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K Y B E R N E T I K A — V O L U M E 12 (1976), N U M B E R 2 

On Linear Inversion of Moving Averages, 
Discrete Equalizers and "Whitening" Filters, 
and the Related Difference Equations 
and Infinite Systems of Linear Equations 

LUDVIK PROUZA 

Connections of difference equations methods of solution of some inversion problems with the 
theory of infinite systems of linear equations are investigated. 

1. INTRODUCTION 

In this article, some generalization of the results of [ l ] are presented. In chap. 2, 
the problem formulation of inversion with a finite weighting sequence filter from [1] 
is extended to colored input sequences and the relation to the Kolmogorov-Wiener 
problem of interpolation is shown. 

In chap. 3, a difference equations method, used in special cases in [2] and [3], 
of solving the inversion problem with a white input sequence, is investigated in detail 
for the finite length weighting sequence inversion filter. In chap. 4, the difference 
equations method is extended to the case of the length of the inversion filter weighting 
sequence tending to infinity, assuming that B(z) from (13) possesses at most simple 
roots on the unit circle Ct. 

In chap. 5, the relation of the results of chap. 4 to [4; 5] is briefly examined. It 
may be shown that the general theory of [4; 5] is easily applicable to the problems 
of [6; 7] in the case of B(z) #= 0 on Ct. For B(z) = 0 on C,, recent results exist 
[8; 9], but they cannot be applied directly to the respective Theorems of chap. 4. 
The important conditions st(z) & 0 on C t and ind stf(z) = 0 of the general theory 
are shown for s4(z) = B(z) to be identical with the Nyquist stability criterion. 

2. PROBLEM FORMULATION - FINITE CASE 

Let {x(t)}, (t = 0 + 1, ±2,...) be a complex random weakly stationary sequence. 
Let the sequence {£(t)} be formed from {x(t)} by the finite moving average 

(1) £(f) = b0 x(t) + bt x(t - 1) + ... + bh x(t - h), 

where ft ^ 1 is natural, bj are complex, b0 4= 0= bh + 0. 



Let iV be a given natural number, N = h. We will form the finite moving average 

(2) x*(t -T) = aN0 t(t) + aN1 &t - l) + . . . + aNN £(t - N) , 

where Tis natural, 0 g Tg N + h. 

We seek aN0,..., aNN so that 

(3) E{\x*(t - T) - x(t - T)\2} = <P(aN0, ..., aNN) = min , 

where E denotes the mean value. {x*(t)} will be called linear inversion of (£(t)}. 
Denoting 

(4) E[x(t)x(t-l)]=gi, l = 0,±l,..., 

(5) E[«?(0c?(*-0]-K|, l = 0,±l.... 

(where x means the complex conjugate to x), then the necessary and sufficient condi
tions for {a,-} (we omit the first subscripts for the sake of simplicity) to satisfy (3) 
are the equations 

(6) R0«0 + R-lUl + . . . + R-NaN = E[f(0 x(t ~ T)] , 

RNa0 + RN_ 1 « 1 + . . . + R0aN = E[c?(« - N) x(t - T)] . 

With the notations 

(7) fij = bjb0 + ... + b„bh-j , j = 0, 1, ..., h , 

fi-j = Uj , 
ones obtains 

(8) R,- = Q-h+Jfih + ... + QjHo + . . . + Qh+jH-h 

and 

(9) E[Z(t - j) x(t - T)] = b0Q-T+J + ... + bhQ-T+h+] . 

Thus especially if [x(t)} is white and normed (Q0 = 1) then instead of (6) one has 

(10) /A0a0 +/i-1a1 + ... + fi-NaN = BT, 

HNa0 + Hn-idt + . . . + HO"N = ^T-N 

with ixj = 0 for ;' > h, b} — 0 for j > h and for j < 0. 



