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K Y B E R N E T I K A — V O L U M E 8 (1972), N U M B E R 6 

Synthesis of Discrete Optimum Control 
Systems via Finite Impulse Response 

ZDENĚK VOSTRÝ 

This paper contains a method for which the spectral density of a disturbance need not be 
necessarily known. 

In this paper the method of the Z transformation will be used. 
Let a linear discrete system be given by its transfer function S(z) and its impulse 

response H(z). We assume that the system output is contaminated by the stationary 
noise U(z) with zero mean. 

To eliminate this noise we shall find: 

(i) a simple filter K(z) that will minimize a quadratic performance index for the noise 
u(z); 

(ii) a filter P(z) that will minimize a quadratic performance index for any stable 
input. 

\U 

Fig. 1. 

Either we can measure the disturbance U directly, see Fig. 1, or indirectly as it is 
shown in Fig. 2. In Fig. 1 there is shown the open-loop control system that could 
be formally recomputed as the closed-loop system. 

Let the performance index be of the form 

(1) / = — ľ [(1 - Щ (1 - PS) WW + (1 - KS) (1 - KS) iV] — 
2тrj J г z 



where j is the imaginary unit, T is the unit circle, S(z) = S(z 2 ), W is the reference 491 
input, N is the spectral density of the noise U. 

W 

Fig. 2. 

It is generally known that the minimization of the performance index J (see [1], [2]) 
gives the result of the form 

(2) P = 
S+W 

[ z " 1 ( S - ) " 1 S I Ғ + ] + , 

(3) к = S+N 
T[Z-\S-)->SN+l 

where W + , S+ and N+ is obtained by the spectral factorization of WW, SS and N 

respectively. (W+, (W+)~\ S+, ( S + ) _ 1 and N+,(N+yx) have no poles inside T), 
[ .]+ denotes the extraction of the poles lying outside F. 

We can see that the filter P as well as K has S+ in its denominator. This common 
part of the filters can be used for the compensation of the system. We shall obtain 
the new system 

w = (s+yi s. 

This new system W has some interesting features: 

(i) if S is a minimal phase system, then W = z'k, where k is the time delay, 

(ii) if S is a nonminimal phase system, then W = z-k(M~JM*), where M " is a poly

nomial whose zeros lie outside F and M* the polynomial reciprocal to M~ and its 

zeros lie inside E. 

(iii) WW = 1 because SS . ( S + S + ) " 1 = 1. 

The new control system is shown in Fig. 3. 

We know that W = z'k(M~JM*) and WW = 1, hence W+ = W~ = 1. 

The filter G will be computed by (2) as the filter P in the following form 

(4) G = — [z-lWW+Л + 

w+l -



492 and the filter F similarly in the form 

(5) ғ = -4-[z-
1Зw+]. 

дг+ L J 

To compute the filter F we must know the spectral density of the noise U. 

\U 

Fig. 3. 

It is very difficult to compute the spectral density in the form, of a rational fraction 
function. 

Now we describe a method for which the spectral density need not be necessarily 
known. 

THE CALCULATION OF THE FILTER F 

Assume W = 0. Then 

(6) X = U + WZ = U Í 1 - z~* F 
M* 

M' 

(7) 

The performance index will be given as 

1 

2щJг 

i - Æ ғ ì í i 
м* 

MlF)N

dz 

M* 

Let M have all its zeros inside T. Then V = z * and F is a prediction filter which 
predicts the disturbance U for k steps ahead. 

If we calculated the optimal prediction filters by the mean-squared value of pre
diction error we could see that: 

(i) a noise, the correlation function of which is R(i) = a . e " 6 ' (where a > 0, b > 0, 

i is an integer) is optimally predicted by the filter F = j 0 , 

(ii) a noise, the correlation function of which is R(i) = a cos bi, is optimally pre

dicted by the filter F = j 0 + jjz-1 with zero error, 

(hi) from the numerical point of view a flat noise is practically predictable by the 

filter F = f0, 

(iv) an almost white noise is practically predictable by the filter F = j 0 + j 1 z - 1 . 

