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K Y B E R N E T I K A — VOLUME 32 ( 1996) , NUMBER 4, P A G E S 3 5 3 - 3 7 4 

A N O T E ON A S Y M P T O T I C LINEARITY 
OF M-STATISTICS IN NONLINEAR MODELS 

A S U N C I O N M A R I A R U B I O AND J A N Á M O S V Í Š E K 

For a smooth nonlinear regression model the conditions for the uniform second order 
asymptotic linearity of the M-statistics in the regression parameters are given. The exist
ence of the -y/n-consistent estimator of the regression parameters and the role of the rescaling 
residuals in the M-estimation are briefly discussed. 

1. INTRODUCTION 

Recently more and more attention has been paid to nonlinear models. Some results, 
as e. g. testing the differences between models or the study of the subsample stability 
of models (see [16], [18] and [19]), were established for the linear models using as 
a key tool the Bahadur representation of the estimators. For the nonlinear models 
this representation has been derived in [17] and used for constructing a test of 
the differences of estimates. Due to the importance of the rescaling residuals in 
the statistical inference, earlier or later there will be a need of a version of this 
representation with rescaled residuals. 

This note derives it by generalizing the results of Jureckova and Sen [9] for linear 
models. To facilitate reading for a reader who is familiar with the paper [9] we have 
preserved the structure of it so far as possible (moreover, the generalization follows 
very closely all steps from [9] and the whole mat ter is mainly a technical one). So, 
it seems tha t more important are some related problems which were raised by J ana 
Jureckova. First of all, in the nonlinear setup we know much less about consistency 
of M-est imators than in the linear setup. Although there are already some results 
(see [11]), they were not established for the case when the residuals are assumed to 
be rescaled. Moreover we need even ^/n-consistency. Similar situation is with the 
rescaling of residuals. Tha t is why we shall at first consider these questions. 

So the plan of the present paper is as follows. At first we shall give a basic 
notation and conditions on the regression model. Secondly, we will briefly discuss 
some problems which were mentioned a few lines above. We shall give ideas how to 
cope with them. Without this discussion the next generalization would be only a 
theoretical game, may be without any consequences from the practical point of view. 
Then we shall present the promised asymptotic linearity of M-statistics in nonlinear 
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setup, and finally, we shall pay attention to the discontinuous i/i-functions. 

2. NOTATION AND CONDITIONS ON REGRESSION MODEL 

Let (Q,,B,P) be a probability space. (In what follows the all "op(-)" as well as 
"Op(-)" are understood with respect to this P.) We shall consider the nonlinear 
regression model 

Yt(u) = g(Xi(u), 0°) + e<(w). i = 1,2,... (1) 

where the sequence {Yi(u))}<?=l, Yi(w) : & —> R represents responses of the model, 
{Xi(u)}i=1, Xi(ui) —* Rp, the carriers of model, are assumed to be a sequence 
of independent and identically disributed random variables (i.i.d.r.v.) and 0° = 
(/?i ,/?2, • • • ,PP)T is the vector of the regression parameters (coefficients) ("T" indi
cates the transposition). Further, {e.(w)}i^i> ei(u) • & —• R is another sequence of 
i.i.d.r.v., independent from {Xi(w)}fli. We shall also assume that varp(ef) e (0,oo). 
Finally, let the two times differentiable function g fulfill the following conditions: 

CONDITIONS A 

i) 3 ( « > 0 ) V(| | /3-/?° | | <K, xE R&ndj, k = 1,2, ...,p) 

*W*>fl = W]9(X>P) ^dg'jk(x,p),g'/k(x,P) = yfa-g(x,0)). 

ii) 3 (J < oo) 

max sup max{|fir(x,/?)|,|gj(.r)/?)|,|oj/
jk(x,/?)|} < J. 

l<j,k<p .B6H)p-/30||<K 

i i i ) 3 ( L > 0 ) V( /?eH p , | | / ? - / ?° | |<«0 

max sup \g'jk(x,0) - g'jk(x^)\ < L • \\0 - 0°\\. 
i<i,*<p xes 

Recalling that e,-(w) = Y^w)-^* , -^ ) , / ? 0 ) , let us put 6in(t) = g (Xi,0° + n " h ) 

- ^ x , - , / ? 0 ) . Further, denote q. = EPg"(x,0°), Q = EP {g'(x,0°) [g'(x,0°)]T} and 

for any finite set A = {ai,...,as} and v > 0 put .A(iv) = (Jf-i [fli — "> a i + "] • 
Moreover, let F(z) and G(x,z) denote the distribution function of ej-cr-1 and of 
(xT ,e ;0-~1)T , respectively. 

The behaviour of the sum 

Sn(t,u) = J2U (fo-tinit)]*-1^'^) ^(Xi^^n-^^-^eia-^g^XiJ0) 
i = l - ^ ' 

for max{||t | | , |w|} < C will be studied under various conditions on the -0-function. 
Finally, let Sni(t,u) denote the first coordinate of the sum Sn(t,u) and IB the 

indicator of a set B. We shall assume that Epjp(eia~1) < oo. Then, taking ip(t) = 
ip(t) — EPip(e\a~'1), if necessary, we have Epip(eia~1) = 0. Hence if it will not be 
said something else, we shall assume that EpV,(ei°"-1) = 0. 
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3. CONSISTENCY AND THE RESCALING OF RESIDUALS 

As it was already mentioned in Introduction the applicability of the results which 
will be established requires a discussion of several questions, namely: 

• Is there, under the Conditions A (and possibly some additional ones, e. g. on 
i/'-function), any y/n-consistent M-estimator on which we can then apply our 
results? 

• What is the role of rescaling in the nonlinear regression where the scale-
invariance of the M-estimators has no (or at least considerably modified) sense? 

• Can we hope that the equation 

£>fy'~g.(*''flV(x.-.fl-o (3) 

can be (approximately) fulfilled also for noncontinuous i/>-functions (as e. g. in 
[15])? 

We shall briefly discuss now the first two problems and we shall leave the last one 
to the end of paper. 