The spectral form of the left side of (3) is 

(11) *(„„ , . . . , a„) = - L f | z - - A(z) B(zf f(z) ** , 
2%\ J Ci z 

where 

(12) A(z) = a0 + a . z - x + ... + a^z-* , 

(13) 2?(z) = !>0 + b . z - 1 + ... + fc„z-", 

(14) / ( , ) = £ ^ 
J = - C O 

and C! is the unit circle. 
From (11), the relation of the inversion problem to the Kolmogorov-Wiener 

interpolation problem 

(15) — f \z~T - stf(z)\2f(z) - = min 
2rci J Cl z 

is apparent. In the later, one seeks s4(z) with the supplementary condition that the 
coefficient of z ~ r in the Laurent expansion of s4(z) is zero. In the former, the supple
mentary conditions is that si(z) = A(z) B(z) possesses the factor B(z) or, by other 
words, sJ(z) possesses all roots of B(z). 

3. DIFFERENCE EQUATION METHOD OF SOLUTION 
OF THE INVERSION PROBLEM FOR FINITE N 

In what follows, we will be interested mainly in the system (10). The determinant 
of (10) (and also of (6)) is positive, being the principal minor of a (Hermite) positive 
definite correlation matrix. Thus (10) has a unique solution. 

For N substantially greater than h, this solution may be found with advantage by 
a finite difference equation method. As it will be shown, instead of a system of N 
linear equations, only a linear homogeneous difference equation of the order 2h 
with 2/i boundary conditions is to be solved. 

Case 1. Let T < h. Then, we write instead of (10) 

(16) nha.h + ... + n0a0 + ... + H-hah = bT, 

Hha-h + T + .. . + fiTa0 + ... + fi-hah + T = b0 , 

W-h + T+i + ••• + A<r+i«o + ••• + l-i-hah+T+l = 0 , 

H,fiN-h + . . . + u0aN + H-iaN+l + ... + H-haN+h = 0 . 



106 Comparing (16) with (10), one sees that in (16) in the last h equations, the terms 

aN+1, ..., aN+h appear and to be compatible with (10) the conditions 

(17) aN+1 = aN+2 = ... = aN+h = 0 

must be added. Furthermore, one must define 

(18) __,_ = a-2 = ••• = a-h+T+i = 0 , 

as is seen from the equations following in (16) that with 50 on the right side. The set 
in (18) may be empty. 

Finally, one adds -bT,..., —b0 to the first, second, ..., equations in (16) getting 
zeros on the right sides and one defines a_,,+T,..., a_h with the aid of the equations 

(19) ,Uha-h+T = - b 0 , 

Vha-h + T-l + Vh-la-h+T = ~ 5 i , 

Vha-h + ft-i«-ft + i + ••• +Hh-T
a-h+T = ~bT-

By these definitions one adds — BT, ..., — B0 on the left side also, moreover, with 
the aid of boundary conditions. 

Since \xh + 0, these equations possess unique solution. 

Thus, one has replaced the system (10) via a one-to-one correspondence by the 
homogeneous difference equation 

(20) nha„ + p.h-1an+1 + ... + H-ha„ + 2h = 0 

of the order 2h and the boundary conditions (17), (18) and those resulting from (19). 

Now, since (10) has solution, this solution satisfies (20) with the above boundary 
conditions. Thus (20) with the given boundary conditions has at least one solution. 

Supposing that there were two distinct solutions in the range a0, ..., aN arid 
remembering the one-to-one correspondence of (10) and (20), (17), (18), (19), these 
two solutions were also solution of (10), which is impossible. 

Thus a0,..., aN from (20) with the given boundary conditions form the unique 
solution of (10). Since N > h, one has at least 2h successive values "on the left" 
available as initial conditions to (20). Thus it is obvious that (20) with the given 
boundary conditions has a unique solution. 



Case 2. Let h g T < 3/i-l. Then (10) is 

/« . . r /— b,, for T= h, 
(21) /.„_„ + /__,_.. + ... +n-hah- bT(^=Q for r > / j j 

jur_,,a0 + Mr-A-i^i + ••• + / ' - ; . ar = &* > 

/i*ar-A + ••• + V-haT+h = b0, 

VhaT~h+l + ••• + V-haT+h+l = 0 , 

i"A«AT-* + ••• + V-haN+h = 0 -

Now, we will consider the equations beginning with the first one after that with b~0 

on the right side as the homogeneous difference equation (20) and we attach h 
boundary conditions (17) to it. 

