
we can see that the assertion of Lemma 6 holds. [m]

Remarks.

1. An assumptions under which a quadratic form is a strongly concave (respectively
strongly convex) function are introduced for example in [13].

2. The assertion of Lemma 6 has been already presented for example in [15].
3. STABILITY RESULTS

Let a(1), a(2) € A, o € (0,1) be arbitrary. In this section we shall present an upper
bound on the expression

max Eu1)F(z, (w)) - max Eo(2) 9(z, €(w))

in the case of the deterministic equivalent I and further an upper bound on the
expression

max E x, — max E, z,&(w
K a(1) 9(2, €(w)) e 2y 9(z,&(w))

in the case of the deterministic equivalent 1I. We shall see that similar upper bounds
also exist for the optimal solution in some special cases.

First, we shall deal with the deterministic equivalent 1. To this end, let us assume
1) g(z, ) 1s a continuous function on X x Ej,

ii) for every @ € X, g(z,2) is a Lipschitz function of z € E, with Lipschitz constant
L independent of z € E‘:’,

iil) a) X is a convex set,
b) for every z € E,, §(x,z) is a strongly concave function of x € E, with a
parameter p > 0.
We shall define the point Z, (if it exists) for a € A by
To = argmax Eq g(z, {(w)).
(It is easy be see that the point Z, for @ € A is uniquely defined, under the assump-
tion 1ii.)

We shall present the following theorem.
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Theorem 1. Let X C E, be a nonempty, compact set, A C £, be a nonempty
set and let the assumptions i), ii) be fulfilled. If there exists a finite E, (z, &(w)) for
a=a(l), a=a(2), a(l), a(2) € A, x € X, then

e Ea) 700, €(0)) — maEugn 7Ce, E@)| < Tla() - a2l (1)
If, moreover, the assumption iii) is fulfilled, then
— — 2 44 .
IFary — Tagll® < ;/«‘H“(l) = a(2)]]. (12)

Proof. First, it follows from Lemma 1 that |Eq1)g(x, £(w)) — Eqqa) 9z, E(w))]
is uniformly bounded by the constant L ||a(1) — a(2)||. Consequently, the assertion
given by relation (11) is valid.

So it remains to prove the assertion given by (12). Since it follows from Lemma 1
and from (just proven) relation (11) that

[Eay 7(2,€(w)) = Eagay T, £ < Tlla(1) — a(2)]]
for every r € X, and simultaneously
[Ba(1y F(Fac1), €(w)) = Eaq2) T(Zaz), @) < Tla(1) — a(2)]},
we obtain, employing the triangular inequality successively,
[Eay (Fa(1, E(w)
< |Ea() T(Za(1), E(w)
(v

+  |Ea) T(Fa(2)s
< Tija(l) = a2l +

) a(l ll(fa(') 13 U) |<
) - a(v)J PORICHIES
w)) = 1>q fw) &(w))l
+ Lla( 2.

However, since further it follows {fromn Lemma 6 that
- _ y 2 e .
Za(1) = Tarpll” < ;[Ea(l)ﬂ(ﬁ"'u(‘l):ﬁ(w)) = Ea(1) T(Fa(2), £(w))]
we can see that the relation (12) is valid, too. O

Theorem 1 presents stability results in the case of the deterministic equivalent I.
Further, we shall try to present similar results for the deterministic equivalent 11.

To get some results in the case of the deterministic equivalent II, we shall assume
that
V) g(z, z) is

a) a continuous function on X x E,

b) for every z € FE¢ a Lipschitz function on E} with Lipschitz constant L’ inde-
pendent of z € Ey,

¢) for every € X a Lipschitz function of z € E, with Lipschitz constant L
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independent of z € Ey,

ii’) gi(w,2), i = 1,2,...,4, fulfil relations (2) with continuous functions fi(z), i =
1,2,...,£, for which there exists a real-valued constant y; > 0 such that

@) = fi(z) > m fjl(x; “a),i=1,2,...n
&

for every ¢ = (z1,...,2n), &’ = (25,...,25,) € E,, z < 2’ componentwise,

iii’) the probability measure corresponding to the distribution function Fo(-) is ab-
solutely continuous with respect to the Lebesque measure in E,

iv) fora € A, @ € (0,1), Xo(a) is a convex set,

v’) there exists a convex set X* such that X,(a) C X* for « € (0,1), @ € 4 and
further for every z € Fe¢ g(z,z) is a strongly concave function of z € X with a
parameter p > 0,

vi’) there exists a convex set X* such that Xs(a) C X* fora € (0,1), a € A and, fur-
ther, for every z € Ey, g{z, z) is a strictly concave function, i.e. g(Az1+(1—XA)z2) >
Ag(z1) + (1 — A)g(xs) for every z), za € X, A € (0,1).