3.1. Consistency of t he M-est imators 

In this subsection we shall assume that the ^-function can be decomposed as 

#*•) = iM-0 + WO (4) 

where ij)a(z) is absolutely continuous with the absolutely continuous derivative and 
rpc(z) is continuous with the derivative which is a step function (with finite number 
of jumps, say at the points r i , r 2 , . . ., r^) and let us define 71 and 72 by 

71 = EP { t r - V ( e i O } a n d 72 = EP { ( e i o - 1 ) ^ - * - 1 ) } • 

Moreover, let Conditions A hold and let F have a bounded derivative / in neigh
borhoods of the points r i , r 2 , . . . , r^. Finally, putting for any 8 > 0 

^ / ( y ) = 8 u p { | ^ ' ( y + a f ) | : | * | < « } 

and 

V£(y) = sup {|V>"(expH (V + *))l = {|*|, M ) < <$} , 

let for some do > 0 and v > 1 

EP {\06o(t)\
U} < 00 and EP { l - X W I " } < °° 

for all 6 G (0, 60] and 71 as well as 72 are finite. 
Then we shall show that under these conditions for any e > 0 there is K\ > 0, K2 > 

0 and no G N such that for any n > TIQ there is a set Bn such that P(Bn) > 1 — £ 
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and for any u> G Bn and any u E H+, |w| < K\ there is a solution (3(n\u,u>) of the 

equation 

Yi-g(XiJ) E^ 
І = I 

g'(Xi,/3) = 0 (5) 

such t h a t we have y/n \\^n\u,u>) — /?°|| < K2. The basic step of the proof will be 
the utilization of the fix-point theorem (similarly as in [8]) in a form which we shall 
now recall. 

A s s e r t i o n 1. Let U be an open, bounded set in Rp and assume t h a t Q(z) : U C 
Rp —* Rp (U is the closure of U) is continuous and satisfies (z — z0)

TQ(z) > 0 for 
some ZQ E U and all z E U \ U. Then the equation Q(z) = 0 has a solution in U. 

For the proof see [13], Assertion 6.3.4 on the page 163. 

Now using (18) and (26) we arrive at 

n ~ * X > ([et - M O ] * " 1 * " " " * " ) 9' (XiJ° + n-%t) 
i = i 

n 

n"-- £ V(e^_1)fif'(xi,/?°) - 7i<2* - 729" + Op (n~*) 
;=i 

(6) 

Due to Conditions A and the assumptions on the functions ipa and tpc it is pos
sible to verify tha t the assumptions of Feller-Lindeberg theorem are fulfilled for the 
sequence of random variables 

{^(eicr-^g'^,?0)}™, 

and due to the fact tha t we have assumed that Epi /^eio - - 1 ) = 0, 

n 

n-s][>( e ia-V(^,/?0) 
i= i 

is bounded in probability (independently on t and u). It means that for any e > 0 
there is a constant K3 > 0 and no 6 N so that for any n > no we have for 

Br u> ЄІЇ n - ^ ^ a - ^ g ^ X i ^ 0 ) 

г = l 

< N2 

P ( H n ) > l - e . 

However it implies t h a t for any K\ > 0 and any u G (0, A'i), due to the linearity 

in t of n 

tTn-^Y,^^~l)9'{Xi,f3°) 

id of 
tт~f2qu, 
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there is K2 > 0 so that for any n > n 0 and ui G Bn we have for any t 6 Rp such 
that | |*| | = K2 

-tTn-*]Tv ([e. - MO-k^e-"""*") </' (x*,/?0 + n"h) 
i=l ^ 1 

n 
= - / T n - ^ ^ ^ ( e i o - - 1 ) g ' ( x i , / ? 0 ) + / T T i Q ^ + ^ T 7 2 ^ + O p ( n " * ) > 0. 

ť=i 

Applying Assertion 1 we find that there is t € RP such that \\t\\ < K2, t = i(u,u>) 
which solves 

y ' - «<*f+ "'**>)^ (*,/? +n-•.)=<)• 

i(u) = ^ ( / 3 ( n ) ( « , " ) - / ) , 

we conclude the proof of the promised assertion. 

3.2 . T h e ro le o f resea t ing res iduals in t h e regress ion analys i s 

Now let us discuss the problem for what is useful the rescaling of residuals in the 
nonlinear regression setup. One may find that the residuals were studentized in linear 
regression to make the M-est imators scale invariant. But in nonlinear regression 
this reason seems to be problematic (anyway, the group of functions for which we 
would like to have the invariance, would be surely different from the group of linear 
functions). But let us look on the situation more carefully. 

The rescaling has been used generally to avoid difficulties with unknown scale 
parameter . Do we need it also in the regression analysis? Let us return to the 
history of building up the robust methods to clarify the question. 

On the base of theoretical results (see [5], [6]) we use for M-estimation the families 
of optimal ^-functions. E .g . when the central model (i .e. the distribution of the 
bulk of residuals) is assumed to be standard normal one, then we use {fpk(z)}fc>0 

where ipk(z) = S 1 g n ( z ) ' m i n { | z | , ^ } . In both approaches, presented in [5] and [6], 
the optimality is reached when the underlying model which generated bulk of da ta 
is the same as the model which was used to determine t/>-function, and when the 
"tuning" constant was properly selected. Let us discuss at first the selection of the 
"tuning" constant. 

According to the first approach (see [5]) the "tuning" constant k should be selec
ted so tha t the estimator at tains a required gross error sensitivity. Although the 
value which we assign to the gross error sensitivity seems to be rather arbitrary 
(depending only on our taste how much we admit that the estimator may react on 
the gross errors), implicitly it is related to the contamination level of da ta and to 
the variance of data , see [20]. 

On the other hand, according to the second approach, as we may see from the 
pioneering paper of Huber [6], the "tuning" constant should be found so tha t the 
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asymptotic variance of the corresponding estimator is minimal (under an assumed 
contamination level). The contamintion level of da ta is of course unknown but it 
does not mean tha t we should not try to adapt the estimator to this unknown level. 
As it was shown in [20] the effect of selection of k(e) on the asymptotic variance (i .e. 
on efficiency) of the M-est imator is small (or at least very "smooth") . However the 
effect in the sense whether we obtain the estimate (i.e. numerical values which 
we obtain when applying the estimator on given data) near to the "true" model is 
unfortunately considerable (because one may easy find examples of data for which, 
with varying tuning constant, the estimate of regression parameters varies much 
more than we would expect and than it is acceptable for applications, see e. g. 
[21]). So the selection of the tuning constant which is appropriately adapted to the 
contamination level of given da ta and their variance is crutial. 