Since aT„h + 1 is the first term expressible with the aid of the characteristic roots 
of (20), we consider a0, ..., aT-h as unknowns. Thus, one has 2/i + T— h + I — 
= T + h + 1 unknowns and with the first T + 1 equations in (21) T + h + 1 
condition equations. 

It can be shown by similar reasoning as in case 1 that this system has the same 
unique solution as (10). 

Note that since T < 3/i — 1, one has to solve less than 4/i equations. The case 2 
may be, alternatively, treated similarly to the following case 3, but then 4/i equations 
were to be solved. This seems not to be advantageous. 

Case 3. Let T = 3h — 1. From (10), we pass to the difference equation (20) with 
boundary conditions (17) and 

(22) <*_,. = a-2 = . . . = a_h = 0 . 

Showing only the "midle part" of the sequence of equations (10) representing (20), 
one has 

(23) VhaT-ih-i + ••• + V-haT-i = °> 

/Vr-2 / , + ... + li-haT =bh + 0, 

i-i,,aT-h + ... + \i-haT+h = b~0 4= 0, 

/Vtr-ft+i + ••• + H-haT+h+i~ °> 

/V t r - i + ••• + V-haT + 2h-i= 0 , 

fihaT + ... + H-,,aT+2h = 0 , 



Now, we will express the term aT_1 and the preceding ones with the aid of the 
characteristic roots and 2h unknown constants (coefficients). The term aT and the 
following ones will be expressed with the aid of the characteristic roots and other 
2/i constants. Thus, one has Ah unknowns and 2/i boundary conditions (17) and (22). 
The remaining 2h conditions will be taken from (23) beginning with the equation 
with bh on the right (since the preceding equation will be satisfied with arbitrary 
constants) and ending with the last but one equation (since the following one will 
be satisfied with arbitrary constants). 

Now, the fact that every solution of the difference equation with the given boundary 
conditions is simultaneously solution of (10) is obvious. Thus the system has no 
more than one solution. But taking aj--!, ..., aT-2h from the "middle" of (23) (i.e. 
of (10)) as initial conditions, one sees that (since /i,, =f= 0) aT-.2h-i is uniquely defined 
from the difference equation and thus must be the same as that given by (10). In this 
way, one comes back to a0 and, by similar reasoning with aT, ..., aT+2h_t as initial 
conditions, to aN. Thus the difference equation problem has the same solution as 
(10). 

4. DIFFERENCE EQUATIONS METHOD FOR N -+ oo 

The characteristic equation to (20) is 

(24) M(~) = n„hz
2h + ... + nh = B(z) Biz-1) zh = 0 , 

where 

(25) B(z-1) = B0 + B1z + ... + Bhz». 

If (24) has a root (,, it has also the root J - 1 , thus the roots of (24) occur in Fejer-
Riesz pairs. 

The solution of (20) is a linear combination of the 2h particular solutions of the 
form 

(26) C\»C",n3r\...,n ,r, 

C being a / + 1-tuple root of (24). 

Let (24) posses on Ct at most double roots. Let us arrange the summands in the 
linear combination representing the solution of (20) so that firstly the summands 
formed from (26) pertaining to the roots lying inside of Cl in some fixed sequence 
occur, then the summands pertaining to the roots on C t follows so that firstly all 
terms the form £" and then the terms of the form n£" occur. Finally, there follow 
the summands pertaining to the roots outside of Cv 



Thus one has 2ft summands in two groups each containing h terms. The unknown 109 
coefficients of the summands of the first group will be denoted At, A2,...,Ah, 
those of the summands of the second group £?,, B2,..., Bh. 

In what follows only the case 1 of the chapter 3 will be considered in detail, the 
other cases will be leaved to the reader. 

Also, since the general formulas in the case of multiple roots of (24) are quite 
intractable, the reader is for insight in what follows referred to [1, formulas (31), 
(32)]. 

