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K Y B E R N E T I K A — VOLUME 32 ( 1996) , NUMBER 4, P A G E S 3 9 5 - 4 0 7 

D I V E R G E N C E B E T W E E N VARIOUS ESTIMATES 
OF QUANTIZED INFORMATION SOURCES 

DOMINGO MORALES1, LEANDRO PARDO1 AND IGOR VAJDA2 

This paper investigates the asymptotics of information-theoretic divergences between 
theoretical and empirical estimates and/or between nonparametric and parametric esti­
mates of probabilistic source models. The results are applied to the source compression 
based on statistical estimation of unknown parameters, and to the testing hypotheses about 
information sources. 

1. INTRODUCTION 

Coding of information sources for transmission in discrete communication systems is 
based on quantization, i. e., decomposition of messages into disjoint sets D\,..., DM-
The number M is required to satisfy a transmission rate condition log2 M < R and 
the sets themselves are required to minimize certain distortion function (see Chap. 13 
in Cover and Thomas [5] or Berger [2]). 

In this paper we consider parametrized sources models (Fg : 9 G 6 ) where Fg(x) 
is a &-variate probability distribution function and 9 varies over an open set O C Rm. 
As shown e. g. in Berger [2] or Gersho and Gray [10], for most of practically interest­
ing source models there exist ordered decompositions T>M = (D\(9),. .., DM(9)) of 
R optimal in the sense of rate-distortion theory. 

The source probability distribution, in particular the true parameter value 9Q E O, 
are typically not known a priori. They have to be determined a posteriori, on the 
basis of observation of source messages X\,..., Xn. In this paper the messages are 
assumed to be independent random variables defined on a basic probability space 
(Q,,A,P), with a common sample distribution function Fe0. 

The posterior source specification may be either parametric, Fx , where 9n = 

9n(Xi,..., Xn) is a given point estimator 9n : Rk —> 0 , or nonparametric, Fn, where 
Fn is a sample-dependent &-variate distribution function (see Barron, Gyorfi and 
van der Meulen [1]). The best known example is the s tandard empirical distribution 
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function 

Fn(x) = ^J26Xi((-OOtx]), (1) 
i = \ 

where 6( is the Dirac distribution concentrated at £ £ Rk and (—oo,£] is the product 
of similar intervals for coordinates of £. 

The main disadvantage of nonparametric estimates is that they do not allow 
to employ the well-established parametric methods of quantization T>M(9). It is 
therefore convenient to combine the advantages of both these estimation methods 
by projecting a nonparametric estimate Fn on a parametrized family (Fg : 9 6 0 ) , 
which leads to parametric estimates Fg and, in particular, to point estimators 9n 

(see Gyorfi, Vajda and van der Meulen [11]). 

In this paper we consider parametric estimates allowing to employ the parameter-
depending quantizations under consideration. Unless otherwise explicitly stated, we 
consider arbitrary fixed: family (Fg : 9 £ 0) , estimator 0n, quantization method 
(T>M(8) : # E 0 ) and quantization size M > 1. For brevity we put for any distribution 
function r 

F{D}= / dF, DcRk. 
JD 

We define probability M-vectors P,Pn,Pn,Qn and Qn by their respective coordi­
nates 

Pj = Fgo{Dj(90)}, pn,j = En P ; ( M L Pn,j = Fn{Dj(90)}, 

4n,j = F§n{Dj(dn)}, qnJ = FBo{Dj0n)}, (2) 

where Fn is defined in (1). 
We see that P is the true probability distribution on the source quantized by 

using the true 6Q. On the other hand, Qn is the true distribution on the source 
quantized by using an estimate 0n.Pn and Pn are relative frequencies of cells when 
the quantization is based on 9n and 6Q respectively. The distributions P, Pn and 
Qn are not practically available without the knowledge of 9Q, while Pn and Qn 

are. The distribution Qn is a family-based alternative to Pn, and all four sample-
depending distributions are approximations to P . In this paper we evaluate the 
asymptotics of (^-divergences lJ^,(/in, vn) a s n - > o o for any pair fin, vn from the set 
of probability vector sequences {Pn, Pn, Qn, Qn}. Motivations for this result arising 
from information theory, statistics and neural networks are presented in Examples 1 -
3 below. 

