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K Y B E R N E T I K A — VOLUME 32 ( 1996) , NUMBER 4, P A G E S 4 0 9 - 4 2 4 

ON A METHOD OF ESTIMATING PARAMETERS 
IN NON-NEGATIVE ARMA MODELS 

J I T K A ZICHOVÁ 

The purpose of this paper is to introduce a method of estimating parameters in non-
negative ARMA processes. The method is a generalization of the procedures which were 
derived for autoregressive and moving-average processes. The estimates are constructed 
in the form of minima of certain fractions or some functions of these minima. A theorem 
concerning the strong consistence of these estimates is proved and its applications to the 
models ARMA(1,1), ARMA(2,1) and ARMA(p,l), p > 2 are demonstrated. 

1. INTRODUCTION 

Non-negative ARMA processes are investigated in this paper. A method of estimat
ing parameters of these processes is introduced. This method is a generalization of 
a procedure proposed by Bell and Smith in [3] and used by Andel in [2]. 

Bell and Smith considered an AR(1) process 

Xt = bXt-i + e t , t = 1, . . . , n , 

where 0 < 6.< 1, t% > 0 is a strict white noise, this means a sequence of independent 
identically distributed random variables, and xo > 0 is a given variable independent 
of e\,..., en. They constructed the following simple estimate for the parameter b 

,* • i X\ x2 Xn 

b = m m xO xl xn-] 

They proved tha t b* is strongly consistent if and only if the distribution function F 
of the white noise et satisfies the condition 

F(d)-F(c)<l for allO < c < d< oo. (1.1) 

A natural way to generalize the above estimate to some other t ime series models is 
to derive the estimates in the form of minima of certain fractions or some functions of 
these minima. Andel proposed such estimates in non-negative first and second order 
moving average processes. In the MA(1) model which is defined by the equation 

xt = e< + aet-\, t = l,2,...,n, 
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where et > 0 is a strict white noise satisfying (1.1) and 0 < a < 1, the estimate 

Xt+i + Xt-i 
a = min 2<ť<n-l Xt 

was proposed. 
In the MA(2) process 

Xt = et + aie t _i + a2e*_2, t = 1, 2, . . . , n, 

where et is the same as in the previous model, a\ > 0, a2 > 0 and all roots of 
the polynomial z2 + a\z + a2 lie inside the unit circle, the following estimates were 
derived 

. xt+i + 3x<_i a, = mm , 
2<t<n-l Xt 

* . xt+2 + 2x<+i + Xt-2 
a9 = mm — . 

3<t<n-2 Xt 

The strong consistence of the estimates a*, a*, a*2 was proved and some approxi
mations of their distribution functions and means were constructed in [2]. 

Similar estimates were also found in non-negative second order autoregressive 
processes, but their convergence is slower than in the case of estimates obtained by 
other methods. 

The subject of this paper is estimating parameters in non-negative ARMA pro
cesses using a generalization of the method published by Andel in [1] and [2]. If the 
ARMA process Xt is stationary it can be written as a linear process. Some appro
priate fractions are chosen such that their minima are strongly consistent estimates 
of the coefficients of the linear process Xt. The estimates of the parameters of the 
ARMA process Xt are then found as a solution of a system of linear equations. 

2. ASSUMPTIONS 

We shall consider a non-negative ARMA model which satisfies the following assump
tions through the remaining part of our paper. 

A.l Let et > 0 be a strict white noise with fie = Eet < oo and Ee2 < oo. 

A.2 Let F(y) = P(et < y) be the distribution function of the random variable et. 

A.3 Let 0 < F(y) < 1 for all y > 0. 

A.4 Let a\, • • • ,aq, &i,... ,6- be real numbers such that 0 < a» < 1, i = I,... ,q, 
0 < bj, j = 1,.-.,p. 

A.5 Let q p 

£> + 5>^o. 
i'=l ; = 1 
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A.6 Let the polynomials 

g - l p - l 

e(z) = z9 + 5>g_ f cz f c , *(z) = zP-]T&p_fcz
fc 

fc=0 fc-0 

have all roots inside the unit circle and let they have no common roots. 

