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K Y B E R N E T I K A - VOLUME 26 (1990), NUMBER 2 

ON THE SYNTACTICO-SEMANTICAL COMPLETENESS 
OF FIRST-ORDER FUZZY LOGIC 
Part II. Main Results 

VILEM NOVAK 

This paper is a continuation of Part I [9]. First, the extension of fuzzy theories is studied and 
the important deduction theorem is proved which is a generalisation of the corresponding classical 
one. In Section 7.3, algebraic properties of the set of formulae are studied. This section serves 
as a preparation for the proofs of the most important theorems in this paper which are the 
completeness theorems being generalisation of the famous Godel's ones in classical logic. At 
last, some theorems on completion of fuzzy theories are proved. 

7. EXTENSION, COMPLETENESS A N D COMPLETION O F F U Z Z Y 

THEORIES 

In this section we continue the study of the properties of fuzzy theories of first 

order. Some important notions of classical logic are generalised and well behaviour 

of them is demonstrated. We use the notions and notation introduced in [9] . 

7.1 Extension of fuzzy theories 

A language J' is an extension of J if J £ J ' . Obviously, in this case Fj £ Fj. and 

T = (AL, As, R>, T = (A'L, A's, R> be theories in the respective languages. Put 

A~s(A) = AS(A) if A e Fj and AS(A) = 0 otherwise. If 

As — As 

then T is an extension of T. To simplify the notation, we will write As instead of 

As and understand that AS(A) = 0 for all A e Fj. — Fj. 

The extension T is a conservative extension of T if T \-bA and TYaA implies 

a = b for every formula A e Fj. The extension T is a simple extension of T if 

J(T) = J(T). 

Lemma 18. Let T be an extension of T. If T Va A and T Yb A then a ^ b. If T 

is consistent then Tis consistent as well. 

P roo f . Obvious. Q 
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Lemma 19. Let T be an extension of T and T has a model 9'. Then the restriction 
of 9' to J(T) is a model 9 of the theory T and 

9'(A) = 9(A) 

holds for every formula A e Ej(r)-
Proof. The structure 9 for the language J(T) originates from 9' by excluding 

some fuzzy relations corresponding to predicates which are not in J(T) and, hence, 
in A. Moreover, D = D' and so J(T) contains all the names d of all the elements 
d e D'. We prove that 9(A) = 9'(A) holds for every formula A e FJ(Ty Let t e J(T) 
be a constant. Then 9(t) = 9'(t). Let p(tx, ..., tn) e EJ(T) be an atomic formula. 
Then 

9p(tx,..., 0 ) - pj>(9(tx), ...,9(tn)) = pD{9'(tx), ...,9'(t„) = 

= ^ ' (p( t 1 , . . . , t„)) . 

Clearly, 
9'(a) = 9(a) 

for every o e L b y the definition. Let A : = B => C, A e EJ(T) and assume the pro
position holds for B and C. Then 

0(A ) = 9(B) -+ 9'(C) = ^ ' (B) -> 0'(C) = ^ ' (B => C) = 0 '(A) 

by the inductive assumption. 

Let A : = (Vx) B, A e FJ(T). Then 

9(A) = A9(Ax[d]) = A9'(Ax[d]) = 9'((\/x)A) 
deD deD' 

by the inductive assumption. The proof proceeds analogously if A contains some 
free variables. We conclude that 9(A) = 9'(A) for every A e FJ(Ty Since for all 
A e E/(r), ^-s(^) = ^s and ^ ' is a model T, we have 

A5(A) = A'S(A) = 9'(A) = 9(A) , 

i.e. 9 is a model of T. Q 

Let E c Ej(r) be a fuzzy set of formulae and T a theory. Then the fuzzy theory 

T = <AL, As u E, R> 

is an extension of the theory T and we write T = Tu E. 

Theorem 8 (on constants). Let T be a theory in the language J. We enrich J by 
new constants v e V, i.e. J' = J u Vand put As(A) = As(^4) if A e Ej and A'S(A) = 0 
for AeFj, - Fj. Let T' = <AL, A5, R> be a theory in J'. Then 

T^«^1...xlv1,...,v„] iff ThflA 

holds for every formula A e E,, where vl9 ..., v„ e K 

Proof. Let T Va AXi_xJyx, ..., v„] and w be a proof of this formula, Valrfw) = a'. 
Since special axioms B for which A'S(B) =j= 0 do not contain constants from Vwe can 
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replace all the constants vi5 i = I,..., n occurring in w by some variables yt which 
do not occur in w and thus obtain a proof w' of Axl„mXn\yu ..., yn] whose value is 
greater than that of w. But AXl Xn[yu ..., yn~\e Fj and we conclude that 

T\-bAXi_Xnly1,...,y„] , a <\ b . 

Due to corollary of Lemma 14, TYb A. 
Conversely, let T\-c A. Then T Yd>A, c < dr and due to Lemma 14 

r^vjv, T J , c<.d'^d. 

The proposition then follows from Lemma 8. • 

Corollary. The theory T is a conservative extension of T. 

The following three lemmas are of technical character. 

Lemma 20. Let Tand T be theories and 

TYaA iff TYaB. 