Remind that the (^-divergence of arbitrary probability M- vectors fj, = (fj,\,..., ^M) 
and v = (v\,..., VM) is defined for convex functions <f> : [0, oo) —> (—oo, oo] finite 
everywhere except possibly at 0, by the formula 

M 

(3) 
i= i KUjJ 

The eventually undefined expressions behind the sum are assumed to be specified in 
the same way as in Csiszar [7] or Liese and Vajda [15]. 
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The role of divergences obtained for <f>(u) = — logu and <j)(u) = u • log if is well 
known in information theory. Applications of this divergence in neural networks 
were described e.g. in Vajda [21] and Vesely and Vajda [22]. The importance of 
other (^-divergences has been documented recently e.g. in [4,8,18,20 and 21]. 

Next we illustrate the application of the above mentioned asymptotics in the case 
of 

M 

/(/i, *,) = ][>,• log 2., (4) 
i= i M 

xw^E^^A (») 

which is the ^-divergence for <f>(u) = — logu, and 

M 

< V. 

3=1 J 

which is the ^-divergence for <j>(u) — (1 — u)2. 

E x a m p l e 1. Let the source quantized by T>M(8n) be Shannon-coded either on the 
basis of the essentially nonparametric estimate Pn or on the basis of the parametric 
est imate Qn. Denote by L(Pn) and L(Qn) the respective average codelengths. As 
well known, the Shannon entropy H(Qn) is the lower bound to both L(Pn) and 
L(Qn). By Theorem 5.4.3 of Cover and Thomas [5], it holds 

H(Qn) + I(Pn,Qn) < L(Pn) < H(Qn) + I(Pn,Qn) + 1 (6) 

H(Qn) + I(Qn,Qn) < L(Qn) < H(Qn) + I(Qn,Qn) + 1. (7) 

We see tha t the divergences I(Pn,Qn) and I(Qn,Qn) defined by (4) represent inef­
ficiencies of source estimates Pn and Qn in the given information-theoretic context. 
The asymptotics of divergences describes the rates of inefficiencies of these estimates. 
The estimate with a smaller inefficiency is obviously preferable. Our general result 
provides the asymptotics for n I(Pn,Qn) and nI(Qn,Qn) for various quantizations 
T>M(0) and estimates 0n. 

E x a m p l e 2. Our assumption that the source model belongs to a family (Fg : 8 E 
0 ) is a composite statistical hypothesis. In some cases this hypothesis is a priori 
acceptable but , quite often, is has to be tested on the basis of data X\,..., Xn in­
troduced above. The classical statistical testing procedure is specified for univariate 
observations and for quantizations T>M(0) not depending on 8 E O. The testing 
statistic nX2(Pn,Qn) is according to (5) evaluated for Pn,Qn given by (2) with a 
suitable estimator 6n, and the hypothesis is rejected if the statistic exceeds a positive 
critical value. Chernoff and Lehman [3] found a method for evaluating the critical 
values in case of the MLE 6n. They proved for sufficiently regular family (Fg : 8 E 0 ) 
and M > m + 1 that nX2(Pn,Qn) tends under the hypothesis to 

M - l 

E x> Z? (8) 
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in law, where Z\,..., ZM-I are independent s tandard normal variates and Xj = 1 for 
1 < j < M — m—1. The remaining parameters 0 < Xj < 1 for M — m < j < M — l are 
well-defined by means of the family and quantization. Later many authors extended 
this result to quantizations depending on 0 £ 0 and investigated optimality of 
various quantization methods (T>M(0) : 0 6 0 , M > 1), (see Dahiya and Gurland [9], 
Kallenberg, Oosterhoff and Schriever [13] and references therein). For extensions to 
multivariate observations see Moore [16]. 