The system of equations for A}, Bj is formed by the boundary conditions «_,,, 
a _ 4 + 1 , . . . , a _ 1 ; OJV+J, . . . , aN+h. 

One knows that the system possesses a unique solution and thus also a nonzero 
determinant. We will express this determinant with the aid of the Laplace expansion 
similarly as in [1] with minors from the first h rows and the remaining h rows. 

Lemma 1. Let B(z) possess on Cj at most simple roots. Then in the Laplace ex
pansion of the determinant of the equations system for Ap Bj the term d given by 
the product of the first minor from first h rows and the last minor A from the last h 
rows is dominant in the sense that 

(27) lim djjd = 0 , 
N-»oo 

where dj is any other term of the Laplace expansion. 

Proof . The first minor from the first h rows is independent from N and distinct 
from 0, since analogously as in [1] taking out proper factors a determinant is obtained 
known from the theory of linear difference equations to be distinct from 0 (see [10, 
p. 335 ff]). 

The last minor A from the last h rows has for a (/ + l)-tuple root C outside Ct the 
columns 

(28) C + 1,(N + 1)CN+1,(N + l)2CN + 1,...,(N + 1)'£N + 1 , 

CN + 2, (N + 2) CN + 2, (N + 2)2 CN + 2, ..., (N + 2)1 {N + 2 , 

CN+h, (N + h)£N+h, (N + h)2CN+h, ...,(N + h)'CN+h. 

Taking out from each column the common factor £N + 1, there remain the columns 

(29) 1, ( J V + l ) . l , (N2 + 2 J V . 1 + l ) . l , ...,(N+ l ) ' . l , 

C, (N + 2).C, (N2 + 2/V . 2 + 2 2 ) . C, ...,(JV + 2 ) ' . C , 

C*-\ (N + h) . £*--, (N2 + 2N.h + h2) . C*-1, ..., (N + h)>. C"-1 . 



Now, from the known rules on determinants, there is clear that one can omit N 
in the brackets in the second column, in the brackets in the third column one can 
omit N2 + 2Nj (j = 1, ..., h), etc. Thus in the minor there remain the columns 

(30) 1, 1 . 1 , 1 2 . 1 , ..., l ' . l , 

C, 2 . C , 2 2 . C , . . . , 2 ' . C , 

C * - \ * . C * ~ ' \ * 2 . C * " \ • • • .* ' -C*" 1 • 

For C on c., which is double in (24), the respective column in A has the terms 

(31) (TV + 1) C" + \ (N + 2) CN+2, ..., (N + *) tN+h. 

Taking out the factor (N + 1) £N+1 t h e r e remains 

V 7 JV + 1 iV + 1 

From (30) and (32) there is seen that after taking out the respective factors there 
remains from A a determinant having for N -> co a known nonzero determinant 
as the limit (see [10]). 

Thus for N sufficiently great this determinant is certainly distinct from 0 and the 
respective term of the Laplace expansion is also distinct from 0. 

Let us consider other terms of the Laplace expansion. For these terms, at least 
one column of A must be replaced by a column choosen from the first h columns. 
Let us denote the respective root of (24) by q. 

Clearly for all C from A 

(33) M < |C| 

or 

(34) |,| = |C| 

but in this last case |»?| = 1 and the respective column has the terms 

(35) t,N+1,r,N + 2,...,riN+h 

according to our arrangement of columns. 

Now, with (33) one gets for each fixed k 

(36) 



Moreover, it is seen from (31) and (35) that in the case (34) the factor N + 1 is 
lost. This completes the proof. 

Theorem 1. Let B(z) possess on Cx at most simple roots. Then 

(37) lim_?y = 0 , (j = 1, 2 , . . . , h) 
JV-»oo 

and 

(38) lim Aj = A* , (j = 1,2,..., h) 
N->oo 

where A* are solution of the equations system 

(39) n^A* +..:+r}j"A* = __„, 

nlxA* + ... +rll-
1At =a_ 1 , 

where r]t are the roots of (24) inside and on C1, arranged according to what follows 
after (26) and a_ t, ..., a_h are defined by (18), (19). 