Of course, we reach the full optimality only when for former approach the model 
which generated bulk of da ta is the same as the model which generated ^-function, 
and for the latter when the ^-function is the derivative of the logarithm of the 
density of data-generating model (which is nearly the same). 

Anyway, in both [5] and [6] (and also in others, e.g. [4]) we assume tha t the 
variance of the residuals is not very far from the variance given by the central model. 
Naturally, instead of rescaling the residuals we may use e. g. the family { ^ a \ z ) } k>0 

where ipk (z) = sign(z) -<T _ 1 -min{|z| , k(a)}. However the employment of the latter 
possibility may lead to some numerical difficulties, and hence the practitioners are 
used to utilize the families of •(/'-functions which assume a fix variance of residuals (see 
[12] and the library ROBETH; but a rescaling of data before evaluating estimates 
(and not only the estimates of regression parameters) is performed practically by 
any software). 

So, the rescaling of residuals (both in linear and nonlinear models but of course 
anywhere else) allows us to rid of dependence of the procedure on the scale par
ameter, i .e. it allows us to use standartized families of the criterial functions (con
sequence of which is tha t we avoid computational difficulties and in the theoretical 
reflection we may use one fix criterial function instead of a sequence of them). In 
M-est imation, it means some standartized families of ^-functions. It simplifies selec
tion of the proper ^-function, sometimes reducing it on selection of a proper tuning 
constant. 

4. SECOND O R D E R ASYMPTOTIC LINEARITY 

4 . 1 . S t e p - f u n c t i o n ip 

Let ip(x) = otj, for x G (r.-. rj + 1], j = 0,1,...,k (please, read (n. ,oo] as (r f c ,oo)) 
where a0,...,ak are real distinct numbers and —oo = ro < n < . . . < Tk < 
rk+1 = oo, k being a positive integer. Put 71 = J2j=1(

aj ~ <*j-i) f(crrj) and 

72 = £ í = 1 Гj {ptj -aj-i) f(crГj). 
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Theorem 1. Let Conditions A hold. Moreover, let F has in neighborhoods of the 
points r i , r 2 , . . . ,r_ bounded derivatives / and / ' . Then for any C > 0 

sup J n~-"Sn(*,«) + JiQt + J2qu : max{||<||, \u\} < C> = 0P (n~*) • 

P r o o f . (The proof mimics the steps of the proof of Theorem 2.2.in [9].) Without 
loss of generality we may assume a = 1 and k = 1, and write r instead of r\. Let no 
be the smallest integer such that C2 < K2n0 (see A.i), and let us consider throughout 
the proof only n > n0. Denote 

Ain(r) = lt£RP,ueR: 8in(t) + ren~~* > r 

a n d A(i,n,t) = g[ ^Xi,f3° + n-h)-g[(XiJ
0). 

Then we have 

Snl(t,u)- EPSnl(t,u) 

= r|aiA(»>,.) Ir _i 1 -l + F[6in(t) + ren 

r-J I Uin(t)+re» 2 u <e . j \ 

+ a\A(i, n, t) [l{r<ei} - 1 + F(r)] IA°in(r)(t, «) 

+ [a0 g[ (xif0° + n-it) -aigl(Xi,$°j\ 

I 

+ [al9[ [Xi,^ + n~h) - a0 g^X^fS0) 

U , , - i ,(t,u)-F(r) + F(6in(t) + ren-^ 
< Sin(t)+ren 2"<ei<r> \ 

+ a0 A(i,n,t) [l{et<r} - F(r)] IAin(r)(t,u) 

(-) 

Í A i . ( г ) ( < , - ) 

r _x X(t,u)-F 6in(t) + ren 2 u + E ( r ) 
< r<e.<<5in(í)+re" 2 u ^ 

+ a0 A(i,n,t) __ Ì - F [бin(t) + re 
je.<<5,n(t)+re" 2 » 1 

Similarly as Jureckova, Sen [9] let us consider first of all the sum 

Sn\\t,u) = _Ci fao A(X*>0~ + n " ^ ) - <*i9'i(Xi,/3°) 

ІAin(r)(t,u) 

ÍA1n(r)(t,u) 

I-4f_(r)(*,-0 

(8) 
г = i 

7Г -4 I 1 

^r<e,<<5in(0+re'1 2«j> 

, ì(.._)-iфin(ť) + ren"ïu +F(r) 1Aj»(r)(<.-*) 
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+ <*iđí(XitjЃ + n-Һ) - a0 gЦXit/Ѓ)л 

IL. .... .-*__ ^(t,u)-F(r) + ғ(бin(t) + ren^u 

t (*) + ГЄ' 
4 1 ' 
2u<et<r ì 

ІA°in(r)(t,u) > . 

Following [9] and [14] let us denote VV = {W(s), s e R} a Wiener process, and 
define 

Ti(t, u) = time for W(s) to exit the interval (c\ , a- M , . > 1 

where 

(1) c; = mm aog[(xi,(3o + n-h^-a1g'1(Xi,0
0) l + F(r)-F[бin(t) + re 

cxogïfti^o+n-Щ-aгgÜXiJ0)] 

+min | [a i^(x i , / ? 0 - fn-^) - ( _o^(x i , / ? 0 ) 

^aigí^XijO+n-Ҷ-aog^XijO) 

F(r)-F[6in(t) + rer 

Ì + F [6in(t) + rer 

F[6in(t) + ren 2U -F(r) 

IAi„(r)(-j U) 

•F(r) 

ІAc

n(r)(t,U) 

and 

_#> = max aog[(Xi,ß0 + n-Һ)-aig[(Xi,ß0) l + F(r)-F[6in(t) + re 

aog^lXi^ß^ + n-Һ^-a.g^Xi^ß0) F(r)-F[6in(t) + rer ІAln(r)(t,U) 

+max aig'ЛXitßP + n-Щ-aQ g[(Xi,!Ѓ) l + F[6in(t) + ren 2U -F(r) 

Ьig[(Xi, ß° + n~Ҷ -a0 g[(Xi, ß0)] F[6in(t) + rer F(r) ІAc

n(r)(t,U). 