If the points z,, for a € A, fulfil the relation
2, € arg max Eog(z,£(w)), - (13)
then the following theorem takes place.

Theorem 2. Let X = E}, A C E¢ be nonempty sets, o € (0, 1). If the assump-

tions i’), ii’), ii’) are fulfilled and if for € X, @ = a(1), a = a(2), a(1), a(2) € A a
finite E, g(z,&(w)) exists and simultaneously Xo(«) # 0,
then

NG .
Xﬁ?i‘Q)Ea(l)g(%f(w))—X:r(ljz«'q)Ea(z)g(x,E(w)) < [L+T] la(l)~a(2)]]. (14)

Furthermore, there exist points &' € Xo(1)(@), " € Xa(z)(@) such that
o < v e,
) < v el

Ta(y) — &
lza) a5)
HL;(z) -z

and simultaneously

Ea(t) 9241y, €@)) = Eata) (2", £@))| < [E+ B (1) = el

Eatty (2", 6(0)) — Ea2) 9(2a(a €@))| £ [L+ 5] (1) = o)l
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If, moreover, the assumptions iv’), v’) are fulfilled and a(1) < a(2) component-

wise, then also

4 L'\/n
ey = 2acoll < & [+ 222] fa(t) - a2

Proof. First, we shall prove relation (14). To this end we employ the triangular
inequality

max oy o(r £@w)) — max EL,(-Z)m,s(w))[s
a(y(@) Xozyla)

X

+ (16)

max E, z,8(w)) — max Egmyg(z, E(w
K 1 9z, &) X @ 9(z, &)

4

E , &(w)) — max E
Kmax a2) 9(z,€(w)) XX a(2) 9(2,€(w))

Since it follows from Lemma 5 and Theorem 1 that

< Llla(1) - a(2)]],

max E z,(w)) — max Egoyg(z,&(w
R at) 9(2, £(w)) oo 2 9(z,&(w))

to prove (14) it is sufficient to prove that

< Llﬁ ”(I(l) — G(Q)Jl (17)

!

max Eq2)g(z,&(w)) — quaxa) Ea2) 9(x,&(w))

Xa(y(a) ((

If we define vectors ¢, @ € E¢, @ = (@1,...,T), ¢ = (ay,...,a,) by

a; = ai(1) ~[la(1) - @)l
@ = ai(1)+|le(l) —a2)|], i=1,2,...,¢
a(l) = (ar(l),. .., ae(1)),
a(2) = (a1(2),. .., a(2)),

we get a < a(1) €@, a < a(2) <@ componentwise.
Two cases can happen

a)a, @€ A, Xq(a) £ 0,
b) either a,a@ ¢ A for at least one element from the pair (g, @) or X,(a) = 0.

First we shall consider the case a).

Since it follows from the assumptions that Eq(2) g(z,£(w)) is a Lipschitz function
with Lipschitz constant L', we shall obtain relation (17) on applying Lemma 4. So
we have finished the proof of the assertion given by (14) in the case a). It remains
to consider the case b). However, it is easy to see that on the transformation bases
we obtain the assertion in this case, too.

Now, we shall give the proof of relation (15). But this follows immediately from
Lemma 1, Lemma 3, Lemma 4, Lemma 5 and the assumptions.
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We have finished the proof of the first part of the assertion of Theorem 2. Tt
remains to verify the validity of the second part. Since it follows from Lemma 2,
Lemma 5 and Lemma 6 that

2
zage) = 2ol < 7 [Face) 2acay €) — Eae oy €D,

we see that the assertion will be proved if we verify the validity of the inequality
L
Euct 9z €)= Eucy azacn €60 < 2 [+ E22] o) - a2l

To this end we shall employ the triangular inequality

Ea) (a2, €)= Eu) (20011, E@))| €

< Jnax Eaezy gz, E(w)) — max Eqayg(x, E(w))| +
a(2)(@) XNeyl@)
+ | max Euqyg(2,£(w)) — Eag) 9(2yqr), §@))|-
Xay(a) .