A.7 Let Xt be ARMA(p, q) process defined by the equation 

Xt = biXt-i + . . . + bpXt-p + et + a i e . _ i + . . . + aqet-q. (2.1) 

3. REMARKS 

R e m a r k 3 . 1 . Define a; = 0 for i > q. The process Xt can be written in the 
following form 

oo 

Xt = y^Cket-k, 
k=o 

where 
min(j',p) 

c0 = 1, Cj = a,j + 22 biCj-i for j > 1. 
i = i 

R e m a r k 3 .2 . Let n be a positive integer and let /?_,- > 0, j = 1,... ,n. Denote 

n - l 
a _. 

i-o 

If /? > 1 then there exists x > 1 such that 

n - l 

x" 
i-o 

n = ^ ^ . i a ; i 

P r o o f . If /3 = 1, we put x = 1. Consider /? > 1. When we define a polynomial 

n - l 

f(t) = tn-Y,Pn-jtj, teR, 
3=0 

we have / ( l ) = 1 — /? < 0 and f(t) —> oo for t —* oo. Thus there exists x > 1 such 
that / ( x ) = 0. • 

R e m a r k 3 .3 . The parameters bj, j = 1,2,... ,p are less than one. 

P r o o f . The roots of the polynomial ^(z) lie inside the unit circle. It follows 
from Remark 3.2 tha t &i + . . . + bp < 1. Since bj > 0, j = 1 , . . . ,p we get bj < 1, j = 
l,...,p. • 
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4. MAIN RESULTS 

Let a realization Xi,X2,. • -,Xn of the process (2.1) be given. Let k,m < n be 
non-negative integers, m + 1 < n - k, r, = r»(&, m) > 0, t = 1,. . . , m. Consider the 
following variables 

Vt = Vt(k,m) = i - (Xt+k + X>,*1_1 J . (4.1) 

We can write according to Remark 3.1 

Vt 

1 °° / m \ 1 _°° 

t j=0 V i=l / j = -k 

where 

Denote 

and define 

X, 

ctj = aj(k,m), 

otj = ck+j f o r i = - f c , - * + l ł . . . ł 0 l (4.2) 
min(_/,m) 

a;- = Cfc+j + Ş ^ CJ-ІГІ foľ j = 1,2,... (4.3) 
ì=i 

Pj = Pj(k, m) = ^ - for i > 0, Cj ф 0 (4.4) 

Pj = oo for negative j and for c7 = 0 . (4.5) 

Let the coefficients r, be chosen in such a way that 

min Pj = Ps ^ 0 exists for some s > 0, c, / 0. (4.6) 
j>-k 

Such numbers rt- can be found in ARMA(p,g) models defined by (2.1) with a; > 0, 
i = 1,2,... ,q and bj > 0, j = 1,2 . . . ,p as we can see in some models of this type in 
[6] and in the case of ARMA(p,l) models, p > 2 in the next section. 

Theorem 4 .1 . Denote 

Mj. = Mk(k, m) = min V. for m + 1 < n — k, 
m+l<t<n — k 

where V. is defined in (4.1). Then 

Mk = P . + min zť, 
m+Kť<n-Jk 

where P, is defined in (4.6), 

zt = zt(k,m) = (XІ)'1 22 Ьjet-j, 
з=-k 

Xj = Лj(Ar,m) > 0 foг j > -k and Л. = 0 
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and 
min zt —> 0 a.s. for n —•*• oo. 

m+l<t<n — k 

P r o o f . It is not difficult to prove that 

oo oo 

/]CJ < oo and VJ a;- < oo. 
y=o j=-k 

Using the condition (4.6) we can apply Theorem 6.1 to the sequences {ctj} and {CJ} 
and we obtain 

Mk = Ps+ min zt, 
m+l<t<n — k 

where 
oo 

zt = (Xt)~ y . ^jet-j, Xj > 0 for j > —k and As = 0. 
j=-k 

Here s is the index defined in (4.6). It is easy to show that 

Xj = ck+j for j = -k,..., - 1 , (4.7) 

A0 = 0 for s = 0, (4.8) 
min(s,m) \ 

CS-JTJ for s > 0, 

( min(i,ti 

XQ = Ck Ck + s + /] 
Cg \ • , 

m'm(j ,m) 

Xj = Ck+j + £ Cj-iri - CjCk for s = 0, j = 1, 2 , . . . , (4.9) 
í=i 

min(,7,m) ( min(s,m) \ 

Xj = ck+j+ ^2 Cj-iri-— ícjfc+s+ ^2 c*-*'r* ) for s > 0 , i = 1 , 2 , . . . and A s =0. 
c. 