The to every proof w of A in T there is a set M of proofs of B in T such that 

Val r (w) < V{Valr, (w
f); w' e M} . 

Proof. It follows immediately from Theorem 1. • 

Lemma 21. Let {x£ £ FJ(T); i < q} be a chain in a partially ordered set of fuzzy 
sets <^(FJ{T)), c > . Put 

X = U * i 
i < < j 

Then 
Valx (w) = V{ValXi (w); i < q} 

holds for every proof w of the formula A e FJ{T). 

Proof. By induction on the length of the proof. Let w := A[x(A); SA]. 
Then 

Valx (w) = X(A) = ( U Xt) A = V{^.(^); < < «} = V{ValXi (w); i < q} 
i<q 

due to the definition of the union of fuzzy sets. If A is a logical axiom then 

ValXi (w) = AL(A) 

holds for each /". Let 

A = r^(Ajl,...,Ajn) 

where A/kare results of proofs wUk) of the length shorter than that of w, k — 1, ..., n. 
Using the induction assumption and the semicontinuity of rules we obtain 

r8-(Valx(w0 , )), . . . ,Valx(w ( ,n ))) = 

= V{^sem(ValXii (wUl)),..., ValXin (wUn)); iu . . . , / „ < q} : = A. 
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We show that this formula is equal to 

B : = V{rsem(ValXi (w0 l )) , . . . . ValXi (w0n)); i < q} • 

By the isotonicity of rsem 

rsem(ValXi (w0l)), • •., ValXi (w0n))) < A , i<q 

whence B = A. The inequality A = B follows from the assumption that {Xh i < q} 

is a chain. Then 

Val (X) = V{rsem(ValXi (w0l )), ..., ValXi (w0n)); i < q) = 

= V{ValXi (w); i < q} • D 

Lemma 22. Let Tbe a consistent theory and {Et 5 FJ(T); i < q} a chain in a par
tially ordered set {^(FJ(T)), c > such that T0 = T, E0 = As and 

T.+ 1 = T,uEi+1 

is a consistent theory, i + 1 < q. Then 

T = Tu\JEt 
ieq 

is a consistent extension of the theory T 
Proof. Let us denote E = \J Eh Ae EJ(T) and M, M' be sets of all the proofs 

ieq 

of A and ~l A respectively. Then it follows from Lemma 21 that 

(CsynE) A ® (CsynE) ~\A = V{Val£ (w); w e M} ® V{Val£ (w') ; 

-, w' e M'} = V{(CsynE0 A ® (CsynE;) HA ; »,; < g} = 0 
since 

(CsynEt-) A ® (synEJ n i = o 

holds for all the couples of fuzzy sets Eh Ej from the considered chain. • 

We now state one of the most important theorems of this paper. It demonstrates 
the relation between a given theory and its extrension by a new formula. 

Theorem 9 (deduction theorem). Let A be a closed formula and T = Tu {l/A}. 

(a) If TYa A" => B and T \-b B for some n then a = b. 
(b) To every proof w' of B in T there are n and a proof w of An => B in Tsuch that 

ValT, (w') = ValT (w) . 

Proof, (a) Using theorem (D 8) and rMP we obtain T h A" and T Ya, A" => B, 
a = a', whence T Vb B, a' ^ b. 

(b) By induction on the length of w'. 

(ba) Let wx be a proof of B => (A" => B) for some n (theorem (D 23)), Val (wx) = 
= 1 and 

w' := B[b;P] 
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where P is LA or SA. Then 

w := B [b; P], w. [1], A" => B [b; rMP] 

is a proof of A" => B. 

(bb) Let B : = A and 

w' := A[l; SA] . 
Then 

w := A => A [ l ; LAT2] . 

(be) Let B : = a => C, wt be a proof of a formula C, 

ValT, (wx) = c and 
t 

w ' : = wi [c] » a => C [a -+ c; rRa] . 
By the inductive assumption there are n and a proof wx of A" => C such that 
ValT (wx) = c. Let w2 be a proof of 

(a => (A" => C)) => (A" => (a => C)) , 

Val (w2) = 1 (theorem (D 22)). Then 

w := wx[c], a=>(An => C) [a -> c; rRa], w2[l] , 

A" => (a => C) [a -> C; rMP] . 

(bd) Let B : = (Vx) C, wx be a proof of a formula C, ValT' (wx) = c and 

w' := wt[c], (Vx)C [C; rG] . 

By the inductive assumption there are n and a proof wx of A" => C such that 
ValT (wx) -= C. Then 

w := wx[c], (Vx) (A" => C) [c; rG], (Vx) (A" => C) ^ 

=> (A" => (Vx) C) [1; LAT 1 0], A" => (Vx) C [c; rMP] 

since A" is a closed formula. 

(be) Let w\ be a proof of C, ValT, (w'j) = Cl and w2 be a proof of C => B, 
Val^ (w2) = e2. Let 

w' := w;[C l] , w2[c2], B [ci ® c2; rMP] . 

By the inductive assumption there are nx, n2 and proofs wx of A"1 =̂> C and w2 of 
^"2 ^(C=> Bj s u c h t h a t 

cx = ValT (wx) , c2 = ValT (w2) . 

