
Kybernetika

Martin Janžura
An approximation of the pressure for the two-dimensional Ising model

Kybernetika, Vol. 28 (1992), No. 3, 234--238

Persistent URL: http://dml.cz/dmlcz/124582

Terms of use:
© Institute of Information Theory and Automation AS CR, 1992

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124582
http://project.dml.cz


K Y B E R N E T I K A — V O L U M E 28 ( 1992 ) , N U M B E R 3, P A G E S 2 3 4 - 2 3 8 

AN APPROXIMATION OF THE PRESSURE 
FOR THE TWO-DIMENSIONAL ISING MODEL 

M A R T I N J A N Z U R A 

A sequence of pressure functions corresponding to some one-dimensional models is used to approxi­
mate the pressure function of the two-dimensional Ising model. The rate of convergence is derived and 
the method is demonstrated with a numerical study. 

1. I N T R O D U C T I O N 

The two-dimensional Ising model is the simpliest non-trivial Gibbs random field. Namely, 

a probabili ty measure \i on the space {0, \}z% is called to agree with the Ising model 

if its one-dimensional conditional distributions satisfy the "nearest-neighbor" property 

and can be expressed in the following way 

H (xt | xZ2W}) = u (xt | xdt) = II ( (xt | xZ2X{t}) 

for every t G Zd and a. e. x € {0,1}T[#] , where 

„ / . x _ exp {-xt (h + _, (___ + s _ _ } + J2 (xt+v + xt_v))} 
II, (xt | xZ2m) - - - ^ {_h _ - - - - - — - - _ - — - —y} 

are called the local characteristics, 

dt= {sGZ2; \\t-s\\ = 1} = {u,-u,v,-v}, u = ( l , 0 ) , v = (0, 1), 

and h, J\, J2 are arbi t rary constants. 

In general, the system {Ht(-\-)}teZ2 depending on the triplet (h,J\,J2) does not deter­

mine the probabili ty measure a uniquely. The existence, uniqueness, ,and other properties 

of the Ising model are closely related to the function called the pressure and defined by 

the limit 

lim | V | - 1 l o g ^ _ exp < - l * _ _ xt - Jx ^ _ xtxt+u-J2 ]__ xtxi+v\ = 
V/Z2 xve{o,i}v { «ev (evn(v-u) (evn(v-v) J 

= p(h,J„J2) 
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where V / " Z2 means the expansion ensuring | V | _ 1 |V ("1 (V —1)\ > 1 for every t 6 Z2. 

(By |V| we denote the cardinality.) 

But , with the exception of the famous Onsager's result (cf. [3]), concerning a special 

case of the problem, no direct way of calculating the pressure p is known. Therefore 

various approximative methods, using mostly some kind of expansion, are applied. Here, 

we propose a new approximative method based on an approximation of the pressure of 

the two-dimensional model by the pressure of some properly chosen one-dimensional 

models, for which the transfer matr ix method is available (cf. [2]). 

As will be seen later, the method works quite well in the "high t empera tu re" area (i. e. 

for "small" parameters h, J j , J 2 ) and even in the neighborhood of the critical point it 

seems to give satisfactory results. 

2. BASIC LEMMA 

For a fixed positive integer R and a real 7 let us consider the two-dimensional model 

with the s ta te space X = {0, l } f l and the "nearest-neighbor" local characteristics given 

by 

exp { - ! /? (* . ) - Zu;(xt,xt+\ 

Tft(xt\xz,m) = 

Eexp{-U°(y()-£U70žt,ží+s)} 

for every xt £ X, xgt € X , where 

U°(x) = / i - f v + J ^ x ' ^ 1 , 
;=i 1=1 

U^(x,y) = yJi-^f, U-u(x,y) = U»(y\x), 
R 

u;{x,z) = J 2 -V>'r + (i-7)JixV, u~v(x,z) = uv(z,x), 
;=i 

for every x, y, z £ X. 
2? 

Let us denote by Gi(f) the set of translation invariant probabili ty distr ibutions on X 

with the one-dimensional conditional distributions equal a. s. to the local characteristics 

Finally, we denote by 

p7(f t , J j , J 2 ) = 

= Urn | V | - l l o g X > x p | - £ f / 0 ( a ; ( ) _ £ D J ( * . , W - £ U;(xt,^+V)\ 

xv£Xv [ ^V (€Vn(V-«) teVn{V-v) J 
the pressure corresponding to above defined model. 
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Lemma. Let 7* € [0,1] be the point at which the function 

F(l) = 7Pi (h, Ji,J2) + (1 - 7)?o (h, Ji,Jt) - Py (h, Ji, Ja) 

assumes its maximum. Then there exists 

C*€G,(7*) 

such that 

ft (h, J „ J2) - p0 (fc, J, , J2) = J, [|i* (xR • x\ = 1) - f (xR • x\ = 1)] 

holds. 