i = i \ i = i 

Define random variables wt = wt(k, m) a Ru = Ru(k, m) as follows 

oo 

wt = (et)~
l ^2 Aiet-J> 

j=-k 

oo 

Ru = 22 Xjet-j f° r u — ~~ k-
j=u + l 

Clearly, 

Since 

ERІ = Ee2

tЧ J2 X) + & £ Л«Лi" 
j=U+l ЛІ = u + l 

*Фз 

csф0, Y^c) <oo, 
7 = 0 
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we have with respect to (4.7)-(4.9) 

2 < oo. 

j=-k 

Therefore E'P2 —* 0 for u —• oo from which we immediately get P(RU > 8) —• 0 for 
arbitrary 8 > 0. This means P(RU < 8) > 0 for sufficiently large u. Let £ > 0, 7 > 0 
be given numbers and choose u such that P[RU < ej(k + u + 2)~ ] > 0. Then 

P(u/< < e) = P I ~T~ Aye*-,- + Ru < eet 

>- n / ( ^ - - > - n r + a ) - ' ( ^ - r i ^ + a ) - ^ * ^ 
j=-fc 

> 17 ~ 77 g T
 0^> P[Ru< , S1 - 1 P ( e . > 7 ) > 0 -

~ j i i L(^ + w + 2)A iJ V ^ + w + 2 / 
Xj*o 

Since z< < t^tj w e a l s o have P(z< < e) > 0. 
Denote {j/t,/ = 1,2,...} the sequence of indicators of the events {zt < e}. The in

dependent identically distributed random variables et represent a strictly stationary 
and ergodic sequence. Therefore the sequences {zt}, {yt} are according to Theorem 
VI.6.3, p. 394 in [5] strictly stationary and ergodic. Thus 

1 " 
— > yt —• Eyi = P(zt < e) > 0 a. s. for n —> oo 
n --—' 

t = i 

and infinitely many events {̂ t < e} occur with probability 1. This implies 

min zt —* 0 a. s. for n —> oo. • 
m+l<t<n —it 

Corollary 4.2. The random variable Mk from Theorem 4.1 is a strongly consistent 
estimate for P,. 

Remark 4 .3. The fractions Pj are functions of the parameters a i , . . . , aq, b\,..., bp. 
The function Ps = Ps(a\,... >Qq,b\,,. .,bp) has a simple form when r\,... ,rm are 
such that 

min Pi = PQ. 
j>~k J 

Indeed, we have Po = ot0 = Ck, but aj, j = 1,2..., are linear combinations of the 
coefficients a. 
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5. ESTIMATING PARAMETERS IN ARMA MODELS 

Applying Theorem 4.1 to the models AR(1), AR(2), MA(1) and MA(2), we obtain 
the results published in [1] and [2]. Strongly consistent estimates of the parameters 
in ARMA(1,1) and ARMA(2,1) models were derived using Theorem 4.1 in [6] and 
we show them in a brief review. Then we derive strongly consistent estimates of the 
parameters in ARMA(p,l) model with p > 2. 

5.1. Model ARMA(1 ,1 ) 

The process Xt is defined by the equation 

Xt = b\Xt-\ + et + a\et-\, 0 < _i , b\ < 1. 

We have the following strongly consistent estimates for a\, b\: 

Xt+\ + 2Xt-\ £ 
_i„ = mm - 6i„, 

2<.<n- l Xt 
X 

b\n - M\= min — — . 
l < t < n - l Xt 

5.2. Model ARMA(2 ,1 ) 

The process is defined as follows 

Xt = b\Xt-\ + b2Xt-2 + et + - ie t_i , 0 < a\, b\, 62 < 1. 

The strongly consistent estimates for a\, b\, b2 are 

M3- M\M2 

a\n -• Ш i ІÍ2-MÍ 

Ь\n -
M3 - M\ M2 

м2 - мl ' 

Ь\n = 
M2

2-MiM3 

м2 - м 2 

They represent a unique solution of the system of equations 

Mi = _i + 6i, 

M 2 = 6i(ai + 6i) + 62) 

M3 = (6f + S2)(ai + 6i) + 6i62, 

where Mi, M 2 , M3 are defined in Theorem 4.1. 