Let w3 be a proof of 

(A»- => (C => B)) => ((A"1 => C) => (A"1 + "2 => B)) , 

Val (w3) = 1 (theorem (D 24)). Then 

w := w,[Cl], w2[c2], w3[ l] , (A"1 => C) => (A"1+"2 => B) [c2; rMP], 

A"1 + " 2 =>B [ C l (g) C 2 ;r M P ] 
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Corollary 1. Let L be a finite chain. Then there is n such that 

TVaA
n=>B iff T'YaB. 

Proof. In [10] — I it is demonstrated that if L is a finite chain then to every 
formula C there is a proof w of C such that 

(C^AS) C = VaLjw) . 

Let w' be such a proof of B in T', i.e. T' Va B and Valr< (w') = a. Then there are n 
and a proof w of A" => B such that 

ValT, (w') = ValT (w) = a . 

Thence TVb A" => B and a i- b. From Theorem 9(a) follows b S a, i.e. b = a. 

Corollary 2. Let A be a closed formula and V = Tu {a/A). Then to every proof 
w' of B in T' there are n and a proof w of An => B in Tsuch that 

ValT, (w') S ValT(w). 

Proof. The proof is analogous to the proof of Theorem 9 with the exception 
of the case (bb): 

w' := A [a v AS(A); SA] 

w := A => A [ l ; LAT2] . 

Since a v AS(A) ^ 1 we must modify the inductive assumption into inequality 
instead of equality. • 

This theorem is a generalisation of the classical deduction theorem and it is one 
of the most important theorems necessary in the proof of the completeness property 
of fuzzy logic. 

The following theorem is a generalisation of the C-rule introduced e.g. in [6]. 

Theorem 10. Let Tbe a consistent theory, TV (3x) (A(x)f for every n and t £ J(T) 
be a new constant. Then the theory 

r = ru{i/4H} 
in the language J(T) u {t} is a conservative extension of the theory T. 

Proof. Let T denote a theory resulting from T by adding t into J(T). Due to 
Theorem 8, T is a conservative extension of T. Let B e Ej(T) be a closed formula 
T' Vb B and w' be a proof of B in T'. We will demonstrate that there is a set MB 

of proofs of B in Tsuch that 

Val r, (w') ^ V{ ValT (w); w e MB} . 

Due to Theorem 9(b) there are n and a proof w of Ax[i]" => B in Tsuch that 

ValT, (w') = ValT (w) . 

Due to Theorem 8 

TVcAx\tY^B iff TVcA(x)n=>B. 
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Then by Lemma 20 there is a set M of proofs of A(x)" => B in Tsuch that 

Val r (w) = V{Valr (vv); vv e M} . 

Let vv e M, w2 be a proof of (3x) A(x)" in T, Val r (w2) = d and wt be a proof of 
(Vx) (A(x)n => B) => ((3x) A(x)" => B), Val (wx) = 1. 

We write down a proof 

w := w[b], (Vx) (A(x)" => B) [6; rG], wx[l], 

(3x) A(xf => B[fc; rMP], w2[d], B[b ® rf; rMP] . 

Let MB be a set of all the proofs vv. Then 

V{Valr (w); w e MB) = V{^ ® d; weM, w2} = 

= V{ValT(w); w e M} ® 1 = Val r (w) = ValT, (w ') . 

Since such a set MB exists to every proof w' of B in V it follows that 

(CsynAs) B = (CsynA's) B = b . 
Then 

Th6B 

by Lemma 18. • 

7.2 Henkin fuzzy theories 

Analogously as in classical logic it is possible to introduce Henkin fuzzy theories. 
A Henkin fuzzy theory is obtained from the given fuzzy theory when adding Henkin 
axioms 

Ax[r]=>(Vx)A(x) 

to the fuzzy set of special axioms with the membership degree 1 where r is a special 
constant for (Vx) A(x). This leads to the demand that 

®(Ax[r]) = A®(Ax[d]) 
deD 

must hold in any model of the Henkin theory. In other words, there must exist an 
element d0e D such that <3(r) = d0 and 

®(Ax[d0]) = A®(Ax[d]). 
deD 

In this section, we study some properties of Henkin fuzzy theories. The results 
serve us as a preparatory material for the proof of completeness theorems. 

Lemma 23. Let Tbe a Henkin theory and r a special constant for (Vx) A. Then 

Tha(Vx)A(x) iff TVaAx[r]. 

Proof. This is corollary of Lemmas 7 and 12. • 

Lemma 24. Let T be a consistent theory and r e J(T) a new constant taking the 
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role of a special constant for (Vx) A. Then the theory 

T'= Tu{l/(Ax[r]^(Vx)A)} 

is a conservative extension of T 

Proof. This is a corollary of Theorem 10 and axiom (T 11). • 

Theorem 11. Let T be a consistent theory, K a set of special constants for all 
the closed formulae (Vx) A and let AH be a fuzzy set of Henkin axioms BH defined 
by membership function 

AH(BH) = 1 

and AH(C) = 0 for C 4= BH. Then the theory 

T' = TuAH 

in the language J(T') = J(T) u K is a conservative extension of the theory T 
Proof. Similarly as in the classical proof of the analogous theorem we construct 

sets of special constants KX,K2,... of given level. Set T0 = Tand 

Ti+1 = Tiu{ll(Ax[i]^(yx)A(x))} 

where reKi+1 is a special constant for (Vx) A(x). Then, by Lemma 24, Ti+X is 
a conservative extension of T£ for every i. From this and Lemma 22 follows the 
proposition of this theorem. • 

Let Tbe a complete Henkin theory. Put 

D0 = MV. 