Using the Skorokhod embedding of the Wiener process, we have 

n-±Sn\\t,u)=v n-<w(J2Ti(t,u))=v W (n-^n(t,u) J , V(t,u), 

.*=! 
where " =x> " denotes the equality in distribution. Since the embedding is in fact 
constructed on the space (0, B, P) (see e. g. [3]) it is undertood with respect to 
G(x,z). For max{||.||,|w|}<C7 

m a x j l a ^ x ^ + n - ^ ) ^ 

\F(6in(t) + ren'hu]-F(r)\ 

< 2\a0 — ai\J • F[6in(t) + rer 
F re + F re -F(r) 

< 2n~2 \a0 - ax\-J- Ki(\\t\\ + \u\) < 4n-^|a 0 - <*i| • J • Ki • C 
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where K\ is a positive constant. So denoting for j = 0,1 

Vji(C) = time for W(s) to exit the interval (ay,, bji), j ~ § \ /Q\ 

with 

a 

and 

•ji = min {(-iy+14n-i\a0 - a\\ • J -K\C, (-l>*2|a0 - ttl| . j \ 

bji = m a x { ( - i y + 1 4 n - i \ a 0 - a\\ • J • K\ • C, (-l)j2\aQ - a\\ • j \ 

we have r,(t, u) < V0i(C) + VU(C) V(i = 1 , . . . , n). Hence 

supj W n - * £ n ( * , t t ) ) :max{|W|,|«|}<cl 

< sup I \W(s)\ :0<s< n"* J2(Vot(C) + VU(C)) 1 . 

Notice that while r,(t, u) still depends on x.(^), V0i and Vi» already do not depend on 
it, and they are the same for all i. Using (9) we find Ep In--' J2?=\(^oi(C) + VWC))] 
< 8|ao — a i | • J • A'i • C < A'2 for all n starting with some n\, where K2 is a finite 
(positive) constant. Hence for a given e > 0 there is a constant T > 0 such that (for 
n >n2 and j = 0,1) 

Pln-^J2V^C)>T)<£2-

Moreover, for these e > 0 and T > 0 there is a positive constant A'3 such that 

pfsup {\W(s)\, 0<s<T}> K3} < I 

and hence 

sup {n-i \siWt, u)\ : maxflMI, \u\} < c) = 0,(1). ( 1 0 ) 

Now, recalling that 

Aft n,t) = ^ (x,-,/?° + n~h) - g[(Xi,/3°) 

and keeping in mind A.Hi, let us write 

\A(i,n,t)\ = w-i £$(**.,#>>)*> 

p 
1 1 

< « 4 Eb;;-(^-^)] 2 \\t\\<n-i-p*-j-c (ii) 
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where 00) are appropriate points from the neighborhood of/?0 such that WJffi' — 0°\\ 
< K. Considering now 

Sn\\t,u) = J2aiA(i,n,t) 
ѓ = l 

+ ғ(бin(t) + ren~hu 

- 1 
{<5.n(í)+re" 2 « < e . l 

ÍA.nir)^, u) + [ I{ r < e , } - 1 + F(r)} IAcjr)(t, u) 

let us put similarly as above 

c> ' = min < aiA(i, n,t) F[6in(t) + rer -1 

aiA(i,n,t)F[6in(t) + ren 2u \\ IAin{r)(t,u) 

+ min {aiA(i, n, t)F(r), aiA(i, n, t) [F(r) - 1]} IA°in(r)(t, u) 

and 

4 2 ) = m a x | a i A ( i , n , 0 F (sin(t) + r e n _ 2 u J - 1 

aiA(i, n, t)F Un(t) + ren~*A j IAin(r)(t, u) 

+ max {aiA(i, n, t)F(r), aiA(i, n, t) [F(r) - 1]} IAc^r)(t, u). 

Repeating the steps from the previous part of proof and making use of (11) we obtain 

sup { n - i \Sn\\t, u)\ : max{||*||. |u|} < c) = Op(l). (12) 

Modifying slightly the previous lines we may also find that 

sup {n-* \Sn\\t, u)\ : mu{| | . | | . |II|} < c) = Op(l) (13) 

where 

8nl(<>«) = X)ofpA(f ïn J0< [l{ei<r}-F(r)]lAin(r)(t,u) 
ť = l 

+ \e,<6гn(t)+re" 2 " | 
i ì -FІ6in(t) + rer 

ІAc

tn(r)(t,u) 

and hence 

sup {n-*||5»i(í, ti) - EPSnl(t, u)\\ : max{||ť||, |u|} < c) = Op(l). (14) 
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Now, let us estimate n iEpSnl(t,u). At fiгst, let us consideг 

n * ^ - M - i M n c u 
ť = i 

l-F [6in(t) + ren 2U ІA,n(r)(t,u) + [l-F(r)]IAçJr)(t,u) 

+ tлo P(»01Ain(r)(-. «) + W ) + ^ П _ " U ) ^ ľ 7 i ( r ) ( í , «) (15) 

which may be rewritten as 

n f 
^ A ( i , r í , í ) ftl 

ť=i ^ 

F(r)-F[бin(t) + ren 2U 
IA;n(r)(-,-0 

+ a i ( l - E ( r ) ) + a 0 F ( r ) + a 0 F U . n ( ť ) + r e n 2 U - T ( r ) 

Recalling that we have assumed Ep$(e,) = 0, we have 

EPil>(ei) = oi (1 - F(r)) + a0 F(r) = 0. 

Iлľm(r)(*,«) . (16) 

(17) 

Taking into account the assumption that the density / is bounded we easy find 
a positive constant A'4 such that 

F[бin(t) + rer F(r) < n " • Kл C, 

which together with (17) implies that (16) (and hence also (15)) is of order O (n * ) . 