However, since it follows from the assertion of relation (14) that

[ N L\/i] fla(1) — a(2)]

max Egg)g(2,§(w)) — max E,‘(l)g('r Ew))| <
Kagz) (@) Xaqy(e)

and since it follows from Lemma | and Lemma 5 that

'““2‘ Ea(li‘l("- E(w)) — Ea('z)!](&(l)vf(u))

< Lia(1) — a(2)
«(1) a)

we can see that we have verified also the last assertion of Theorem 2. m]

Remark. Evidently, if we omit the assumption (1(1) < a(2), then it is possible to

prove some similar assertion to the one presented in the second part of Theorem 2,
too.

The results obtained in this section will be the foundation for convergence results
of statistical estimates.

4. CONVERGENCE RESULTS

If we denote by &(N) = a(N,w), N =1,2,..., a sequence of statistical estimates of
the parameter a, then we can already present the following theorem.
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Theorem 3. Let X C E, be a nonemply, compact set, A C E, be a nouempty
set, and let, a finite E, g(z, £(w)) exist fora € A, z € X. Let, further, assumptions i),
ii) be fulfilled. If &(N) = a(N,w), N = 1,2,..., is a sequence of statistical estimates
of the parameter a € intA, then

pj’\lgnm a(Nyw)y=a => p N]El()ﬂ max Earvw) G(z,E(w)) =
= max Eq (=, {(«))
and

lim a(N,w) =a as. =

N—oo

lim max Ea(nve) 7(2, §(w)) = max Eq 7(z, §(w)) as.
N—ooo X X
If moreover, the assumption iii) holds, then also
pJim a(Nw)=a = p lim flzge = Fall” =0,

N!im a(N,w) = a as. = Ta(Nw) ~ Zl* = 0 as.

lim ||

N—oo
Proof. The assertion of Theorem 3 follows immediately from Theorem 1 and

elementary properties of the probability measure. ]

Theorem 3 deals with the deterministic equivalent 1. There are presented the
assumptions under which the convergence of parameter estimates to the theoretical
parameter value in some sense vouches the convergence of the optimal value estimates
and the optimal solution estimates in the same sense. Further, we shall try to
introduce similar results for the deterministic equivalent I1.

Theorem 4. Let X = £}, A C E; be a nonempty set and o € (0, 1). Let, further,
the assumptions i), ii’), iii’) be fulfilled and a finite E, g(z,&(w)) exists for @ € A,
z € X. fa(N) = a(N,w), N = 1,2,..., is a sequence of statistical estimates of
the parameter ¢ € int A such that there exists neighbourhood U(a) C A for which
Xar(a) # 0, @’ € Ua), then

p N1i1n a(N,w)=a = p lim max Ezwuw)g(z, Ew)) =
Nooo

N—00 Xin,wy(e)

= max E, gz, {(w
max Eag(2,6()

and
Jim a(V,w)=a as = lim xS Eave) 9(z,E(w))  (18)

= max Eqg{z,£(w)) as.

Moreover, if the assumptions iv’), vi’) are fulfilled, then also

Jim a(V,w) = a as. = Jim (i — 2l = 0 as. (19)
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Proof. The assertion given by relation (18) follows immediately from Theorem 2
and eclementary properties of the probability measure. So, it remains to prove the
assertion given by relation (19).

First, it follows from the assumptions iv’), vi’) that the 23 v oy, 200 N = 1,2,

w €, a € A are uniquely defined for enough large N. So, if we denote
QA ={weQ: \]im a{N,w) = a and simultancously
N—oo
lim  max By oz, éw)) = }1}1:(1):)5, gz, &(w)) },
afa)

N—00 Xg(n,uy(a)

then, according to Lemima | of [16] and relation (18), it is easy to see that relation
(19) will be proved if we verify the implication

w€Q = lim sy, — 2ol =0
N—oo ’

We shall prove this implication by contradiction. We shall assumie that there exists
w' € ' such that

,,le”.l\) “-’l;a(zv,u') =zl #0.