We define functions f0 assigned to function symbols / in the same way as in [9], 
Section 4.1, and fuzzy relations p0 £ D0 assigned to predicate symbols p as follows: 

p0(tx,..., t„) = a iff TVap(tx,..., tn), tx, ...,tneD0. 

Then 
% = (Do,Po, ...,/o>---> 

is a canonical structure for T 

Theorem 12. Let T be a complete theory. Then the canonical structureQs0 is a model 
of Tsuch that 

TYaA iff 90(A) = a 

holds for every formula A e FJ(T)-

Proof. Let T be a Henkin extension of Twhich is conservative due to Theorem 11. 
If A := p(tx, ..., t„) is a closed atomic formula then the proposition holds by the 
definition of p0. 

Let A : = ax a e L. Then T Ya a (in any theory) and, hence, @0(A) = a. 
Assume that the proposition holds for all the formulae shorter than A. Let A : = 
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: = B => C and ^ 0 ( B ) = b, @0(C) = c. Then 

Q)0(A) = b -> c iff r l-6 B and T YdA, d = b -> c 

due to Theorem 7 and the inductive assumption. 
Let A : = (Vx) B. Then 

T' Ya A iff r r-fl B,[r] iff % f t [ r ] ) - a iff 20((Mx) B) = a 

due to Lemma 23, inductive assumption and the fact the V is a Henkin theory. 
It follows from Theorem 5 that this equivalence holds for every formula A e FJ(T)-
Clearly, S>0 is a model of V and due to Lemma 19, a model of T as well. • 

7.3 Algebraic properties of the set of formulae 

The methods used in this section are adaptation of the methods taken from [10] 
and [11] and they serve us as a preparatory tool for the proofs of the completeness 
theorems, which are presented in the next section. 

Theorem 13. Let Tbe a consistent Henkin theory. Then 

(a) A = B iff ThA^B 
is a preorder on FJ(T). 

(b) A x B iff A = B and B = A 
is a congruence on FJ(T). 

(c) Let 
E(T) = {EJ ( r ) | « , { | | a | | ; a e L } , v , A ®,-+,V,A> 

be a factoralgebra on FJ(T) with respect to the congruence « . Then 

i?(T) = <E/(r)| », V, A , ® , -»,V,A,1>0> 

is a generalised residuated lattice. 

(d) The mapping /»: a -> | a | where | | a | is an equivalence class with respect to « 
is a homomorphism from =5? into if(T). 

Proof, (a) can be obtained immediately using axioms (T 2) and (T 6). 
(b) and (c): Obviously, « is the equivalence. Put 

[All <xllBII iff A < B 

1: 

0: 

Ц-4 

IU 

m 
\\0\\ 

л||B| 

v ||B| 
MA-9I 
IMV-5| 

HA] ® [BII := HA&BI 
[AI -> [BII := ||A=>B| 
AlM.MII := ||(Vx)A 

teMv " 

v K M I h - ||(ax).4||. 
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It follows from (a) and the definition of « that ^T is a partial ordering on FJ(T)\ ~ . 
Tautology (T 3) gives ||A|| <^r ||l|| and the rule rR0 gives ||0|| ^ T ||A|| for every 
formula A e FJ(T) which means that 0 and 1 are the smallest and the greatest elements 
respectively. 

Now we prove that (g) and -> are adjoint operations, -> is residuum and ® product. 
Using tautology (T 4) we immediately obtain the adjointness condition. Tautology (T5) 
gives commutativity of ®. Antitonicity of -> in the first variable follows from (T 6) 
and its isotonicity in the second one from theorem (D 1). 

Let A ^ T B. Using the tautology 

)= (A => B) => ((B => (C => B & C)) => (A => (C => (B & C))) 

(T 6), theorem (D 8) and (T 4) we obtain isotonicity of ®. 
Using the theorem 

l_ 1 => (A => (A & 1)) 

(D 8) we obtain 

A ^TA ® I 

and using the tautology 

|= (1 => (A => A)) (g) ((1 &A) => A) 

we obtain that 1 is a unit with respect to (g). 