By extending the results of previous authors to arbitrary test statistics D(f)(Pn, Qn) 
we provide a wide class of statistical tests for the hypothesis under consideration. 
Empirical studies (e. g. Sec. 5 in [15]) indicate that the powers of tests in this class 
depend on 0, and for typical alternatives the power is maximized by a statistics 
D^Pr^Qn) different from X2(Pn,Qn). 

E x a m p l e 3 . The hypotheses testing result of Example 2 has an immediate ap­
plication in classification by neural networks. Vesely and Vajda [22] considered a 
Bayes classification of signals from two classes distributed by fi or v. They described 
a neural network realization of this classification under the assumption that there 
exist "class etalons" fi* and iv* such that for all /i and v under consideration 

I(fj,,fjL^)<I(fi,v„) and I(v,/**) > I(vrv*). 

This condition can easily be verified under the hypotheses \i £ {Fg : 0 £ 0 i } and 
v £ {Fg : 9 £ © 2 h where ©i and 02 are disjoint intervals of real numbers and Fg 
are exponential distributions with natural parameters 0 £ R. Indeed, then ^(0) = 
I(Fg,Fg0) is for every 0o nonnegative and convex on R. It follows from here tha t 
ip(0) is isotone with |0 —0o| so tha t the "class etalons" may be any distributions Pgt 

and Pg2 with 0i and 02 from the interiors of intervals ©i and 02- Thus the statistical 
verification of the parametric hypotheses [i £ {Fg : 0 £ 0 i } and v £ {Fg : 0 £ 0 2 } 
by using a test of higher statistical power increases the probability tha t the neural 
net classification will be optimal in the Bayes sense. 

2. BASIC LEMMA 

We denote by | • | the absolute value of a number and also the absolute norm of an 

M-vector. For /i, v figuring in (3) the norm 

M 

\\i-v\- ]T|/i;- -Vj\ 
i = i 

means the total variation of/i and v (the ^-divergence for <f>(u) = \u — 1\). Further, 

for en > 0, o(en) or 0(en) denotes a sequence of real numbers such that 

\0(en) v °(e») П 
lim — = U or sup 

n—oo Єn n 

< oo 

respectively. 
T h e results of this paper are based on the following lemma describing a linear 

approximability of all smooth (^-divergences by relatively simpler x2-divergences. 
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L e m m a 1. Let Pn = (pn,i, • • -,Pn,M), Qn = (gn , i , • •• ,1n,M) be sequences of prob­
ability vectors for which there exists a probability vector P = (pi,... ,PM) with 

M 

I_P i>0 (9) 
i = i 

and a sequence en > 0 such that 

\Pn-P\ = 0(en), \Qn~P\ = 0(en). (10) 

Then for all ^-divergences with </>(u) twice continuously differentiable in an open 
neighborhood of u = 1 

D4>(Pn,Qn) = 0(1) + ffi>x2(Pn, Qn) + o(£2) . (11) 

P r o o f . By the Taylor expansion of 0(u) around u = 1 we obtain for every 
1 < j < m and all sufficiently large n 

0 (P±L) = 0(1) + 0'(1) P ^ - ^ J + l ^ ( p B j ) fPn____n_ 
V ? n i J / 9». J " \ Qn ,j 

where 

l r " j - 11 < 

It follows from here and (3) 

Pn ,j Я.П ,j 

Чn,j 

, м . _ . 
Dф(Pn, Qn) = 0(1) + i _ 3 Ф"(rntj)

[Pn'j qn'j) 

2 ^ " ' ! n j 

Hence it remains to prove that , for the sequence 

M , v 2 

j _ i í n> j 

and for £n figuring in (10), 
lim -— = 0. 

n ^ o o Cn 

Since by (10) 

n — oo 2 ---f qn j 
J = l ^ 

it suffices to prove that the right-hand side of the obvious inequality y 

max (pnj ~ Qn,j)2 < \Pn ~ Qn\2 

1<J<M 

is 0(en). But this is clear from (10). • 
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Corollary. For Pn, Qn satisfying the assumptions of Lemma 1, 