Now we summarize the above discussion in the 



Lemma. The optimal predictor is the filter of the form 493 

F=fo+Az~1-

Let us return to the nonminimal phase system W and consider F = / 0 + f1z~1. 
The minimum performance index is achieved if dl\dft = 0 for i — 0, I. 
Hence 

(8) - i - f ( l - z - ^ F ^ * - ' d z = 0 
27ijJ-V M* ) M* 

for i = 0, 1, where N is the spectral density of the disturbance U. We know that 

M~M- _ 
M*M* ~ 

Then 

(9) — f _^{M~zk- M*F)Nz'-1dz = 0. 
2TCJ J r M * 

The polynomial M* has all its zeros outside E and hence it has no influence upon 
the equation dl\df{ = 0 and therefore is can be deleted. 

Substituting M~ = _\ m.- - ' into (9) gives us 
1 = 0 

(10) - L f ( t m l Z " + ' - / o t m r _ 1 z ' - / 1 i : m r _ 1 z ' - 1 ) i V z ' - 1 d z = 0 . 
ZTtj J - i=o ^ = o i = o 

We know that 

(11) N= + f R(/)z"' 

where R(Z) is the value of the correlation function of the disturbance U at a point i. 
Substitute (11) into (10) and integrate for i = 0, 1, then 

(12) i = 0; tml_i(fc + / ) - / o i : m f _ I R ( 0 - / 1 i ; J R ( / - l ) = O, 
i=o i=o ^=o 

(13) f - 1 ; ^m1R(/c + / + l ) - / 0 t m r _ 1 R ( / + l ) - / 1 t m r _ 1 R ( / ) = 0. 
1 = 0 1=0 

This equations yield/0 and/^ 
It is very important that we need not know the spectral density N. We must know 

only the finite number of values of the correlation function. 
Let us show that the optimal filter F reduces only to f0 for any disturbance whose 

correlation function is of the form R(i) = a1'1 (a > 0, i is an integer) and for any 
system W. 



494 Substituting R(i) = a1'1 into (12) and (13) gives us 

£ m , a ! [ + ' - / o £ m r _ i a ' - / 1 £ m r V ' - 1 ' = 0 , 
1=0 1=0 1=0 

tm/ + ' + 1 - / 0 im r _ i a ' + 1 - / 1 tm r V = 0. 
1=0 1=0 1=1 

Premultiplying the first equation by a and subtracting it from the second one gives 

/ 1 t m r _ 1 ( a l ! - 1 i - a i ) = 0. 
1 = 0 

Hence evidently ft = 0. 

Example. Let a system S be given by the approximation of its impulse response as follows 

H(z) = z _ 1 ( l + 2 - 7 Z - 1 + l - 4 1 z - 2 + 0 - 0 2 z " 3 ) , 

and let U is the Z transform of the realization of a stationary random process. The values of the 
correlation function _?(»*) are: 

R(Q) = 1 ; jR(l) = 0-7 ; 2.(2) = 0 ; 2.(3) = - 0 - 7 ; 

and consider the step input. 

Compute the optimal control for the quadratic performance index (1). 
To obtain the new system f we have to compute the spectral factorization of HH = H + H~. 
The method described in [3] is used in computer programme and we find 

H+ = 2 + 2 4 Z - 1 + 0-72z~ 2 + O-Olz"3 . 

It is generally known that if 

H-z^fc fl ( l -a^ .Th l -^z- 1 ) 
i = r + l j = l 

where n is the order of the polynomial H |a,-| < 1, Pj > 1, k is a constant, then 

н+ = k п ( i - ^ - П Г - W 
i = r + l j = l 

and 

(14) y * - - l * £ 
v ' Я + M* 
where 

м-^ткi-is.--1). 

м* = П(-_1-;3.)-
J = I 



Because in our case i/4= H +, there exists at least one zero of the polynomial H which lie 495 
outside r. 

Assume that only one such zero exists, then 

M~ = 1 + y z - 1 and M* = z - 1 + y . 