At last, using the tautology 

|= A & (B & C) => A & (B & C) 

(T 2), then (T 4) and theorem (D 22) we obtain 

( A & B ) & C ^ r A & ( B & C ) 

and analogously the converse implication which yields the associativity of (g). 
Using theorems (D 2), (D 3) and (D 5) we prove that A is infimum and analogously 

using (D 4), (D 6) and (D 7) we prove that v is supremum. We conclude that 

<FJ(T)\ ~ , V, A , ® , -> , I , 0> 

is a residuated lattice. 
As for the generalised operations, it will do to demonstrate the properties of A-

The tautology (T 9) yields 

AKMMrlKMII 
teMv 

for every t e Mv. If |B | | ^T \\Ax\_t]\\ for all t e Mv then 

[Bll ^T | |A,[r]| 
as a special case where r is a special constant. Then T \- B => AX\Y\ and using Henkin 
axiom and tautology (T 6) we obtain 

T f- B => (Vx) A 
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whence 

IB! =rA|AJ>]||. 
teMv 

This means that / \ is the infimum in FJ(T)\ « , 

The fact that « is a congruence follows from Theorem 6. (d) The proof that /. is 
homomorphism with respect to the operation v , A , (X), -> follows immediately 
from tautology (T 1) and the assumption that Tis consistent. Let us demonstrate e.g. 

h(a -*• b) = \\a=> b\\ = \\a => b\\ = \\a\\ -> \\b\\ = h(a) -> /i(/3) . D 

Theorem 14. A theory T is contradictory iff Sf(T) is a degenerated algebra. 

Proof. Let T be contradictory. Then T I- A o B for any two formulae A, B e Ej(r> 
due to Theorem 4 and so 

Ml = W\ • 
Conversely, let S£{T) be degenerated and a < b. Then 

\\b~=^a\\ = || 111 

ì . e . 

whence 

ľ h ( й ^ a ) o l 

TV b^ a 

But /3 -> a < 1 and from the corrolary (b) of Theorem 4 follows that T is contra
dictory. D 

Lemma 25. Let Tbe a consistent theory. Then the mapping h:L-* FJ(T)\ « defined 
by /z(tf) = | | a | is an injection, i.e. a monomorphism from J$? into Sf(T). 

Proof. Let h be not an injection. Then there are a 4= & such that /z(a) = /t(l3) 
and TV a o b. Let a < b. Then 

Th 6 ^ a 

and tautology (T 1) and corollary (b) of Theorem 4 yield that Tis contradictory -
a contradiction with the assumption that T is consistent. D 

A set 
H - FJ(T)\ ~ 

is a filter if: 

1. If HA] e H a n d | | A | ^ r ]B | then |B | | e H. 
2. If | A | , [Bll e H then | |A] ® | B | e H. 

3. If 1AII e H then A ||-4,M1 e H-
teMv 

If the filter is maximal then we call it ultrafilter. 

Lemma 26. Let T be a consistent Henkin theory. 
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(a) Every filter H <= FJ(T)\ ~ w i t h t h e property 

(PI) H n /j(L) = /i(l) 

can be extended into an ultrafilter with the same property. 

(b) Let G £ Ej(T)| ~ b e a n ultrafilter with the property (PI) . Then the property 

IA || $ G iff there are a closed formula B , | |B | e G , a e L and 

n = 1 such that a < 1 and ||A|" ® [B|| = T /i(a) 

holds for every closed formula A e FJ(T). 

Proof, (a) Let H be a chain of filters fulfilling (P 1). Then 

UH n /i(L) = U{# n fc(L); H e H} = /i(l). 

The proposition then follows from Zorn's lemma. 

(b) If I A|| eG then it follows from the assumption that the only a such that h(a) e 
e G is a = 1. 

Conversely, let there be no such ||B||, a < 1 and n. Then G' = {||C[ e FJ(T) &; 
[AH"® IBI = T |C| | for some n and | B | e G} is a filter fulfilling (P 1). Indeed, 
the properties 1 and 2 of the filter follow from the algebraic properties of <£{T). 
Let ||C|| eG ' . Then 

T!- A" & B => C 

and due to Lemma 14 

Th(A"&B)=> Cx[t] 

for all the t e Mv. This means that 

[CJjllleG, IIAI"® IBI ST ||CJ.]II 
| | •*•!_ _i jl II II II II J II A I - - J II 

which yields 

A||CJ)]|6G'. 

The property (P 1) follows from the assumption. Moreover, | |A |, ||B|| e G', i.e. 
G u {|A |} == G' and, since G is maximal, we have G' = G, i.e. | A | e G. D 

Lemma 27. Let T be a consistent Henkin theory and G an ultrafilter in Jz?(T) 
with the property (P 1). Then 

[AH v IBII e G iff | |A | | eG or |B | | e G 

holds for every two closed formulae. 

Proof. Let |A | | ^ G, | |B | £ G. Then, due to Lemma 26, there are C, C , a, b, m, n 
such that 

| A | m ® |C|| STh(a) and ||A||" ® \\C'\\ = r / i ( / 3 ) . 
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Put k = max (m, n). Using tautology (T 8) we obtain 

([AH v IBD* ® (||C| ® |C'||) = (HA]* v ||B|fe) ® (|C|| ® ||C'|) <T 

<T(\\A\\m ® \\C\\) v (IIBl"® ||C'|) <Th(a) v h(b) = h(a v b) . 

Since ||C||, ||C'|| e G, we have ||C|| ® |C' | | 6 G. Since a v b < 1 it follows from 
Lemma 26 that || A|| v | B | | ^ G . 

The converse implication is obvious. • 

Let A0 be a chosen closed formula and T Va A0. Put 

a if if is a finite chain 
(Pa) b = <c, c > a if L= <0, 1> and a < 1 

1 if a = 1 . 