It follows from Lemma 4 and Lemmia 5 that there exists a compact set X C X and
a natural number Ng = Ny(w’) such that

Nagnwn(@) C X, Xo(a) CX for N > No.

Since X is a compact set we can sce that there exists a subsequence {a(Ng, )} 0%,
of the sequence {a(N,w')}4Y, and a point 2’ € X, 2’ # x4 such that

N“_I“L H!‘sz(}\'k,m’) -2l =0.
According to Lemima 4 and Lemma 5 it must hold that,
2 € No(a)
and further, since E, g(x, (w)) is a strictly concave function, it also holds that

E. A’/(a‘lvf(w)) 7& E, g(ﬂiavf(w))‘ . (20)

Employing the triangular inequality and Lemma 1, we obtain simultaneously

Bagvi,wn 9(Zacn, wryr €(w)) — Eaﬂ(ﬂf'»&(w))i <

Ea(mviwr) 9(Za(n, wyr €(W)) — Ea y(ﬁa(Nk,wf)vf(w))|
(21)
+

Eag2any wr €)= Ea (', £@))] <

LYa(Ne, ) = all + [Ea g(2an, @) = Ea (e’ £(w))]
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Since, further, we can easily see that E, g(z,£(w)) is a continuous function we get
]}im Ea 9(Za(n, ) @) = Eag(2',€(w))
— 00
and employing (21) also that
A Eagn, oy 9(@a(w, wiy §(@)) = Eag(a',€(w))| = 0.
However, according to (20) this contradicts with o’ € /. o

Further, we shall study the convergence rate. It is easy to see that the conver-
gence rate of the &(N,w) fully determines the convergence rate of the optimal value
estimates. Moreover, a similar assertion also holds for optimal solution estimate in
the case of the deterministic equivalent I.

Theorem 5. Let X C E, be a nonempty, compact set, A C E, be a nonempty
set, and a finite Eq g(z, {(w)) exists for a € A, € X. If assumptions i), ii) are
futfiled and if a(N) = a(N,w), N = 1,2,..., is a sequence of statistical estimates
of the parameter a € int A such that there exists a real-valued sequence vy, N =
1,2,...,un — +o0 as (N — o0) and one dimensional distribution function G(-)
fulfilling the relation

Iinl\’[l inf P{w : vn[ja(N,w) — al| < ¢} > G(e)

for every ¢ € Eq,
then

el
i P {o

max Eagx) 702, () ~ mas o ?(r,ﬁ(w))‘ <o}
> G (%) for every c € E.

Moreover, if the assumption iii) is fulfilled, then also

. o 2 (P C . [
hl]{}ir;g P{u tunllzave) ~ all® < c} >G (ﬁ) forevery ¢ € Ey.

Proof. The assertion of Theorem 5 follows immediately from Theorem 1, the
assumptions of Theorem 5 and the elementary properties of the probability measure.
a

Theorem 6. Let X = E}, A C E, be nonempty set, « € (0,1) and a finite
Eq g(z,€(w)) exists for a € A, z € X. If the assumptions 1’), ii’), i1i’) are fulfilled
and if

1. a(N) = a(N,w), N = 1,...1s a sequence of statistical estimates of the parameter
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value @ € int A for which

a) there exists a neighbourhood U(a) such that Xa:() # @ for all o’ € U(a),

b) there exists a real-valued sequence vy, N = 1,2..., such that Nlim VN = 400,
—00

and one-dimensional distribution function G(-) fulfilling the relation
lim inf P{w:wylla(N,w)—all <c} > G(c)
N—+o0

for every ¢ € Ey,
then

lim inf P {w Fon | gnax Eavw) (2, €(w)) — pax Eqg(z,é(w))

< c} >
7
> G (c/ (L + M)) for every ¢ € Fy.
"N

Proof. The assertion of Theorem 6 follows immediately from Theorem 2, the
assumptions and elementary properties of the probability measure. a]

Remarks.
1. Tt follows from Theorem 1 and Theorem 2 that the optimal value is a Lipschitz
function of the parameter a, in both cases under considered assumptions. Conse-
quently, we can obtain the first part of the assertion of Theorem 5 and the assertion
of Theorem 6 immediately from Theorem 15 in [11], too.