Finally, we may write 

E 
ť=l 

+ 

aMXi^0) - a0 g[ [Xi,^ + n~h)} IAin(r)(t, 

aig[ (Xi,f3° + n->t) - 0 0 gi(Xi,0°j\ IAL(r)(t,u) 

F(6in(t) + ren~2u) - F(r) 

— n 2 

= n 4 

hJ2{^[{Xi,ßQ) -[^(X^ß^Y t + ^g^ß^u) 
ť=i 

ť = i 

WiW,/^)-«o/iř.yť>j9
0 + n-*ť)l/A<.(r)(ť,«) 

+ aifiri (xг-,/?° + n - ^ ) - a o g[(Xi,ß0)] IAçn(r)(t,u) 

F[6in(t) + ren 2u)^F[ren ' u - П - Ï ^ ( Y i . / ^ + n - Һ ) ť/ re 
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n ŕ 

+ n-- ~Г l [<xigí(Xi,ß°) - a0 g[ [Xi,ß° + n-Щ IA,n(r)(t, ti) 
i - 1 K. L 

g'(Xi,ß° + n-Һ) + [aiяi (Xi,Ѓ + n~ty - o o g[(Xг,ß
Q)] ІAin(r)(t,u) 

- («i - « o )g'ЛXi,Ѓ) [g[(Xitß°)]тt\.f(ren~iu 

+ n - ł ( a i - a o ) è r i ( * - > ^ M 

n 

+ ^(ao + aOІЙ^ /^ + n - Ь ) - ^ ^ . . , ^ ) } / ^ ^ ^ 

т T 

Fre" 2 u - T ( r ) 

n .. 

+ «l£þí(X..^)-Øí(*«^ 
» = 1 ^ 

+ (ai - a0)£)oí(^i»/?°) {P fren""M - F(r) - n-Һuf(r) J 

6 

j=i 

Since n 26 

F(a + n-Һ) - F(a) - n-Һf(a) = í [f(a + t)-f(a)] 
Jo 

dl 

using A.i and A.ii, and the assumption that / as well as / ' are bounded, we find that 
uniformly in max{|]i||, |w|} < C for j = 1,.. . ,6 we have \Aj\ < K$n~\ where K5 

does not depend on x.-'s. Finally, keeping in mind that \\g'(Xi,/3)\\ < ph J} which 
implies that the variances varpa,'(X,-,/?) and varp[at'(X,-,/5) <L7j-(-Y<,/?)] are finite and 
using the Lindeberg-Feller central limit theorem we find that 

n 2 

» = 1 

as well as 

- ^ {a'(x,-,/?°) • [a/(Xl-,/5°)]T - Q) = Op(l) 

iJ2W(Xi,p°)-q} = op(i) n 2 

»=i 

which concludes the proof. D 

4.2. Absolutely continuous V'-function with ip' step-function 

Let ip'(z) = aj for z € (rj, r,-+i], j = 0 ,1 , . . . , fc - 1, and xp'(z) = ak for z G (rfc, 00) 
where a0 = —00 < ai < ... < ak- Following Jureckova and Sen let us change from 
here the meaning of ji and 72 so that 

71 = EP {<T- VfcKr-1)} and 72 = EP {(eicx"1) ^ ( d o - 1 ) } . 
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T h e o r e m 2. Let Conditions A hold. Moreover, let F have a bounded derivative 
/ in neighborhoods of the points ri, r 2 , . . . , rj.. Then for any C > 0 

sup{||s„(t.ti) + n*[7iQ* + 72gti] : max{||t||, |«|} < c } = Op(l). (18) 

P r o o f . (The proof again mimics the steps of the proof of Theorem 3.2 of [9].) 
Without any loss of generality let us assume that there are just two steps of ip'(t) 
(due to fact that we have assumed that i/> is bounded we cannot assume only one 
step), let us say at the points r*i and r 2 . Let no be the smallest integer such that 
C < no • |ri — ~o|, and hereafter consider only n > no- First of all observe that 

V> í[ei - 6in(t)} e~n~hA = t/> ( ( l - n-*t i) eť - 6in(t)) 

+ \ei[e-n ^ - l + n--u)+6in(t)(l-e-n 2 U ) K (19) 

where & lies between xp' ([ei — 6in(t)] e n 2u) and ./>' ([1 — n -«]ej — 5jn(t)] . Since 

— 1 + n -n .n(<) ( 1-e" < к. < 2n~ 1 C 2 (for |u| < C ) and 

n~lC for some positive constant KQ and ||2|| < C, there is a positive constant Kj 
such that 

sup' ^ ^ f c , / 3 ° + n - ^ Ф[[ei-6in(t)]e~ — Ф ( 1 — П 2 U ßj öгr l^ÎJ 

max{||t||, |«|} < C l < Nyn-1 £ {|eť| + 1} , (20) 

and hence using the Markov law of large numbers we find that (20) is of order O p ( l) . 
So, let us consider instead of sum (2) the sum 

ti - 6in(ť))g' Nn/?° + n~n) - ý(ei)g'(XiJ°) Sn
4(t,u) = J2[p{[^-n^u 

1=1 

and let us denote 

7ini(t,v>) ~ U £ N : | m i n | ( l - n~^u)e( - 6in(t),(l - n~^u)ei,ei\ , 

m a x | ( l - n-?u)et- - 6in(t),(l - n~^u)ei,ei\ n { n , r 2 } / 0} , 

nn2(t,u) = {l ,2, . . . ,n}\Hn l(*,u) . 