5.3. M o d e l A R M A ( p , l ) 

The process Xt is defined by the equation 

Xt = b\Xt-\ + 62X t_2 + . . . + bpXt-p + et + ~ie t_i, p > 2, 0 < _i,6i, . . .bp < 1. 
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Another expression of Xt is according to Remark 3.1 

Xt = У^CkЄţ-k; 
к=0 

where 

c 0 = 1, ci = a i + 6 i , c 2 = 6iCi + 6 2, . . . , 

c p _i = 6iCp_2 + 6 2 c p _3 + . . , + bp-i, 

Cj = &ic/_i + 62CJ-2 + • • • + bpCj-p for j = p, p + 1,. 

P u t m = p in (4.1) and consider the variables 

Vt = ^-[Xt+k + YjriXt-i 

They can be written in the form 

Xt 
\ i=i 

vt = — J2 aje*-j-
* j=~k 

Here we have with respect to (4.2) and (4.3) 

o>j = ck+j for j = -k,-k+ 1, . . . ,0 , 

min(j',p) 

ctj = ck+j + ^2 Cj-tri for j = 1,2,.. . 

and according to (4.4) a (4.5) 

Pj = --- f o r i = 0 , l , 2 , . . . , c y ^ 0 , 
c ; 

Pj = 00 for 7 = —k, —k + 1 , . . . , —1 and for Cj = 0. 

Since Po — Ck we get the condition 

min Pi = Po if and only if Ck < Pi for all j > 0 
j>0 

which leads to the following system of inequalities for a fixed k 

ckCj <ck+j+riCj_i + r2Cj-2 +••• +rj, j = 1, 2 , . . . ,p - 1, (5.3.1) 

cjbCy < Ck+j + r i C j _ i +r2Cy_2 + . . . + r p c J _ p , j = p , p + 1 , . . . (5.3.2) 

We can easily prove some properties of the coefficients Ck by complete induction. 

These properties are summarized in Lemmas 5.3.1-5.3.3. 
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Lemma 5 .3 .1 . Let p > 2. Define A0 = 0, -4i = 1, B0 = 1, Bi = 0. Then 
cjfc = Akc\ + Bk for k > 2, where 

min(fc,p) min(fc,p) 

Ak = biAk-i-r Bk-U Ak = ] V bjAk-j, Bk = ] V &,B*-j. 
i=i i=i 

Lemma 5.3.2. The numbers Ak, Bk from Lemma 5.3.1 satisfy 

Ak < 2k~2 , Bk < 2k~2 for k > 2. 

Lemma 5.3.3. The coefficients cjfc satisfy 

ck < 3 - 2 * - 2 for k =2,...p, 

cp+1 < 3 - 2 P - 1 - ! . 

The solutions of the system of inequalities (5.3.1), (5.3.2) are introduced in the 
following three Lemmas. 

Lemma 5.3.4. Let k = 1. If the numbers r i , r2, . . . , rp satisfy the condiotions 

n > 2, (5.3.3) 

rj>Z2J-\ j = 2,...,p-l, (5.3.4) 

rp > 2 (5.3.5) 

then they represent a solution of the system of inequalities (5.3.1), (5.3.2). 

P r o o f . Consider j = 1. The first inequality from the system (5.3.1) can be 
written in the form 

c 2 - c 2 < r i . (5.3.6) 

We have with respect to the assumption A.4 and Remark 3.3 

c\- c2 = a\ + ai&i —b2<2. 

Thus ri > 2 can be chosen as a solution of the inequality (5.3.6). 

Let j > 2. The inequalities from the system (5.3.1) can be written in the form 

c\Cj - Cj+i -riCj-i - . . . - r ; - _ i c i < r.-, j = 2,. ..p-1. (5.3.7) 

The left side of the inequality (5.3.7) can be rewritten as 
i i+i i - i 

c\ 22 biCj-i - 22 biCj+i-i - 22 ricj-i 
i—1 i=\ i= l 

i - i 
= jXbjCi - b(+i - r^ Cj-i + Cibj - b\Cj - bj+i 

i= i 
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3-2 

- ClzZ ^ c i - i + ci^' -1 + c\bj 
»=l 

3-2 

< ^6 -2 J ' - l ' - 2 + 6 = 3-2J'-1, y = 2 , . . . , p - l . 
i = l 

The last upper bound was found using Lemma 5.3.3. Therefore a solution of the 
system (5.3.1) is r3- > Z-2?'1, j = 2,...,p+ 1. 