2. If a) fi(z), i =1...,¢, are convex functions on Ej,,

b) the probability measure, corresponding to the distribution function Fy(-) is log-
aritmic concave,

then it follows from [12] that Xo(c) is a convex set. Consequently, the approxima-

tive sets are convex, too. (The definition of logaritmic concave probability measure

is given for example in [12].)

3. It happens rather often that the estimate of the unknown parameter a can be
introduced as a sample average. Then it is easy to see that to obtain a converge
rate we can utilize the method of large deviations in the case of independent random
sample [10]. The case of dependent sample is discussed in [10], too.

4. Theorem 5 and Theorem 6 present some convergence results. It is easy to see
that some similar results can be also introduced for finite natural numbers N.

5. APPLICATIONS TO SEQUENCES OF STOCHASTIC OPTIMIZATION
PROBLEMS

It is well-known that many practical problems repeat in time. It is also well-known
that if we solve such optimization problems with respect to time dependence, we
often obtain rather better results than by solving the corresponding separated prob-
lems. In particular, this appears in the case of stochastic optimization problems.
Naimely, there often exists a stochastic dependence of random elements.



1o}
>

Stability in Stochastic Programming - the Case of Unknown Location Parameter

Let ¢(w) = & = (GW),...,8w)), 7 = 1,2,..., be s-dimensional random
vectors defined on (£, S, P),
gl(z, z) be a real-valued, contmuous function defined on E, x E,
¢ (e, 231 20), j = 2,..., be real-valued, continuous functions defined on F, x
Es x Ey,
XI(zI-Yy= XJ, j=2,..., be mappings of E, into the space of non-empty, compact,
subsets of [7,,, and X! C B, be a non-empty, compact set.

We shall introduce the stochastic optimization problem (w.r.t. the discrete time
interval 1+ N) as a problem of finding (2!, 22, ..., 2N), 2t e XY, wd = 29 (¢ (w)) €
Xi(g-Yw)), j=2,...,N, for which

N
EQsGhe @)+ 2@ 7w w@) (22)
=
is maximal.
The aim of this section is to utilize the former results to obtain some estimates
of the optimal value and the optimal solution of (22) under very special conditions.

In detail, we shall consider the case when there exist s-dimensional random vectors
W(w)=1',7=12,..., defined on (2, S, P) such that

J
Gwy=> nw), i=12,.. . (23)

In what follows
;

F(-) denotes the distribution function of the random vector 7/ w), 7=1,2,.
2

F;

W () denoteQ the distribution function of the random vector & (w), j = 1,2,.

Fbs, EJ 2 () and Ei llka denote the conditional distribution function and the con-
ditional mathematical expectation of the random vectors &/ (w) by 5’*1( ), =
1,2, ..., respectively,
al € A, I € A are parameters, j =1,2,..,

1 N
Ff,".'ﬂ')f,\, (-) denotes the common distribution function of ¢'(w), £2(w), ..., &N (w),

1 N
EE E denotes the operator of mathematical expectation corresponding to the dis-
trlbuhon function F,fl
Moreover, we shall assumr‘ that there exist s-dimensional distribution functions
Fé’ (), FOE (-),7=1,2,..., such that

FL() =R (e =dd), j=12,. .,
. ; ) i (24)
Fi() = F (= 6), ¥ = 2 d.

It is easy to see that under our assumptions it holds

FEWT(29) = P (27 - 671 (). (25)
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Remark. If for example, 77 (w), j = 1,2..., are independent normal distributed
random vectors with the average @/, j = 1,2,..., then relations (24), (25) are
fulfilled.

First, the following lemma is proved in [8].