Moreover denote the z'th element of the sum S^f(t,u) by sin(t,u) and its kth coor
dinate by Sin(k)(t, u). Then we may write 

Sn(t,u) = 2 «.•-(*, u)1{iєw.i} + ^s .r.( ť, u)-'{iє?ť„ 3}- (21) 
i = l i = l 
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Denote moreover for any t ~ Rp z\ ' = (ti,t2, • • •, tt~i, z, 0,. . . , 0)T. Then due to 
the fact that 

Sin(k)(t,u) = - n " 2 i / ^'([l-n-iv}ei)-g'k(Xi,(3Q)&v 

+ JZ fQ\^^-^}ei-^(z^ 

- V ([l - »-*«] ei - 6in{z\l))) g'lt (xit0° + n'^l))}dz 1 , (22) 

we find that for 1 < % < n |sin(fc)| < n~~K8(\ei\ + 1), where Kg < oo depends of 
course on C. In a similar way we find that, starting with some n3, there is Kg < oo 
such that {i ~ TLn\(t, u)} C A n , where Din = < < rx — n~^K9 < a < ri + n~~Kg > 

U < r 2 — n~~Kg < ei < r 2 + n~ -" A'g > > and P(Din) = O iri~~ j . It implies that 

Epsup X]Sin(^)(ť'W)/{iG7ťni} 
i = l 

:max{||ť||,|м|}<Cľ 

< Ep < E p s u p J ^ l \sin(k)(t,u)I{ie7{nl}\ :max{||ť| |, |«|} < C \ X{ = Xi 

< n-^Ep\Ep\f^K8(\ei\ + l)IDtn\\=0(l), 
. i=í 

and the Chebyshev inequality (for nonnegative random variable) applied on 
n~~ ] P " = 1 K8(|e»| + 1) I~in gives that the first sum of the right-hand-side of (21) is 
bounded in probability. Now, denoting the first coordinate of the second sum of the 
right-hand-side of (21) by S%[2, we have for any pair (t\, m) and (t2, u2) of distinct 
points 

y^G(S^1
2(t1,u1)-Sni

2(t2,u2)) 

5> 
i = l 

{ф([l-- n " - И l 

ф([l 
1 

- n *u2 
Єi - àin 

Єi-6iП(ti))g'k ( X І , / І 0 + П - Ц ) 

(23) 

^ ~ 8in(t2)) g[ (Xup + nr±t2)} W n 2 >-

Let us denote for £ = 1,2,. .. ,p4f, . .a
 = (*2i,<22,. • *2 i-l>-Ml *+l, • • ->*1 P)T- Again 

due to the absolute continuity of if) we may write 

if) ( 1 - n"2 Wl e i - <5in(*i)) - ^ ( [ - - " ~ ^ 2 j ez- - <$in(*i)J 

2 / V' ( l - n ~ 2 W ] ei - « 5 i n ( < i ) ) dw ЄiП 2 
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and 
ф ( [ l - n--w2] eг- - 6in(tiүj g'k (Xi,ß° + n~Ui) 

-ф ([l - n"-u2] Єi - <5ІП(Ь)) flf* (x.,/?° + n ~ Ц ) 

P rtz 

= ~n~h E / ^ {*' (f1 - n ~ N e. - M«#?.3)) 
£=1 I*" 

xg'k (Xi,f30
 + n-U[%2)g't (Xi,/3° + n " * ^ a ) 

- ^ ([l - n"^ 2 ] ei - 6 i n (4^j) j& (xi;/?° + n-h^2)}dz 

and hence we may bound (23) by 

A'IO {(ui - u2)
2 + ||/i - t2\\

2} , 0 < #io < oo, 

uniformly in max{||ti||, | N | , |ui|, |u2|} < C 

Using analogous steps as above we derive that also uniformly in max {||ti||, ||<2||, |tii|, 
|u2 |}<C 

Ep(SnÍ
2(ti,ui)-Sn^

2(t2,u2)) + n-ÍJ2b^(XiJ0)[g'(Xi,^^ 

+ T 2 ^(^ѓ,/? 0 )(wi-г i 2 )}/ { i є 7 ť т i 2 } 

i = i 

<Kп{||<i-<2І| + |ui-U2І}, 0<Kn <oo. 

Earlier than proceeding further let us make following linearization (let g"(Xi,f3) 
denotes the first column of g"(Xi,/3)): 

ф ( 1 — n 2u 

= w 1 — n 2г/ 

e» - 6in(t)) g[ (Xi,ß° + n~Һ) I{i£Hn2} 

)g[(Xi,ß°) 

- n-Ңф' ([l-n-ïu] e^g^XiJ0) [g'(Xi,ß0)} 

ф( 1 — n 2гx i ) [ ^ ( x i ! / ? ° ) ] T U + n - 1 | ^ ( e ~ J ) [ [ ^ ( x i ^ ) ] T t ] g[(XiJ) 

- ^'(e^g'KXiJ0) [g'(Xi,~p)]Tt + ^'^i^g'KXi,^) [g'(Xi,p)]Tt\ 

+ n~h ([l ~ n-^u] ei) {g'^XiJ) - g'{(Xi,p°)}T t\ I{ie7in2} (24) 

where e, lies between (l — n~2u) ei — 6in(t) and (1 — n~?u)ei (remember that for 

i £ 7in2 between ( l — n~2w) e,- — 6in(t) and (l — n _ 2 « ) e,- we have continuous - in 
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fact constant - derivative of t/>) and \\P - /?°|| < n~h as well as ||/J - /?°|| < n~h. 
Due to the fact that V" = 0 and all other derivatives are assumed bounded and 
g" Lipschitz, the supremum (over max{||<||, |«|} < C) of the sum (over 1 < % < n) 
of the last terms of (24) is 0p(l). Similarly, the sum of the elements of order n~l 

is of course also 0P(\). Hence it remains to cope with the first three terms of the 
right-hand side of the last expression. Taking into account that EpV(e0 = °> w e 

may write them as 

{^(ei)g[(Xi)f)-n-h\ei)g[(Xi)p
0){eiU+[g\XiJ0)]Tt} + Rin}l{ienn3} 

where sup (|]C"=1 I-»nI{»ewB3}| : m a x{| |^l l , \u\} < C} = 0p(l). So we may substi
tute the process S^f(t, u) by the process 

n 

Sn(t,u) = -n-^{i>'(ei){eiu+{g'(Xi,p
0))Tt}g'(Xi,{30)}l{ie-Hn2}. 

i = l 

and we have sup I \\Sff(t, u) — Sn(t, u)\\ : max{||/ | | , \u\} < C > = 0p(l). By this step 

we have modified the original processes Sn(t,u) so that the new processes Sn(t,u) 
is equivalent to processes treated for the linear model (see [9]; the only difference 
is that instead of the z'th row of the design matrix, say Xj, we have [g'(X{, (3°)]T). 
Now, the problem is that the processes Sn(t,u) may not vanish along the lower 
boundary and hence, to be able to use e.g. result of Bickel and Wichura [2], the 
following reparametrization is necessary. Let us denote by 