X2(Qn,Pn) - X2(Pn,Qn) = o(_2). (12) 

P r o o f . It follows from (3) and (5) that X2(Qn,Pn) = D<p(Pn, Qn) for the convex 
function </>(„) = (1 — u)2/u. This function satisfies the assumptions of Lemma 1 with 
(f)(1) = 0 and ^"(1) = 2. Thus (12) follows from (11). • 

3. MAIN RESULTS 

For en > 0 we denote by op(en) or Op(en) sequences of random variables such that 

lim P(\op(en)/en\ < e) = 1, for all £ > 0 
n-+oo 

(the convergence in probability of op(en)/en to zero), or 

lim P(\Op(en)/en\ < oo) = 1 
n—Kx> 

(the stochastic boundedness of Op(en)/en), respectively. We shall use the easily 
verifiable fact that if Pn, Qn in Lemma 1 are sample-depending probability vectors 
satisfying (10) with 0(en) replaced by Op(en), then (11) holds with o(en) replaced 
by op(en). Next we list our assumptions about the source model, estimator and 
quantization method. 

(i) Assumption about (Fg: 9 E 0) : All Fg(x), 9 E 0 , are Lipschitz in Rk and all 
Fg(x),x E Rk, are differentiable in 9. Moreover, the gradient 

vлw _ (± Í . (« ) ^ а д ) 

is continuous in 9 and x. 

(ii) Assumption about 9n: \9n — 0O| = Op(n~ll2) for each true value 9Q _ 0 (consis­
tency of order n 1 ' 2 ) . 

(Hi) Assumption about (T>M(9): 9 E 0) : Consider for s = l , . . . , m the „5-axis 
partitioned by points 

-oo = £S>Q(9) < ...< ZS,MS(G) = oo, 

where the finitely-valued functions (i.e. ^sj(9) for 1 < j < Ms_i and 1 < s < m) 
are continuously differentiable. Further, consider M = M\ • • • Mm and a one-to-one 
mapping 

m 

*:{l,...,M}-^Y[{l,...,Ms}. 
*=i 

The jth element Dj(9) O{VM(9) is assumed to be the cell in Rk with the partition 
points defined by \-"(i), i.e. 

m 

Dj{B) = H&j.-.AOU.jM] for (ju .. .,jm) - *(;). 
*=i 
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with ] replaced by ) if f.,j,(0) = oo, i.e. if j . = Ms. 

(iv) Assumption about (Fg: 9 G 0 ) and (T>M(Q) : # G O): All quantizations 

T^M(&), 0 G 0 , satisfy the condition (9) for pj defined by (2). 

Lemma 2 . Under (i)-(iii), every sequence Pn from the set {Pn, Pn, Qn, Qn} sat­
isfies the relation 

\Pn-P\ = Op(n-1'2). (13) 

P r o o f . Assumptions (i)-(iii) imply those of Ruymgaart [19], who proved re­
lation (2.2) of Moore [16] originally established under stronger assumptions. In our 
notation this relation takes on the form 

Pn,j ~ Pn,j + Pj ~ qn,j = Op(n~1/2) for all 1 < j < M. (14) 

Since n 
nl/2(pnj -Pj) = n-V'^^DM^-pj) , 

i= i 

the central limit theorem implies 

\Pn-P\ = Op(n-1l2). (15) 

K qn,j - Pj = Op(n-^2) for all 1 < j < M, (16) 

then \Qn -P\ = Op(n-1 /2) holds and |Pn - P\ = Op(n"1 /2) follows from (14) and 
(15). If 

?„j - qn,j = Op(n~1/2) for all 1 < j < M, (17) 

then \Qn — P\ = O p (n - 1 / 2 ) follows from (16). Thus it remains to prove (16) and 