Lemma 28. Let Tbe a consistent Henkin theory. Then 

H = {|B||; (||A0|| -> I*!)" <T IIBl for some n > 0} 

is a filter with the property (P l). 

Proof. The properties 1 and 2 of the filter follow from tautology (T 6), Theorem 6 
and from isotonicity of ® in <£{T). Let A e H. Then 

T\-(A0=> b)n=>(\/x)A 

i.e. ||(Vx) A|| e H which means that 

A K M || e J? 
teMv 

and thus H is a filter. 

Now we prove that H has the property (P 1). Let b > a and suppose that there are 
c < X and n > 0 such that Th (A 0 => b)n => c. The tautologies (T 7), (T8) and 
theorem (D 8) yield 

TY(A0=> b)n v (b=>A0)
n. 

From the assumption and theorems (D 1), (D 6) we obtain 

Th(A0^>£)"^(c v (b=>A0)
n) 

and from theorem (D 7) and the fact that 

TY(b=>A0)
n=>(c v (b=>A0)

n) 

we obtain TV c v (b => A0)
n. At last, using theorems (D 1), (D 4), (D 6), (D 7) 

and (D 15) we obtain 

TV(b=> A0) v c . 

Since c is nilpotent we find m such that c'" = 0. Then using theorem (D 8) and tauto
logy (T 8) we obtain 

TY(b=> A0)
m v cm . 
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Since 1= cm <=>0 we can use Theorem 6 and after some reasoning we have 

T\-b=>A0 

on the basis of theorems (D 7) and (D 15). Let w' be a proof of b => A0, Valr (vv') = d. 
We write down a proof 

w : = b\b; LA] , w' [d~\ , A0 \b <g) d ; rMP] . 

Since V {Valr (w); w'} = b this implies TVb,A0 where a < b <. b' — a contradiction. 
From it follows that c = 1 and for any n 

T^(A0=>b)"=>l, 

i.e. only | l | e H. • 

Using Lemma 26 (a) we can extend H into an ultrafilter with the property (P 1). 
We denote this ultrafilter by G0. 

Lemma 29. Let T be a consistent Hen kin theory. Then to every closed formula 
A e E/cr) there is c e L such that 

IAD +-* \\c\\ e G0 . 

Proof. Put 

DA = (c; | |c| -* IIAI e G0) , HA = (c; | |A | -> ||c| e G0} . 

Let c' < c. Then | |c' | < r | |c| which implies 

|c | | —> |A | | < r | |c ' | -> UAH , 

i.e. ||c'|| —> HA! e G0. Analogously for HA. Therefore DA and HA are initial and ter
minal segments respectively. Moreover, with respect to tautology (T 7) it follows 
from Lemma 27 that DA u HA = L. 

Let Lbe a finite chain. Let ak be the last element of DA and ak <£ HA. Then tautology 
(TK) implies 

( M l -* \\ak\\)v ( K + J -* \\A\\)eGo 
and since ( | |A | -> |a f e | | )^G0 it follows from Lemma 26 that |%+i | | -> ||A|| e Go-
i.e. afc+1 e DA — a contradiction. 

Let L= <O, 1>. We show that L — DA is an open set. Let c <£ DA and c' < c 
be such that c' ^ Dx. From Lemma 26 follows that there are a closed formula B, 
d e L, d < 1 and n such that | B | e G0 and 

(Mi -* \\A\\y ® \\B\\ =T \\d\\ • 
Then 

IIBj < r ( | | c | -> lAH)"-^ | | 4 

and so (|]c[| -> | A | ) " ~̂* | |^| G &A> Choose d', d < d' < 1 and c' such that 

d' — d 
c > c > c . 
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Then(T 11) implies 

T h ((c => Af =></)=> ((c' => Af => <f ) 

i.e. 
(|c||-> ||A||)"-> | 4 e G 0 . 

From Lemma 26(b) we have 

(\\r\\ —>• II A \\\n et G vlrll ll^ll/ " u o ? 

i.e. c' 4 DA. Therefore DA is a closed set. Analogously using tautology (T 12) we prove 
that HAis closed. Since DAuHA = L and L is connected, it follows that DA n HA =j= 
+ 0. 

In both cases there is c such that ||c| -> | A | e G0 and | |A | -> | c | e G0, i.e. 

IA I <-> |c|| e G0 . D 

The relation 

[AH « A |c|| £ G0 iff (A|| <-> IB! e G0 

is an equivalence on Ej(T)| ~- Denote the corresponding factor set by 

Fj(T) | Go • 

It is possible to construct a factor algebra on this set which is similar to £?(T) and 
whose operations are defined analogously. 

Lemma 30. 

(a) « A is a congruence on Ej(r) | ~-

(b) L e t / : Ej(r) | ~ -* Fj(T) | Go be a canonical epimorphism. Then 

f\\A\\ ^ A | | c | eGo iff [AH -> IBI eGo 

holds true where ^ A is an ordering in FJ(T) | G0. 

(c) Let ThA. Then \\A\\ e G0. 

Proof. The proof of (a) and (b) is the same as the proof of 2.8 and 2.10 in [10] — II. 