The equation (14) gives us 

z~lM~nJr = HM* , 

(i) z - 1 ( l + y z - 1 ) (2 + 2-4Z- 1 + 0 - 7 2 z - 2 + 0 - O l z - 3 ) = 

= z _ 1 ( l + 2 - 7 z _ 1 + 1-41Z"2 + 0 - 0 2 z " 3 ) ( z - 1 - y) . 

On equating the absolute terms in equation (i) we can see that y = 2. 
If the equation (i) is satisfied for M - = 1 + 2 z - 1 , then M~ = 1 + 2 z - 1 , but if it is not, 

then we assume M = 1 + ? i z - 1 + J ,

2 z - 2 , etc. 

In our case M~ = 1 + 2 z - 1 and 

_ i 1 + 2 z 
W = z 

+ 2 

In order to eliminate a disturbance V we need to know r + k + 2 = 1 + 1 + 2 = 4 values of 
the correlation function, that is, R(0), R(l), R(2), R(3). 

Substituting this into (12) and (13) gives us 

0-7 = j 0 2-7 + A 2-4 , 

- 1 - 4 = jo 1 - 4 + A 2-7. 

H e n c e / 0 = 1-335,/! = —122. 

Now we shall compute the closed-loop control system. 

By Fig. 3 we can obtain the output in the form 

(ii) X = (1 - WF)U + WGW. 

The closed-loop system, which will be assumed in the form 
gives the output 

(HO X^^^w+L^lu. 
1 + RW 1 + Rf 

Let us compare (ii) and (iii). We can see that 

R 
G = 

1 + RУ 
and 

1 - ФЧ> 
1 - TF = 

1 + RУ 

к — £ -
1 - WG 



496 and 

Ф = 
1 - WG 

(F-G). 

In our example the results are 

o - Ч i - o Г ^ - ^ - L - ] - . b, (4), 
|_ 2 + z z — 1J 

and 

W 

Fig. 4. 

E = 1-335 - l-22z" 

2 + z - 1 

R = 
2(1 - z - 2 ) ' 

ф = JL±_£_L (0-335 - 1-22Z-1) 
2(1 - z " 1 ) 4 ; 

Ф 

<нT 

The closed-loop system in Fig. 4 can be rearranged in the form shown in Fig. 5 
where 

1 
L = 

1 - WG 
н*-1. 

2(1 - z - 2 ) 2 + 2-4z - 1 + 0-72z"2 + 0-01z" 

1 

~ T(l - z " 2 ) ( l + 0-7z- - + 0-01z-2) 



Computation of this optimum control system is based on the knowledge of the zeros 497 
of the impulse response. In [4] a theorem is proved about the relation between the 
system transfer function zeros lying outside T and the respective finite impulse 
response. 

This theorem justifies the synthesis from the measured impulse response. 
The above method of the synthesis is convenient because we need not know the 

zeros of the impulse response and it is known that the impulse response is the poly
nomial of order 20 or more. 

(Received August 3, 1970.) 
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Syntéza optimálních diskrétních regulačních obvodů 
daných impulsní charakteristikou konečné délky 

ZDENĚK VOSTRÝ 

Při syntéze optimálních diskrétních regulačních obvodů z impulsních charak
teristik podle kvadratických kritérií se setkáváme se dvěma problémy: impulsní cha
rakteristika je polynomem značného stupně (může být větší než 20), což ztěžuje 
výpočty hlavně z numerického hlediska; je velmi obtížné získat spektrální hustoty 
poruch ve tvaru racionálně lomených funkcí. 

Oba tyto problémy jsou řešeny v tomto článku. První je řešen pomocí kompenzace 
soustavy speciálním filtrem a druhý je řešen tak, že stačí znát jen konečný počet 
hodnot autokorelační funkce poruch. Na závěr článku je uveden příklad. 

Ing. Zdeněk Vostrý; Ústav teorie informace a automatizace ČSA V (Institute of Information 
Theory and Automation — Czechoslovak Academy of Sciences), Vyšehradská 49, Praha 2. 
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