<17)-
By (2) and the definition of Dj(6) in (iii), qnj — pj is a finite sum of expressions 

of the form ±[E6>0(£(^n)) — Fe0(^(^o))} where £ is one of the functions supposed to 
be continuously differentiable in (iii). Denote by V£(0) the gradient of £ at 6 and 
by L($o) the Lipschitz constant for Fg0 (cf. (i)). Then the Lipschitz property and 
the mean value theorem imply 

I P . o ( ^ n ) ) - ^ 0 ( ^ o ) ) | < L(e0)\Wn)-Wo)\ 

< L(0o)\VC(On)(9n-9oY\, 

where 9n is a function of sample satisfying the condition \\9n — 9o\\ < \\9n — !jo||-
Since V£(0) is continuous on 0 , it follows from (ii) 

\Vt(8n)(en-90)
t\ = Op(n-1/2). 

This implies (16). 
Now we prove (17). By the similar argument as above, it suffices to prove 

FeM§n))-FsM0n)) = Op(n-1/2) 
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for the same £ as above. By the mean value theorem, 

FiSWn)) - Feo(Z0n)) = VFoMOn)) (k - eoy, 

where VFgn(x) is the gradient of Fg(x) at 9 = 6n and 6n is similar as above. By the 
continuity of gradient function assumed in (i), one obtains from (ii) 

\VF0MOn)0n - eoy\ = Op^-1'2). • 

Now we can formulate the main result of the paper. 

Theorem . Suppose (i)-(iv) are satisfied and that p,n, vn are two sequences from 
the set {Pn, Pn, Qn, Qn}. Then for every <f> considered in Lemma 1 

D*(fin, ^n) = 0(1) + ^ ^ x 2 ( / i „ , Vn) + Op^'1). (18) 

P r o o f . Clear from Lemmas 1 and 2 and from the observation at the beginning 
of this section. • 

Corollary. If the assumptions of Theorem hold then for all <f> and p.n, vn considered 
there 

D4>(nn,vn)-cj>(l) = Op(n-1). (19) 

P r o o f . By assumptions, it holds for all 1 < j < M 

^n,j - Pj = Op(n~112), vnJ - pj = Op(n~1/2)} 

i.e. . 
Pn,j ~ vn>j = Op(n I ) . 

X2(»n,vn) = X. ( / i n J Unj) = Op^-1) (20) 
"n ,j 

and (19) follows from (18). • 

Therefore A/r 
M ' -v -^ 

• 1 Vr-

4. APPLICATIONS TO SOURCE CODING 

In this section we present an optimality of quantization methods (VM(@) '• 0 £ Q) 
from the source coding point of view, in order to demonstrate that the conceptual 
framework of Example 1 is justified. Then we apply the results of Section 3 to 
the situation described by this example. For simplicity we restrict ourselves to a 
parametrized source model (Fg : 9 G 6) on the real line R, and to the distortion 
function (distortion measure) 

p(xi,x2) = \xi - x2\. 
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Let VM(9) = (Di(9),..., DM(9)) be a quantization defined by partitioning of R by 

functions —oo = £o(0) < £i(9) < • • • < £ M ( # ) — °°> l-e- l e t 

with ] replaced by ) for j=M. 
A source code is a mapping K : R —> R. The number log2(card«;(i?)) is the code 

information rate . We are interested in codes with finite information rates l o g 2 M , 
i. e. in codes with finite codebooks C(R) = ( # i , . . . , XM)- The average distortion 

м 

P ' 
м 

(«) = £ / \x-Xj\dF o(x) (21) 
„ _ 1 J K ~ X ( X І ) j=lJ* l ( * i ) 

is the measure of quality of the code K when 9Q is the true source parameter. 

Every code K with a codebook CM = (x\,..., xM) defines a source quantization 
T>M = ( / C _ 1 ( Z I ) , . . . , K _ 1 ( I M ) ) . In the sequel we use the fact that , for a given 
source quantization VM = (D i , • • •, DM), a source code of rate log2 M is uniquely 
specified by a codebook CM = (a? i , . . . , xM) (both sets are considered to be ordered). 
Analogously, for a given codebook CM = (~i,..., xM) a source code of rate log 2 M 
is uniquely specified by a source quantization VM = (D\,..., DM). In this sense 
the optimality considered below is the optimality of source codes. 