Lemma 7. Let there exist a finite

N
E gl(zl,fl(w))i—Zgj(rj,ﬁj'l(w),fj(w)) for every z',2%,...,2" € E,.
i=2
Ifforeveryi=2,...,N, b',... . 0N € A
L Z(E-(w), o) =7

is a solution of the problem to find

nax  ESIET N6 (o, 671 W), Ew)),
zieX (6 (w)) '

Egi—1 . . . .
2. Egilg,_, g'(z}, &~} (w),&'w)) is a measurable function w.r.t. the o-algebra given

by €Y(w),...,& () and if ! is a solution of the problem to find

171 1
Jnax Bg' (21,6 (@),

then (Z',Z2(Y(w)), ..., TV (EN~1(w)) is a solution of the problem given by (22).
(We have omitted somewhere the index &b,5 = 1,2,..., at the symbol of

mathematical expectation. The same shorthand notation will be used also in the

sequel.)
Now we are in a position to present the following result on the stability.

Theorem 7. Let A C E, be a nonempty set. If

1. for every z! € E,, g'(z!,2') is a Lipschitz function of 2! € E, with Lipschitz
constant L; independent of z! € E,,,

2. for every @/ € E,, 2~V € E, ¢?(27,277", %), j = 1,2..., are Lipschitz func-
tions of 27 with Lipschitz constant L, independent of #/ € E,, 2/~! € E,,

3. for every 27 € E,, g% (z/,2777,27), j = 1,2..., are Lipschitz functions of 27, 2/~!
with Lipschitz constant L{ independent of 27 € Ej,

4. there exist finite Eit gl(z!, e w)), Eijjfj:: ¢z, €7 (w), &(w)), for every

. . Joo. . .
€AY =Y, ¥VeAER, j=12,...,

i=1

5. there exists a real-valued constant C such that

AR (1), X (@) < Cll 1) - ()|
for every zi-1(1),z/-1(2) € E,, j=2,...,
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6. max Ei‘[b, L 6N (W), Ew)), i=2,...,N, b, b € A are measur-

TeX1(6-1)
able functions,
then
€. Tl gl o Fiai ginl j
max B vy (07 EN @) + D07 (@, €7 W), € @))]] —
=2

N
1 N . . .
max Bt vy 9@ E @)+ ¢ (0,87 w), € ()

j=2

N i-1

<y [Llllﬂj(l) —d @)+ Li(C+ D[l (1) —ﬂi(2)n} ,

j=1 i=1

for K= {a',2% . 2V 2l e X!, 2% € X2(¢!(w)),..., 2N € XNV (V-1 (w))},

ai(r) € A, i(li(r):bi(T)EA, t=1,2,...,N, j=1,2,...,N, r=1, Z(i =0).
i=1 i=1

Proof. First, according to Lemma 7, it is easy to see that

max Ei:’)f: (1: f +Zg EJ N l(w) EJ( )} =

= max Eg'(e) €' ) + (26)

N
SN s]-l (J‘Ej_‘ ;i ] C]‘*l J
+ 2 Biiet L ex2X, ) B im0 €7H@), € ()

. A I
forevery o € A,V = " a’ € A.

i=1
Further, since it follows from Lemma 1 that

Eaxm(/( Lew) - a,(g)gl(m‘,fl(w)) < Lfla’ (1) - ' ()]

and simultaneously
djgi=1 C ; d|gi=1 foi .
[ rmr 1) #2671 (0), ) — ES ) 0f (6F,6 7)), 60 (0)| <

< Lillé? (1) = o/ ()]

for every ) o
e X el e X(ET W), =% ... N, weq,

it is easy to see that also

max E 1(1)9 ( 1751(""))“ ma}:,(,E 1(2)9 (1 3 (@)] < LlHal(l)"al(z)H (27)

zle Xt
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and
&1gi J(pd gi-1 I (w))—
orex T ) om0 (@ €7@, €()
- max ESET0(@Ew), 8 w) (28)
TIEXI(E-1 (w)) (1), (1)~
Lifla? (1) — o’ (2)]}

IA

for every a'(1), a'(2), (1), ¥ (2) € 4,j=1,2,...,N.

However, employing the triangular inequality, we obtain for j = 2,..., N,

F—1 Jga—1 . : P .
B sa) 02X, Bty 9 (870, €@))
.fi—l ) EJifj—l TR i1, io o
Euim(1) e x8%, y Boy (@ 871(@),€()] <
< B ESG (0,87 w) )~ (29
S 5@ prext iy TP T (@), & (w )
31 Jlpi=1 N - . .
i e R CR e ORI B
F=1 TP RS S . i L
+ Ei,ﬂ(g)Zlexljl(lg{l(w))Ef,j'ﬁ) ¢ (a7, & Hw), & (w))-

F=1 jfivx N . . N
Bl ), By 070787 @),6@))].