The inequalities from the system (5.3.2) can be written in the form 

CiCj < cj + 1 + rxcj-i + . . . + rpCj-p, j = p,p+l,. .. 

or equivalently as 

P - I p - i 
c i __ hcj-i + cibpCj-p < J2 (*f+i + ri) Cj-i + biCj + rpCj_p, j = p,p+ 1,... (5.3.8) 

»=i i=i 

The inequality (5.3.8) is satisfied if r; > C]6; — 6i+i, i = 1,... ,p — 1 and rp > c\bp. 
With respect to the assumption A.4 and Remark 3.3, it suffices to chose rz- > 2, 
1 = 1 , . . . , p . D 

L e m m a 5 .3 .5 . Let 2 < k < p. If the numbers r i , rg, . . . , rp satisfy the conditions 

r ! > 3 - 2 * - 2 , (5.3.9) 

rj >9-2k+i~4, j = 2,...,p-l, (5.3.10) 

r p > 3 - 2 f c - 2 (5.3.11) 

then they represent a solution of the system of inequalities (5.3.1), (5.3.2). 

P r o o f . The assertion can be proved by a similar procedure as in the case of 
Lemma 5.3.4. D 

L e m m a 5.3 .6 . Let k = p+ 1. If the numbers n , r%, . . ., rp satisfy the conditions 

r i >Z-2f-1-l) (5.3.12) 

rj > (3 • 2P- 1 - 1) • 3 • 2^ - 2 , j = 2,...,p-l, (5.3.13) 

rp>?,-2P-1 - 1 (5.3.14) 

then they represent a solution of the system of equations (5.3.1), (5.3.2). 

P r o o f . The procedure is similar as in Lemma 5.3.4. D 

R e m a r k 5 .3 .7 . According to Lemma 5.3.4, the sequence r\, r2, . . . , rp which 
satisfies (5 .3 .3)-(5 .3 .5) is a solution of the system of inequalities (5.3.1), (5.3.2). 
On the other hand, there are solutions of the system (5.3.1), (5.3.2) for which the 
conditions (5.3.3)-(5.3.5) are not fulfilled. This is demonstrated in the following 
example. 
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Consider the ARMA(3,1) model with the parameters ai = 0.5, 61 = 0.5, 62 = 
0.125, 63 = 0.0625. This process is stationary and invertible. We have CQ = 1, C\ = 1, 
c 2 = 0.625, c 3 = 0.5, c 4 = 0.390625. P u t k = 1. Then the numbers n = r 2 = r 3 = 1 
represent a solution of the system (5.3.1), (5.3.2), but they obviously do not satisfy 
(5.3.3)-(5.3.5). 

The solutions from Lemmas 5.3.5, 5.3.6 have the same property. 

Choose ri = ri(k,p), i = l , 2 , . . . , p such that the conditions (5.3.3)-(5.3.5) for 
k = 1, the conditions (5.3.9) — (5.3.11) for k = 2 , . . . , p and the conditions (5.3.12)-
(5.3.14) for k = p + 1 are fulfilled. This means that 

m i n P j = minPj(A;,p) = P 0 = Po(k,p) = ck, k = 1 , . . . , p + 1 
j > 0 j > 0 

and the variables 

Mfc = Mfc(fc,p)= min — xť+fc + V r ; X t _ ; F 
p+ 1< í_ n- f c A< \ r~* y 

Ä; = l , . . . , p + l 

are according to Theorem 4.1 and Corollary 4.2 strongly consistent estimates for the 
coefficients ck, k = 1,2,... ,p-\- 1. 

In the remaining part of this section we determine the system of linear equations 
the solution of which will give the strongly consistent estimates of the parameters 
_ i , 6 1 , . . . ,bp of our ARMA(p, l ) model. 