P roof . The statement follows immediately from the equivalence between translation 
invariant Gibbs states and tangent functionals to the convex functional p (cf. [4], Thm. 
8.3) and the general subdifferential calculus (cf. e.g. [5], Sec. 5). 

3. MAIN RESULT 

Now, let us make clear what was the aim of introducing the models with the "aggregated" 
state space X in the preceding section. 

Directly from the definitions it is easy to see that 

p1(h,Ji,J2) = Rp(h,J1,J2) 

holds for every triplet (h, J\,J2). 
Since for 7 = 0 there is no horizontal interaction, i.e. the model consists of mutually 

independent columns, we may view the model as a one-dimensional one. And, considering 
all xt, t £ Z as the corresponding segments of a sequence x_ = {xs}s€Z € {0,1}Z (we 
put xs = xI for s = t • R + i), we conclude that 

p0(h,J1,J2) = RpR(h,J1,J2), 

where 

pR(h,J1,J2) = 
( n n-1 n-R \ 

~ i^S, '2n + l^ '°g S exp ] ~h ___ xi~Jl ___ xi xi+l~j2 __. x) Xi+R \ 

is the pressure of the one-dimensional model with the state space {0,1} and the local 
characteristics 

n o , I s _ exp{-hxt - Jixt(xt+1 +xt-i) - J2 (xt-R + yt+R)} 
lit {*t I xz\{t]) - j + e x p {_h _ j . ( x ( + i + X(_ i } _ ^ (xt_R + Xt+R)] , 

for every t € Z, _. € {0,1}, x.\{t} € {0,1}Z\W. 
Now, we may formulate the main result on the approximation. 
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T h e o r e m . For every triplet (h,Jr,J2) it holds 

\p(h,JuJ2)-pR(h,J„J2)\<(2R)-1\Jil 

and therefore 

p(h,Jx,J2)= lira pR(h,Jx, J2). 

P r o o f . The s ta tement follows from Lemma and the considerations above if we realize 

tha t the probability measures 

vu(x,y) = p*(xR = x, x\ = y), x, y e {0 ,1} , 

and 

vv(x,y)=p*(xR = x, x\ = y), x, ye {0,1} 

have the same marginals, and therefore 

k(i, i)-".(i , i) l<- . 

Remark. The values of pR may be calculated with the aid of the transfer mat r ix (for 

details see e.g. [2], Section 1.2.1). Of course, actually we are able to calculate pR for 

ra ther small R only. But the convergence is, in fact, quite fast, and even R = 6 or R = 7, 

especially in high tempera ture area ( i .e . for rather small interactions), give nice results. 

4. NUMERICAL STUDY 

Now, we try to demonst ra te the method with a particular case which has been chosen in 

order to make possible a comparison of the obtained results with the rigorous Onsager 's 

one. 

Therefore, let J\ = J2 = J > 0 and h = —2J. 

For R = 4 , 5 , 6 , 7 and some J € [0,2] the values of pR(-2J, J, J) obtained by the 

transfer matr ix method (cf. [2], Section 1.2.1) are given in the table. 

7 = 0 7 = 0.5 J = 1.0 J = 1.5 7 = 2- log(l + ч/2) 7 = 2 

R = 4 0.6931 0.9589 1.2579 1.5916 1.7800 1.9568 
Я = 5 0.6931 0.9590 1.2595 1.6085 1.8213 2.0320 
ñ = 6 0.6931 0.9590 1.2590 1.5999 1.7968 1.9841 
ñ = 7 0.6931 0.9590 1.2591 1.6051 1.8158 2.0297 

Here, for the critical point J c = 2 log ( l + \/2) the exact Onsager's solution gives 

p(-2Jc,Jc,Jc) = log ( l + v/2) + log2/2 + 2 • G/ir = f.8110692 

(G = 0.915965594 is the Catalan 's constant) . 
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Trying to make differences between the functions pR for various R's more evident, we 

deal with their deviations 

q
R(J) = pR(-2J, J, J) - log 2 - J/2 

from the line log2 + J/2 (i.e. their common tangent in J = 0) in the following figure. 

1.5 Jc 2.0 

Similarly, we denote q (Jc) = p (-2 J c, Jc, Jc) - log 2 - Jc/2 = 0.2365. 

5. CONCLUDING REMARK 

Approximation of the described type was at first derived in [1] for purpose of application 

in mathematical statistics. But here a completely different proof is used, which yields a 

stronger result and deeper insight into the problem. 

(Received March 23, 1991.) 
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