It is obvious t h a t a source quantization V*M = ( £ ) * , . . . , D*M) is optimal for a 
codebook CM = (xi,.. ., xM) in the sense that it minimizes the average distortion 

M r 

Pe0(VM) = J2 \'-*j\M9o(*) (cf- (20)) 
i-zljDi 

over all source quantizations T>M = (Di,..., DM) if and only if for all 1 < j < M 

D?=d,^], 
W h e I * e +* *i+Zi + l • , X 

g= 2 ' j = l , . . . , M - l , (22) 

and ^o = —°°> £ M = °°- W e see tha t this optimality is independent of the true 
source parameter oo- It is also known that a codebook 

CM(8O) = (XI(9Q),...,X*M(9Q)) 

is optimal for a source quantization T>M = ( £ > i , . . . , DM) with the property F6o{Dj} 

> 0 for all 1 < j < M in the sense tha t it minimizes the average distortion 

M . 

P90(CM) = Y, \x-Xj\dFeo(x) (cf. (20)) 
j = l jDi 

over all codebooks CM = ( a? i , . . . , xM) if and only if 

X*(9Q) = median of EO) 
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where FfJ is the distribution function Fg0 conditioned on Dj. In particular, the 
codebook C*M(0,0O) = (*i(Mo), • • • , z M ( M o ) ) optimal for the above considered 
VM(0) is given by 

*J (Mo) = \ (Fi^ZM) ~ - T o ' t o - i W ) ) for 1 < i < M, (23) 

where Fe~
l : [0,1] —• H, is the source quantile function. 

The quantization method (VM(9) : lj £ 0 ) is not optimal from the point of view 
of source coding if there exists ljo £ 0 and 1 < j < M — 1 such that 

, , - v , ^ ( g Q , g ) + ^ + l ( g 0 , g ) 

In this case there exists a better code of the source (R, Fg0) than any of the codes 
which are constant on the cells Dj(0o) = (£j-i(Qo),£,j(@o)] of the quantization 
VM(QO)- Indeed, by (22), it is the code given by the partitioning VM of R defined 

""— WM + WM f o r l < J < M_1 , 
3 2 

and ^Q = —oo,£M = oo, and by the corresponding codebook CM = (x\,... ,x*M), 
defined by 

*i = J (-T.1^) " -T.'K;-!)) for 1 < ; < M (cf. (23)). 

Therefore a condition for considering a quantization method (VM(0) '• 0 £ @) 
defined by functions —oo < £i(lj) < . . . < £ M - I ( # ) < oo to be optimal from the 
source coding point of view is 

x*(6,0) + x*,J0o,9) 
(,($)= }K ' \ 3 + f o r a l l 0 € 0 a i i d l < j < M - l , 

where Xj(Q,6) are given by (23). In other words, the condition is 

^• ( g ) =^"H^+ i(g))-P (r
1fe--iW) f o r a l l ^ e a n d l < i < M - l . (24) 

It is easy to see that for the source models with known quantile functions Fe~
l, 0 £ 

0 , like the exponential or logarithmic ones with 0 = (0,oo) and with 

Fg(x) = 1- exp(-0x), x>Q, or Fg(x) = 1 - (loge x)~e, x > e, 

one can construct explicitly for any M > 0 the partitioning functions %[ (0),... 

• ">£M-I(&)
 s u c n that t n e corresponding quantization method (VM(0) '• 0 £ Q) 

satisfies (24). 
Now consider a parametrized source (Fg : 0 £ Q) quantized by the method 

(VM(0) '• 0 £ Q) under consideration, optimum in the sense of (24). Let the source 
and the partitioning functions £;(lj) satisfy assumptions (i) and (iii), (iv) of Section 3, 
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and let 9n be an estimator of the unknown true source parameter 9Q satisfying 
assumption (ii) of Section 3. In accordance with Example 1, suppose that the 
codebooks x*A9n, 9n) defined by (23) are transmitted by means of a Shannon binary 
code. In the first case, let the quantized source probabilities be estimated by Pn and 
in the second case by Qn, both defined by (2). Using the Corollary of Section 2, we 
obtain the following formulas for the inaccuracies introduced in Example 1: 

I(Pn,Qn) = Op(n-1) and I(Qn, Qn) = Op(n~l) a s n ^ o o . 