L e m m a 5.3.8. Let M i , . . . , M f c be real numbers, Mi / 0, i = 1 , . . . , k, k > 2. 
Denote 

/ M i 1 0 0 
M 2 Mi 1 0 
M 3 M 2 M i 1 

and 

Afc = 

Mfc_i Mfc_2 M f c _з Mfc_4 

\ Mfc Mfc_i Mfc_2 Mfc_3 

. . . 0 

... 0 

. . . 0 

0 \ 
0 
0 

. . . Mi 

... м 2 

1 
M1 ) 

Dk = |Afc|, 

where | | is the symbol for determinant. Then 

k-2 

Dk = ^(-ly^MjDk-j + (- l ) f c - 4 MiM f c _i + (-1) 

J'=I 

fc-5 мк 

(5.3.15) 

P r o o f . T h e matr ix Ak can be written as follows 

Afc_i J3fc_i 

Cfc-i -Dfc-i 
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Here JBjfc_i = ( 0 , 0 , . . . , 0 , 1 ) ' is (k—l)-dimensional column vector, Cjfc_i = (Mjfc, Mjfc_i, 

. . . , M 3 , M 2 ) is (k — l)-dimensional row vector and Dk-i = M%. It can be showed 

t h a t 

Dk = Mi|Ajfc_i - B f c _ i . M ' f 1 C i . _ i | 

and the matr ix Ajt_i — jBjfc_iM1

-1Cjfc_i is equal to 

/ M i 

M 2 

Mjfc_: 

1 

M i 

мk \ Mk-i - jjf; Mk-2 

Mk-з 
Лffc. 

M i M j f c _ з -

Mjfc_4 

Mfc_2 
M i 

0 

0 

Mл 

\ 

м 2 - Mз 

м. A f l - f t / 

Applying the well known properties of determinants we can write 

Dk = M1bk-1-M2\Ak-2-Bk-2M2~
lCk-2\ 

= M i L V i - M2L>jfc_2 + M3|Ajfc_3 - B„-3M3-
1CJb_3| 

Jb-2 

= £(--У~1-tf;Ãь-i + (-i)fc-4MiM,_i + (-i)*-5мt. D 

J=l 

L e m m a 5 .3 .9 . Let c\,...,ck, 2 < k < p be the coefficients from Remark 3.1. 

Denote 

c\ 1 0 0 

c 2 ci 1 0 

c 3 c 2 ci 1 
Dk 

Then 

Cjfc-l Cjfc_ 2 Cjfc_3 Cjfc_4 

Cjfc Cjfe_l C f c _ 2 Cjfc_ 3 

Jfc-lj 

... 0 0 

... 0 0 

... 0 0 

. . . Ci 1 

... c2 
C\ 

Dk = a\Dk-i + ( - l ) * " 1 ^ , k = l,2,...,p. 

(5.3.16) 

(5.3.17) 

P r o o f . T h e assertion can be proved by complete induction. D 

L e m m a 5.3.10 . Consider the system of equations 

c\ — - i + h 

c 2 = b\ci + b2 

C3 = b\c2 + 6 2ci + 6 3 

Ср = Ь\Ср-\ + Ь2Ср-2 + • • • + Ьр 

Ср +1 = &1Ср + 62Ср_1 + . . . + 6рС1, 

(5.3.18) 

which is to be solved with respect to _ i , & i , . . . , bp. Then the following conditions 

are equivalent: 
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C.l The system (5.3.18) has a unique solution. 

C.2 The polynomials 

p - i 

0(_) = * + _i. _-(-) = zp - ^ &P-.Z1' 

have no common roots. 

i = 0 

P r o o f . The matrix of the system (5.3.18) is 

/ 1 1 0 0 0 
0 Cl 1 0 0 
0 C2 Cl 1 0 

0 cз C2 C\ 1 

0 Cp_i Cp_2 Cp_з Cp_4 

V o Cp_i Cp_2 Cp_з 

The condition C.l is equivalent to the condition 

1 1 0 0 0 
0 Cl 1 0 0 
0 C2 C\ 1 0 
0 cз C2 C\ 1 

0 Cp_i Cp_2 C p _з Cp_4 

0 "p — 1 Cp _ 2 Cp _ з 

0 0 c\ \ 
0 0 C2 

0 0 c
3 

0 0 c
4 

C\ 1 Cp 

C2 C\ Cp + 1 / 

0 0 
0 0 
0 0 
0 0 

C\ 1 

C2 Cl 

# 0 . (5.3.19) 

The determinant from (5.3.19) is equal to the determinant Dp from (5.3.16). It is 
not difficult to prove that (5.3.17) is equivalent to the equation 