~ n 

Sn(t,u) = Sn(t,u) + n-^J2g[(Xi,p
0){ll[g'(Xi,(3

0]Tt + l2u} 
i= l 

and V = {E = Diag(ei,e2, • • • ,£P+i) : (e* € {0,1} , k = 1,2,... ,p+ 1)} . For any 
E G V let E(p' be the main submatrix of dimension p and put 

S*n(t, ti) = J2 (-1)™^ $n((I - E^) t, (1 - ep+1) u) 
Eev 

where X denotes the identity matrix. At this point we have reached the full coinci
dence (even in the notation) with the proof of Theorem 3.2 of [9] (see (3.12)) and 
the rest of the proof coincides with a part of the proof of Theorem 3.2 of [9]. Hence 
it will be omitted. • 

4 .3. Absolutely continuous V'-function with absolutely continuous 
derivative 

Put for any 6 > 0 ,... , ,,.,,, ,, , , r, 
^ / (y)=sup{ |V' / , (y + ^ | : | z | < < 5 } 

??(y) = sup {\r(exp(w)(y + z))\ : {\z\, \w\} < 6} . 
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Theorem 3. Let Conditions A hold. Moreover, let for some <5o > 0 and v > 1 

Ep{ |*#.Mr} < oo and EP fl-XMI"} < °° (25) 

for all <5 £ (0, <5o] and 71 as well as 72 are finite. Then 

sup{ 5„(-,u) + n*[riQ- + 72H : max{||*||, |w|} < c\ = 0P(1). (26) 

The proof can be again carry out by mimicing the steps of the proof of Theorem 
4.2 of [9]. We hope that the proofs of the two previous theorems have demonstrated 
that modifications of corresponding technique from the linear framework to the 
nonlinear one is straightforward. That is why in this case, where due to existence 
of all derivatives the modifications are simpler than above, we omit the proof. 

5. UTILIZATION OF THE ASYMPTOTIC LINEARITY FOR THE DIS
CONTINUOUS V FUNCTIONS 

As it was already indicated above, there is still some other problem. To be able 
to apply the asymptotic linearity of the M-statistics on the M-estimator fi^>n), we 
need to know something about the behavior of the sum 

It is clear that when the derivative of the function p exist everywhere and the 
M-estimator is defined by (3) we have 

±Jy^ią^з)gl{XiJ^)=Q. 
r(n) 

i = l \ 

(27) 

Generally it does not hold for non-smooth p-functions derivative of which is dis
continuous. A possible solution of the problem may be as follows. Rao and Zhao 
[15] proved consistency of the estimator given by equation 

n 

S n 1 ^ {Yi - XrP{n>a)) Xi = op{\) (28) 
i = i 

(where Sn is an estimator of the scatter matrix) for nondecreasing ip (without the 
assumption of continuity). Nevertheles a modification for the standardized version 
would be necessary (and then of course we would have again to utilize considerations 
which we employed above, applying the lemma of the Appendix). 

Moreover Jureckova and Welsh [10] proved for increasing i/'-step-function the y/n-
consistency of the M-estimator defined through the equation 

»-*:£* ( - - s i ? - ) * - ° » (*»-*) (29> 
t = 1 ^ ' 
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(see Theorem 4.2 of [9]; of course (29) is somewhat stronger than (28) but the result 
is also stronger). 

On the other hand to be able to apply the asymptotic linearity of the M-statistics 
on the M-estimator of the parameters of the nonlinear models we do not need (27) 
but it is sufficient to know that 

P(Yi~9^'n)))^M) = oP(nt). (30) 

which is a standardized nonlinear version of (28). 
But let us try to carry out directly some very first consideration clarifying this 

problem. For the i/>-function which is not continuous, general conditions under which 
(30) is fulfilled are not known, although for some discontinues ^-functions, e.g. for 
^med Wven by _ . _ _ < __ 

Vwd = 0 if x - 0, 

1 if x > 0) 

we may reach again even precise equality in (30) - under some conditions for sym
metry of g'(Xi,(3) without which it seems questionable to use xj)med-

To create an idea about the problem let us look at first on the much simpler 
case of estimating location parameter in the case when the central model is assumed 
to be the standard normal one. After all, in other cases, under assumptions which 
was used in Huber's paper [6], namely that — log 4T_+ is strictly convex, we may 
for theoretical considerations assume that we transform random variables to the 
normal ones. Let us assume that we shall use skipped Huber's ^-function ^H(X), 

i.e. 4>H(X) = —^H(—X) and 

x if x £ [0, a], 

ipn(x) = a if x £ (a, b], 

0 if x > b 

for some 0 < a < b < oo. Let Yn) < Y(2) __•••._. ¥(n) he our observation (in 
fact we may assume Yn) < Y(2) < < Y^ because if any sharp inequality is 
distorted the (absolute) continuity, is questionable; from the similar reasons we have 
also y,;) — Y(j) / 26 for i, j = 1,2,... ,n a.e. for any n £ N). Now, let us observe 
that for t £ (-oo, Yĵ j -b)U (Y(n) + b, oo) we have ^ n

= 1 ^n(Y(i) -1) = 0. 
Since for any n £ N, any u £ Q and t £ (—oo, Y^(u))L)(Y(n^(u), oo) (31) holds, it 

is clear that we may obtain inconsistent solution of (31) (below). In other words, for 
strongly redescending V'-function (regardless continuous or discontinuous) among the 
estimators given by (26) is at least one inconsistent. Nevertheless for t = y"(i) — b we 
obtain ___;n=1 ipH(Y(i)-t) = a and for t = Y(n) + b we finally get YA=I ^n(Y(i)-t) = 
—a. Moreover, _>__)_•___ ipH(Y(i) — t) is continuous (and nonincreasing) in t except for 
a finite number of discontinuities, at which it has the positive jumps equal to a. It 
implies that there is at least one point £(n) £ (Y(i) — b,Y(n) + b) such that 

_C^(ni)-^(n))=0- ( 3 1 ) 
i= i 
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We may observe t h a t the reason why for ipH we are able to fulfil (31) is a "compen
sation" of the jump(s) by a decrease of the value of the terms which have argument 
in the linear part of the V'-function. 