Proof . To compute Bj according to Cramer's rule, the respective numerator 
determinant has all terms of the Laplace expansion of lower order than the "domi
nant" term of Lemma 1. This gives (37). Further, we pose (37) in the first h equations 
for computing Aj, Bj. From this substitution, (39) follows at once. 

Theorem 2. Let B(z) posses on Cj at most simple roots. Then the "limit" weighting 
sequence {a„} formed with 

(40) a„ = A*n\ +... + A*hr,1 

is solution of the infinite equations system 

(41) • fi0a0 + fi_1al + ... = b~T, 

piao + /V t i + ••• = bT-i . 

HTa0 + nT-1al + ... = b0, 

/ i r + 1 a 0 + /^r«i + ... = 0 , 

and is bounded. 

Proof. For the infinite system (41) the conditions (17) vanish and from (18) with 
B* = 0 (/ = 1 , . . . . h) one gets (39) for A*. The boundedness of the solution is 
obvious. 



112 Theorem 3. Let B(z) posses all roots only inside Cx or on Cu the last ones being 
simple. Then the formal inversion 

(42) *,) = g 

gives the same sequence {a,,} as the system (41). 

Proof. Forming from (42) the infinite equations system one finds it equivalent 
with the difference equation 

(43) b0an + bxan_x + ... + bha„_h = 0 

with the characteristic equation 

(44) B(z) z" = 0 

and with the initial conditions a_x, ..., a_h given by (18), (19). Since the roots of 

(44) lie only inside or on c,, the last ones being simple, the h equations to find the 
coefficients Gs of 

(45) «„ = Grfl + . . . + Ghrfi 

are the same as in (39). From this and Theorem 2 the proof is completed. 

Example 1. Let 

(46) £(t) = x(t)-2x(t-l), 

thus b0 = 1, &, = - 2 , h - 1, T= 0, [i0 ~- 5, jux = - 2 , w,. = 0 for j > 1. The 
system (41) is 

(47) 5a0 - 2a! = 1 , 

— 2a0 + 5flt — 2a2 = 0 , 

- 2ax + 5a2 - 2a3 = 0 , 

From (18), (19) there is a_x = 1/2 and since the roots of the characteristic equa
tion are rj = 1/2, f = 2, one gets from (39) A* = 1/4. Thus from (40) 

(48) a„ = (l/2)" + 2 , n = 0 , l , . . . 



(49) 

In [1, p. 232]. Example 2, we have found for finite N 113 

22(JV + D - „ _ 2» 

22(N+2) _ ţ 

and thus 

(50) lima„ = (l/2)"+2. 
N^oo 

Example 2. Let 

(51) t(t) = x(t)-x(t~l)f 

thus b0 = 1, bx = - 1 , h = 1, T= 0, /J0 = 2, t/j = - 1 , ^ = 0 for j > 1. The 
system (41) is 

(52) 2a 0 - a . = 1 , 

- a 0 + 2aj - a 2 = 0 , 

— a t + 2a 2 — a 3 = 0 , 

From (18), (19), there is a_ t = 1. The characteristic equation has double root 
t\ = 1. From (39), one gets At = 1. Thus from (40) 

(53) a„ = l , « = 0 , 1 , . . . 

In [1, p. 232]. Example 3, we have found for finite N 

,... N + 1 - n 
(54) a„ = 

' JV+.2 

and thus 

(55) lim a„ = 1 . 
JV^oo 

Note that in [1], the relations (50) and (55) have been shown without connection 
to the solution of infinite systems of equations. 

The example 1 is covered by a Theorem of Walsh (see [1] p. 238, formula (84), 
p. 237, formula (77)). To the example 2, this Theorem cannot be applied without 
generalization since it supposes no roots of the characteristic equation lying on c,. 



5. CONNECTION WITH THE THEORY OF INFINITE SYSTEMS 
OF LINEAR EQUATIONS 

A general theory of infinite systems of linear equations with a Toeplitz matrix 
can be found in [4; 5], covering the situation with no roots of characteristic equation 
on C.. 

For this situation, a theory of approximation of the solution of infinite system 
with solutions of "truncated" systems for N -> oo is constructed in [5]. 