(c) H T h A then T h A <=> 1. But 

Th(A0=> b)=>l 

and so the proposition follows from Theorem 6. • 

Theorem 15. Let T be a consistent Henkin theory. Then to every closed formula 
A0 and b e L defined in (Pa) there is a Q-homomorphism 

10- rJ(T) \ ~ -* -Li 

148 



such that 
AS(B) ú T0{\B\) 

T0(\Ao\) S b 

for every B e Fj^ry 

Proof. Put 

J = í|Afl € Fj(T) | « ; A is a closed formula] 

and let 

/ : F J ( T ) | « -> F J ( T ) | G0 

be canonical epimorphism. Let us denote / | | A | '•= [A]. Since T is consistent the 
mapping h is a monomorphism due to Lemma 25. Due to Lemma 28 

h(L) nG0= \\1\\ 

and thus 

I a "\\b\\$G0 

when | a | # \b\, i .e . / | |a | # /||*||- From this follows that//i : L-» F \ G0 is a mono
morphism. Lemma 29 implies (fh) (L) = / ( í ) . Indeed, h(L) £ í and, hence, (/h) (L) £ 

Conversely, if / | A | e / ( l ) then there is a e Lsuch that | A | e [a] e (fh) (L). Then 
[A] = [a], i.e. / | |A| | e O ) (L). This yields / ( í ) s (/fc) (L) . 

The mapping 

fh:L-+f(í) 

is an isomorphism (but not generally a Q-isomorphism) since f(l) is a subalgebra 
of Se(T). Set 

Í
(A) - 1 . / í 7 (m) if ^ is a closed formula 
( A T 1 / 0(U'|) w h e r e A ' i s a closure of A if A 

is an open formula. 

We will demonstrate that T0 is a Q-homomorphism. 

T0(|a|) = (fh)-*fg(\a\) = W ^ H - ( / ^ ' W W - a . 
If A, B are closed formulae then 

T0(\A =* B|) = (//,)-'/ g(|4 * B|) = (/(.)"' / (PI => ||B||) = 
- r 0 ( |^ | ) - T0(|J3|). 

Let A(x) has the only free variable x. Then 

TI-(Vx)A=>Ax[ í] , 

l(Vx)AlárKWI 



for any term t e Mv. Then 

T0(\(Vx)A\) = (j^-VIKV^AH S (fh)->f\\Ax[t]\\ = T0(\Ax[t\\) 

holds for all t e Mv. Using Henkin axiom we, at last, obtain 

T0(\Ax[r]\)£T0(\(Vx)A\) 

which yields the equality 

T0(\(Vx)A\) = AT0(\Ax[t]\). 
teMv 

If A : = A(xx, ..., xn) then A' = (Vxx)... (Vx„) A and the proof proceeds analogously 
as above. 

Let TVhB. Then AS(B) ^ a and h(a) = \\a\\ ST \\B\\ since TV a => B (using the 
rule rRa). Then 

To(|B|) = (/a)-1/!*! ^ (A)_ 1 /HI = A = -4S(B) 

where B is B or B' if B is a closed or an open formula respectively. In the end we 
obtain 

To(|^o|) = (fh)-1 f\\AQ\\ fg (fh)'lfh(b) = b 

since |A 0 | | —> h(b) e G0 which yields 

f\\A0\\ = Afh(b) 

by Lemma 30. • 

7.4 Completeness theorems 

In this section we present two completeness theorems which are generalisations 
of classical Godel's completeness theorems. They are the consequence of the previous 
results. 

Theorem 16 (completeness Theorem II). A fuzzy theory T is consistent iff it has 
a model. If T is consistent then to every A e E/(r> and b defined in (Pa) there is a model 
3) such that 

9(A) = b . 

Proof. If Thas a model then it is consistent by Lemma 13. 

Let Tbe consistent and T' be its Henkin (conservative) extension by Theorem 11. 
By Theorem 15 there is a Q-homomorphism 

T- F I ~ —> T 1 • r J(T) | ^ u 

using which we can construct a canonical structure Q)0 for which 

A'S(A) = 90(A), AeFJ(T). 

This means that QsQ is a model of V and therefore of Tas well. Since T' is a conserv
ative extension it follows from Theorem 15 that &>0 has also the other properties. • 
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Theorem 17 (completeness Theorem I). Let T be a consistent theory. Then 

ThaA iff T'haA 

holds true for every formula A e FJ(T). 
Proof. The model Q)0 from Theorem 16 has the property 

a < 9)0(A) < b 

for a given A and b defined in (Pa). If L is a finite chain then b = a = Q)0(A). In the 
opposite case 

a = /\{b; a < b] > /\{3)0(A) ; 20 is a canonical model from Theorem 

16} > a . 
Hence, 

a = (CsynAs) A = (CsemAs) A . • 

Theorems 16 and 17 are the most important theorems of this paper. They reflect 
deep properties of first-order fuzzy logic and they have many serious consequences 
concerning fuzzy logic as well as its applications. 

7.5 Completion of theories 

This section is based on the completeness theorems. 

Lemma 31. Let T be a consistent theory and T \-a A0. Then 

T = Tu { n a / l A o } 

is a consistent extension of the theory T 

Proof. Let (CsynAs) (~IAo) < "la. Let Lbe a finite chain. Then there is a model 
9 of T such that 

®(A0) = a . 