We see that our simple theory is not able to distinguish which of the estimates 
Pn and Qn is better, but it is able to confirm that both these estimates are good in 
the sense that the corresponding inaccuracies tend to zero fast enough. 

5. APPLICATIONS TO GOODNESS-OF-FIT 

In this section we consider applications of our Theorem to the problem of testing 
statistical hypotheses introduced in Example 2. Under assumptions stronger than 
ours (i)-(iv), Moore [16] proved for X2(Pn,Qn) more explicite asymptotic result 
than (20), namely he found the asymptotic distribution of nX2(Pn,Qn)- By means 
of our Theorem, this distribution can easily be adapted to all statistics D^(Pn,Qn) 
under consideration. Thus these statistics can be used as alternatives to the X2-
statistic in the goodness of fit testing. 

By Theorem 1 of Moore [16], under assumptions concerning (Fg : 9 £ Q),9n, 
and (T>M(9) : 9 £ O) stated there, nX2(Pn,Qn) tends in distribution to (8). The 
parameters \\,.. ., \M-I have formally the same properties as those in (8), but they 
are given by a more complicated formula than in the case where 9n is MLE and the 
quantization T>M(9) is constant for all 9 £ O. 

By our Theorem, under the mentioned assumptions of [16], it holds for all (j) 
considered in Lemma 1 with 4>"(1) ^ 0 that the statistic 

2n(Dф(Pn,Qn)-ф(l) 
ф"(ì) 

(25) 

tends in distribution to (8) as well, for the same Ai , . . . , A M - I as in [16]. 
Note that in the particular case of quantizations T>M(9) not depending on 9 £ O 

and convex functions </>«(«) = sign(a — l)(u° — l),a > 0,a ^ 1, the asymptotic 
distribution of statistics (25) has been investigated by Cressie and Read [6], who 
also proved that, from the point of view of second order properties, some of the 
statistics (25) are better than the classical nX2(Pn,Qn). Extensions of the results 
of [6] to all </> differentiable on (0,oo) have been considered in [14] and [17]. 

Note also that the assumptions of [15] are stronger than those of our Theorem only 
as regards the family (Fg : 9 £ 0 ) and estimator 9n- As regards the quantization, 
they are equivalent to ours (iii) and (iv). 

In information theory the problem of testing considered in this section takes place 
if a source is described by a family (Fg : 9 £ 0*) and the hypothesis H : H(Fg) £ T 
about the source entropy H(Fg) is to be tested. Here T is an interval from the 
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entropy domain and the entropy may be considered e.g. in the Shannon sense if the 
source is discrete, or in the differential sense if the source is continuous. For some 
models the hypothesis corresponds to a subset of parameters 0 C ©* satisfying 
the assumptions of our theory, and the alternative corresponds to the complement 

e*-e. 
Applications of the results of this section in statistical decisions based on neural 

networks have already been indicated in Example 3. 

6. F U R T H E R EXTENSIONS 

Sometimes it is convenient to consider functions h(D(j)(fi, u)) of ^-divergences instead 
of ^-divergences themselves. For example, the divergences 

M 

EW-^'I1 '* , 0<a<l, 
j= l 

defined by 4>a(u) = \ua — V^la are not metrics but their powers ha(D$a(n,u)) = 
D<f,a(fi,u)a are. The results of our Lemmas and Theorem, and their Corollaries, 
can obviously be extended by replacing D^(fi,u) by h(D<p(n,u)) — h((f)(l)) for h 
continuously differentiable. 

(Received August 8, 1995.) 
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