Since it follows from Lemma 2 of [7] that

10 G -y ¢ . ,
max E ¢ (2, 87 w), & (w)), =2,...,N,
e, BT I 6,
is (for every o/ € A) a Lipschitz function of 211 e [, with Lipschitz constant
LY (C+1) we get, utilizing relations (24), (26), (27), (28) and Lemma 1, the validity
of the assertion of Theorem 7. ]

Further, we shall pay attention to estimates problems. To this end we shall
restrict our consideration to the case @/ = a,a € 4, j =1,2,.... A specific situation
arises in this case. Namely, if relation (23) is satisfied, then the random sequence
{€ (w)}$2, is fully determined by the random sequence {17 (w)}$2,. However, then
it is obvious that an estimate of the parameter a can be obtained from one realization
of the random sequence {&/(w) $21, under some additional assumptions, of course.
More precisely, we can obtain an estimate on the realizations bases of the first N
members of the random sequence {¢V (w)}$_,.

Theorem 8. Let A C E; be a nonempty set. If the assumptions 1,2,4,6 of
Theorem 7 are fulfilled and if a(N,w) = &(N), N = 1,2..., are statistical estimates
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of the parameter a € int A obtained from the first N —1 members of the random
sequence {&’ (w)};-";l, then

a(N,w) —a as. =

NjgN-1 .
Nh—lgo rwexm?ﬁ_n (w)) EE(A'EMJ M@, N W) = (30)

eN[eN"Y N¢ N gN-=1 N
ovex T B 97T W), W) as.

If, moreover, for every 2/, 27 € B, j=1,2,...,
a) XI(771), j=1,..., are convex sets,
b) for every 21, 27 € E,, ¢/ (27,277, 27) are strongly concave functions of z/ € E,
with a parameter p > 0,
<)

N)eN-1 . ; ;
o = 318y G Elcey 976N @M@, N =12

N _ eN[ENTY N N ¢N—=1( 1\ ¢N
r, = ar max E z", s w)),
o B ex B o 97 (@7, 67T (W), €7 (W)
are measurable functions,

then also

C N ) . N N2 _q .
I\}I_I'I';o a(N,w) = a as. = N]LI'I;O":!IE(NM) zg =0 a.s. (31)

(E§N|EN*l = EfN\EN‘1 BN = pN-t +a)

BN pN—-11

The validity of the assertion of Theorem 8 follows immediately from the assertion
of Theorem 1.

The next corollary follows immediately from Theorem 8.

Corollary 1. Let A C E; be a nonempty set. If the assumptions 1,2,4,6 of
Theorem 7 are fulfilled and if a(N,w) = a(N),N = 1,2..., are statistical estimates

(defined in Theorem 8) of the parameter a € int A, then
lim a(N,w)=a as. =—>
N=o0
M
o4 NNt
RIS YD DY N1

g (@, eV (W), €Y (@)

— max BT NG eN10) 6N (W)

= 0 a.s.
sNeXN(gN-1)

If, moreover, for every 2i=1 27 € E,, j=1,2..., assumptions a), b), ¢) of Théorem
8 are satisfied, then also

2
N N —
Jim TaNyw) ~ %a || = 0 as.

M
o B 1
1\}1_r‘nwa\N,w)~a a.s. = lim ﬁNZﬂ‘
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Remark. Sufficient assumptions under which

max Esjlf'_lj:uj, Il w), & W), 1=2,3,...,
@y B GELET@)E W)

are measurable functions follow for example from Lemma 1 of {16].

6. CONCLUSION

In this paper we have dealt with stability of one very special problem in stochastic
programming with unknown parameters. However, it is well-known that real-life
problems satisfy not seldom only our assumptions. Moreover, the assumptions under
which even the approximative problems are concave ones follow from Remark in
Section 4 in the chance constrained case, too.

It is evident that the obtained results can be in many other ways applied to time
depedent stochastic optimization problems. The aim of this paper was only to turn
attention to this possibility.

(Received October 7, 1991.)
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