fe-1 

Dk^аţ + ^-lý-^Ьk-iаi 
i=0 

If we define the polynomial Dp(z) by 

P - 1 

Dp(z) = z? + J2(-iy-1-%-.iz
i

} 
г=0 

we get Z)p(ai) = Dp. It is obvious that a is a root of Dp(z) if and only if —a is a 
root of ^(z). Therefore Dp = 0 if and only if the root —a\ of the polynomial Q(z) 
is also a root of \P(z). Using (5.3.19) we obtain the assertion. • 
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Theorem 5.3.11. Let 1 < k < p + l be a positive integer and let rj = ri(k,p) > 0, 
i = l,...,p satisfy the conditions (5.3.3)-(5.3.5) for k = 1, (5.3.9)-(5.3.H) for 
k = 2, . . . , p and (5.3.12)-(5.3.14) for Jfe = p + 1. Then with probability 1 there 
exists for sufficiently large n a unique solution a i n , 6 i n , . . . , 6pn of the system of 
equations 

Mi = ai + 6i 
M2 = 6iMi + 62 

M3 = 6iM2 + 62Mi + 63 (5.3.20) 

Mp = 6iMp_i + 62MP_2 + . . . + 6p 

M p + i = б i M p + 6 2 M p _ i + . . . + 6pMi. 

This solution satisfies 

a i n —• ^ i a . s . , 

bjn —>• 6j a.s., j = 1,.. . ,p. 

P r o o f . The variables Mk are strongly consistent estimates for cjb, & = 1,2,... 
. . . ,p + 1. It follows from Remark 3.1 that a solution of the system of equations 
(5.3.20) represents strongly consistent estimates a\n, b\n,..., 6p n of the parameters 
a\,b\,... ,bp. The system (5.3.20) has a unique solution if and only if the determi
nant (5.3.15) satisfies Dp ^ 0. It is clear that 

Dp —* Dp a. s. for n —* oo 

and Dp ^ 0 according to Lemma 5.3.10. Thus with probability 1 we have for 

sufficiently large n Dp / 0 from which the assertion immediately follows. • 

6. APPENDIX 

T h e o r e m 6.1. Let rji,t]2,... be positive independent identically distributed ran
dom variables the distribution of which is non-degenerated and Er\2- < oo, j = 
1,2,... Let aj,(3j, j = 1,2,... be non-negative real numbers. Let there exist a jo 
such that j3j0 > 0. Suppose further that 

oo oo 

^2&j<oo, ^ / ? ; - < o o . (6.1) 
j = i j-i 

Denote 

and define 

OCi 
Pj = -J- for ßj ф 0 

Pj = oo for ßj = 0 and for aj = ßj = 0 . 
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Let there exist an index s > 1 such that j3s > 0 and 

m i n Pi = Ps = — < 00 . 
l< j<oo y & 

Define 

Then 

R=\J2^j] YlaM-
J-i I ;=i 

i2=|f+fE^^j E^j' (6.2) 

where Xj > 0, j = 1,2,.. . and A5 = 0. 

P r o o f . It follows from (6.1) that 

0 0 0 0 

I>j<o°> x>;<oo. 
7 = 1 7 = 1 

Thus 
0 0 0 0 

^2 E(aiVj) < °°> ] V v a r( a j7 / i) < 001 
7 = 1 7 = 1 

0 0 0 0 

]T £(#T}J)< 00, J2 var(# 7/) < °o 
7 = 1 7 = 1 

and according to Theorem 2 in [4], p. 423 we have 

0 0 0 0 

2j°tirli < °° a s - 1 z2^i^i < °° a S -

7 = 1 7 = 1 

If a , = 0 we get Xj = oij, 7 = 1 , 2 , . . . Cons ider as ^ 0. Clearly, 

/ 00 00 j j 

7* = £#^-£#^1 ^ 
Therefore we can write 

R = ( YlßiЊ I <*аЊ + ^20tirìi 

^ / J>ÍS 
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Since 

we have 

This implies 

as . ocj 
— = min — 
ßs 1<7<°O ßj 

ctj(3s - Oisfij > 0 for j = 1. 2, 

Xj = ajßs asßj > 0 foгi = 1.2,...,Af = 0. • 
ßs 
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