Since 2(~\A0) = "la, we have 

AS(A) = (As u {na /nAo}) (A) =" 2(A) 

holds for every A e FJ(T). Because T is a simple extension, it follows that Q) |= T 
and thus T is consistent. 

Let L — <0, 1 > and b > a. Then there is a model2b\= T such that 

®b(A0) < b . 
Put 

Tb = Tu{c/nA0} 

where Hb < c = @b(~[A0) = 1@b(A0). Clearly, @b\= Tb and therefore Tb is 
a consistent extension of the theory T At the same time there is a model Q)b |= Tb 

such that 

a < i^,(A0) < ^ , (A 0 ) < 6 . 
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Put 
Tb, = T6u{e'/-1A0} 

where c' = Sib{~]A0) = ^6(~1A0). Then ^fc.|= Tb, and thus T6- is a consistent 
extension of Tb (and, hence, of T). We obtain a sequence of consistent theories 

T,Tb,Tb,, ... 

such that 

As S As>6 S As,6' = ... 

is a chain of fuzzy sets in Ij(T). Due to Lemma 22 

T'=Tu U ^S,a 
nfe<d<ia 

is a consistent extension of T However, 

U ASJ = ASU u {nd/~iA0} = Asu{nfl/nA0} 
-|&<c.<ia a<d<b 

since 
V nd = n A ^ = ~ia . • 

a<d<b a<d<b 

Corollary. Let T be a consistent theory and T ha A. Then 

T= Tu{l/(A=> a)} 

is a consistent theory. 

Proof. It follows from Lemma 31 that 

r = Tu{i/nn(A^a)} 
is a consistent theory. Using theorem (D 10) we prove 

r h A => a . 

Since Csyn is a closure operation, the theory 

T" = V u {1/(A => «)} 

is a simple conservative extension and thence T" is consistent. Since 

As u {1/(A =-> a)} S A^ , 

T is consistent as well. Moreover, 

TV Ao a 

and thus 
ThflA. 

Theorem 18 (completion theorem) Let T be a consistent theory. Then there 
exists a complete theory T which is a simple extension of T. 

Proof. Let <E,-; i < q) be a chain of fuzzy sets in Ey(r> such that T0 = Tand 

Ti+1 = TluEl 
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is consistent. Then 

E = U Et 
i<q 

is an upper bound of (Et; i < q> and 

T = T u E 

is consistent due to Lemma 22. From Zorn's lemma follows that there is a maximal 
fuzzy set A <= FJ(T) such that T= Tu A is a consistent theory which is a simple 
extension of T 

We show that Tis complete. Let TVaA and TVC A => a, c < 1. Then 

T' = Tu {1/(A => a)} = Tu (A u {1/(A => a)}) 

is a consistent theory. But 

A £ A u {1/A => a] 

— a contradiction with maximality of A. • 

Note that the completion of the theory T needs not be conservative. 
Let T be a theory. Then the element ceL is called a consistency threshold for A if 

Tu{tf/-|A} 

is consistent for all d ^ c and contradictory otherwise. 

Theorem 19. Tha A iff "la is a consistency threshold for A. 

Proof. Let TVb A and la be a consistency threshold. If b > a then b ® la > 0 
and thus the theory 

Tu {na/nA} 

cannot be consistent. Therefore b ^ a. However, the theory 

Tu{nlj/nA} 

is consistent due to Lemma 31. This gives lb < ~]a, i.e. a < b ^ a. The converse 
is obvious. • 

8. CONCLUSION 

We have studied the properties of first-order fuzzy logic based on the set of truth 
values which formes a residuated lattice. We have confined ourselves only to the 
case when this set is either a finite chain or the interval <0, 1> since if we assume 
that the truth values should form a chain then these are the only structures allowing 
fuzzy logic to be syntactic-semantically complete. Moreover, it seems that they are 
the only structures allowing this completeness at al. 

We have proved the generalisations of Godel's completeness theorems which are 
nontrivial theorems having important consequences. Our theorems have been proved 
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only for the basic language of first-order fuzzy logic but some facts concerning the 
properties of the ultrafilter G0 make us sure that they will hold also when the language 
is enriched by a certain set of additional n-ary connectives (cf. [10] - II). The case 
when the language is enriched also by some generalised quantifiers is still unclear 
and needs further research. 

Let us note that the system of fuzzy logic presented here can serve as a base of most 
of the systems of many-valued logic studied in the literature (especially in the case 
it is enriched by the additional connectives mentioned above). This fact has serious 
consequences both for the theory as well as its applications, e.g. in expert systems. 
We have a tool at our disposal, which is a sound theory generalising non-trivially 
classical logic and stepping towards the understanding of the phenomenon of vague
ness which is one of the most outstanding features of human regarding of the world. 
Last but not least is the fact that fuzzy logic presented here is the only system (up 
to isomorphism) which, under the given assumptions, preserves the completeness 
property of classical logic. This is an encourage for all the workers in fuzzy set theory 
justifying the conviction that the latter can be put on theoretically well established 
basis. 

(Received November 30, 1988.) 
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