It is easy to see t h a t the point(s) which solves (31) is a (local) minimum of the 

function __]n

=1 p(Y(i) — t) because —'4>H(V — t) is increasing in t. Moreover at any 

point t* of j u m p of -̂ - __]n

=1 p(Y(«) ~ t) we have 

r\ n p. n 

,!>•? -jE"Cno-«)> ,ss --E'Ofo-') 
i = i + i = i 

so t h a t the function __li-iP(Y(i) — t) either increases when t —• t_,, and then for 
t > t* either, decreases or increases less steeply, or decreases for t —> t*_, and then 
for t > t* it decreases more steeply. Anyway, the function __™=l p(Y(.) — t) cannot 
have at t* minimum. So we may concludes that the global minimum is among the 
points for which (31) holds. 

More detailed analysis would reveal that a similar situation holds for many ip-
functions, namely t h a t we may hope to fulfill 

n 

Yф(Yi-t)-op(n^ 
І - l 

for rather large family of i/>-functions. 
Some difficulties may appear e. g. for skipped median (or for some other esti

mators with both types of jumps) . 
Let us now consider the linear regression. We would want again to show that 

there is a point (3^ such that 

YXPH(Y{Í)-X?^)XÍ = 0. 
ť=i 

Let us consider at first __]n
=i pn(Yi — L • Xjj) for | | 7 | | = 1. We easy verify that for 

any j 

-JTEP"^-L- X^) =j_^">{Yi-L- Xh) X'h 
t' = l t = l 

is nonincreasing in L (except of finite number £ (t < 2n) of possitive jumps) , and 

along similar lines as above we again find that there is L7 < 0 such that for L < L7 

have n = i MYi - L • xT
T) xT7 = 0 and we 

jr *PH (Yi - Lw • xT
T) xT

T = Y. \x^\ • ° 
.=- ieIw 

where J 7 ' = li 6 N : s ign(N T 7) ipn(Yi - L7 • xT7) = a\- Similarly we may find 

an upper "bound" L2- Then there is again at least one L* G (L 7 , L7 ) such that 

n 

]CM^-L7-xT
7)NT7 = 0. (32) 

ť = l 
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Due to similar arguments as above we find that at one of these points (if they 
are multiple) the function Y2?=iPH(Yi — L • Xjj), as the function of L, attains 
its minimum, and that the points Y{ — L* • Xjj, i = 1,2,... ,n are not points of 

discontinuity of the function ipn• Let p0 = inf Y%=1 PH(Yi — L^ -X?j). Taking 

into account the compactness of the surface of unit ball we find that there is a 
To, | |TO|| = 1 such that 

Po ^ M ^ - ^ o - ^ T o ) 
. '=1 

Let us recall that the points Y{ - L*o • x^To, - = 1,2,..., n are not the points of 

discontinuity of the function ipH, i.e. in the neighborhood of the point /?(n) = L* To 

the function ^ n

= 1 PH(Y{ — X- /?) has (continuous) partial derivatives, and hence 

J2Фн(Yi-x7ß^)x7 = o. 
І = I 

Of course, for the nonlinear setup it is more complicated to describe the situation 
because it depends on mutual relations of ip and g. E.g. considering again $H(Z) 
we may find that for the function g which is for any fix X coordinatewise increasing 
and convex or coordinatewise decreasing and concave in (3 we have again 

J2 ^H (Yi - g(Xi, Li)) J2 9i(Xi, LT)TT - 0 
i = l £=l 

nonincreasing in L and the considerations which we made above might be repeated. 
But in such a case we may probably cope with the problem even without the con
vexity (or concavity) of function, just reparametrizing the problem to the linear one 
(due to the monotonicity). 

Nevertheless, the set of conditions covering all possibilities of the "compensation" 
for the regression setup would be rather complicated. So that, one may only hope 
that for some i/>-function one can recognize whether the "compensation" which 
was described above is possible or not. On the other hand, the discontinuous i/>-
functions may not only imply infite local shift sensitivity but also they may have 
infinite change-of-variance sensitivity (see [5]; consult also [18]). Some recent re
sults moreover indicate that the change of (the norm of) estimate when excluding 
some observations may be rather large for them (although asymptotically bounded 
in probability), while for continuous function it is proportional to the gross error 
sensitivity ([22]). It implies that the importance of the discontinuous ^-functions 
for robust estimation is limited. 
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APPENDIX 

\ Let for some p G N, {V^}°°_, , V^n) = \v{
i
n)V~l''''"'P be a sequenc 

n~l I lJ ) i-1,2 p 

J=1,2,. . .JJ 
L e m m a 7. Let for some p G N, { V W L , , V w = { vYs'

J } be a sequence 
,p 

of (p x p) matrixes such that for i = 1 ,2 , . . . , p and ? = 1 ,2 , . . . , p 

lim I)-?' = 9i,- in probability (33) 
n—»-oo * 

where C} = {qtj}3-~. '2''"'* is a fixed nonrandom regular matr ix. Moreover, let 

{!j(n)| be a sequence of p-dimensional random vectors such that 

3 ( e > 0) V (K > 0) l i m s u p P (\\e^n)\\ > K) > e. (34) 

Then 

so tha t 
3(6 > 0 ) V ( L > 0 ) 

l imsup P y(n)ø(n) > L ><5. 

P r o o f . Due to (33) the matr ix V^n) is regular in probability. Let then 0 < 
Ain < ^2n < . . . < Apn and Zi„, Z2n , . . . , zpn be eigenvalues and corresponding 
eigenvectors (selected to be mutually orthogonal) of the matr ix [y( n ) ]Ty( n ) . Let 
us write #(n) = __^_\ ajnZjn (for an appropriate vector an = (a\n, ain,..., apn)

T)-
Then we have 

y(n)^(n) |2
 = ^ [ a i n ] 2 A i n | | z i n | | 2 < Ain | |lj(n)||. (35) 

;*=i 

Moreover, denoting Ai the smallest eigenvalue of the matr ix QTQ, we have Ain —* Ai 
in probability as n —> oo. The assertion of the lemma then follows from (35). • 
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