For the system (41) with arbitrary Tand no roots of M(z) in (24) on Cu the two 
fundamental conditions of solvability are 

(56) M(z) +- 0 on Cl , 

(57) ind M(z) = [arg M(tie)fg= _„ = 0 . 

Both are fulfilled, the first one by supposition and the second one because 
M(exp i0) is in this case a positive Fejer trigonometric polynomial. Thus the general 
theory can be easily applied to our infinite system. 

For the infinite analog of (6), to remain in the frame of [4], there may be shown 
easily with the aid of (8), (9) that the conditions 

(58) J \0J\ < co , 
]= - 0 0 

(59) f(z) # 0 on C,(f(z) defined in (14)) , 

(60) M(z) ± 0 on C! 

are sufficient. However, to solve the equations system by the simple methods of 
preceding chapters, /(exp i0) has to be a positive Fejer trigonometric polynomial. 

The case of roots of the characteristic equation lying on Cl has been treated in 
[8; 9], but the results there of cannot be applied directly to our case. 

Let us now investigate in some detail the role of the conditions the specialized 
version of which are (56), (57). 

Let 
- 1 

(61) *(*) = - ± - .y(z)=-
1 + 

B(z) 



where X + 0 is a complex number and B(z) is defined in (13). Supposing Y(z) be the H5 
Z-transform of an input sequence, X(z) being the same for the output, one sees from 
the right side of (61) that for X = 0 the inversion of the relation Y(z) = X(z) B(z) 
would result. In the middle of (61), an approximate inversion is realized with |A| <̂  1. 

Comparing the coefficients in the expansion of (61) one gets 

(62) (b0 - X) x0 = y0 

btx0 + (b0 - X) x^ = yt 

b2x0 + b^x^ + (b0 - X) x2 = y2 

This is an infinite system of equations and its characteristic function in the sense 
of [4] is 

(63) 

thus 

(64) 

= (b0 -X) + b^ + . . . + bhC
h = B(z) - X, 

- ^ l - J C 1 ) ] 

Now, for (62) to posses an unique solution for arbitrary bounded {y„} the necessary 
and sufficient conditions are 

(65) |^(C)| ^ 0 on C, , 

(66) ind ®(£) = [arg @(ew)]U _ , = 0 . 

From (64), (65) there follows (with z = £ - 1 ) 

1 
. - jВД Ф 0 for z on C t . (67) 

Furthermore, from (64) 

(68) arg ^ ( Q = arg (-X) + arg f*l - j B(z)l . 

Moving C o n Cl in the positive sense results in moving z in the negative sense. 
The corresponding vectors from the origin to £$(() and to 1 — B(z)jX are moving 
in the same sense and differ by a constant angle as is seen from (68). 



Let us formulate the analogy of the Nyquist stability criterion to our case (see [11, 
p. 61, Theorem 5, 14]): 

The relation (61) is stable if and only if 

a) the vector v from the origin to the point 1 — £(exp iff)/A has for every 9 a non
zero length and 

b) moving 9 in z = exp iO trough the interval < — n, TI> in negative sense the number 
of complete rotations of the vector v is zero. 

But a) is (67), thus also (65), and b) is (66) (with the aid of (68)). 
Thus, in our special case the conditions (65), (66), and the Nyquist stability crite

rion are identical. 
Since in the theory of infinite systems of linear equations more general matrices 

than lower triangular ones — corresponding to physical realizable relations — are 
admissible, one may say that the fundamental conditions responding to (65), (66) 
represent an extension of the Nyquist stability criterion to systems more general than 
the physically realizable ones. 

6. CONCLUDING REMARKS 

In the present article, the results of [1] have been extended in various directions 
and their relations to the general theory of infinite systems of linear equations with 
Toeplitz matrix [4; 5] have been shortly discussed. 

It seems, that the extension of the Wiener-Hopf method to .the case of the charac
teristic equation having roots on Cj will play an important role in better handling 
various summation and numerical integration methods, resonant discrete filters, 
and the applications there of. 

(Received February 21, 1973.) 
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