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K Y B E R N E T I K A — VOLUME 32 ( 1996) , NUMBER 4, P A G E S 3 8 9 - 3 9 3 

ON A CLASS OF PERIMETER-TYPE DISTANCES 
OF PROBABILITY DISTRIBUTIONS 

FERDINAND OSTERREICHER 

The class If , p G ( l ,oo] , of /-divergences investigated in this paper generalizes an 
/-divergence introduced by the author in [9] and applied there and by Reschenhofer and 
Bomze [11] in different areas of hypotheses testing. The main result of the present paper 
ensures that, for every p € (1, oo), the square root of the corresponding divergence defines a 
distance on the set of probability distributions. Thus it generalizes the respecting statement 
for p = 2 made in connection with Example 4 by Kafka, Osterreicher and Vincze in [6]. 

From the former literature on the subject the maximal powers of /-divergences defining a 
distance are known for the subsequent classes. For the class of Hellinger-divergences given in 
terms of ps\u) = 1 + u — (us -\-ur~s) , s £ (0,1) , already Csiszar and Fischer [3] have shown 
that the maximal power is min(s, 1 — s). For the following two classes the maximal power 
coincides with their parameter. The class given in terms of f(a)(u) = | l — ua\a , a € (0,1], 
was investigated by Boekee [2]. The previous class and this one have the special case 
s = a = \ in common. This famous case is attributed to Matusita [8]. The class given by 

<pa(
u) = |1 — w|« (1 + u) ~« , 9 6 ( 0 , 1 ] , and investigated in [6], Example 3, contains the 

wellknown special case a = | introduced by Vincze [13]. 

1. INTRODUCTION 

Let (Q,A) be a nondegenerate measurable space (i.e. | .4| > 2 and hence |f2| > 1) 
and let M\(Q,A) be the set of probability distributions on (£2, . 4 ) . Furthermore let 
T be the set of convex functions / : JH+ —> 1R which are continuous at 0. And let 
the function / * £ T be defined by 

f*(u) = u-f(-\ f o r u e ( O . o o ) . 

R e m a r k 1. Owing to the continuity of / and f* at 0 and by setting 0 • / (jj) = 0 
for all / ~ T it holds 

ľ ( f ) = У / ( ~ ) ÍOľаìlx>yem4 
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Definition (cf. Csiszar [4] and Ali and Silvey [1]). Let Q0, Qx G Mi(£l,A). Then 

If(QuQo) = j f{jQ) -SodAi 

is called /-divergence of Qo and Q\. (As usual, qx and q0 denote the Radon-
Nikodym-derivatives of Qi and Q0 with respect to a dominating cr-finite measure 

A-0 

In the sequel we briefly restate those results from [6] which are basic for the 
statement and proof of the main result of this paper. For further informations on 
/-divergences we refer to the monograph [7] by Liese and Vajda and the paper [12] 
of Vajda and Osterreicher. 

Provided 

(fl) / ( l ) = 0 and / is strictly convex at 1 and 

(f2) r(u) = /(u) 

it holds 

(Ml) Ij(Qi,Qo)>0 with equality iff Qo = Qi V Q0,Qi € Mi{Q,A) , 

(M2) IJ(QI,QO) = IJ(Q0,QI) V Q0,Qi G Mi(Q,A) 

respectively. If, in addition to (fl) and (f2), there exists an a G (0,1], such that 

(f3,a) the function h(u) = ——-— , u £ [0,1) , 
f(u) 

is (not neccessarily strictly) decreasing, 

then, according to [6], Theorems 1 and 2, the power 

Pa(Qo,Qi) = [Ij(Qi,Qo)}a 

of the /-divergence satisfies the triangle inequality 

(M3) pa(Qo,Qi) < Pa(Qo,Q2) + P « ( Q 2 , Qi) V Qo, Qu <?2 6 Ml(Q,A) . 

Remark 2. Note that by virtue of Jensen's inequality 

/(-) + / • « _ i / w + + ,(i)>/(1). I + u 1 + u I + u \u 

Therefore (fl) and (f2) imply f(u) > 0 for all u £ IR+\{1} and hence /(0) G (0, oo). 
Moreover, it can be easily seen that, provided (f3,/?) is satisfied for (3 = a G (0,1], 
it is also satisfied for every (3 G (0,1]. 

The following Remark is a consequence of [6], Propositions 5 and 6. 



On a Class of Perimeter-Type Distances of Probability Distributions 391 

Remark 3 . Let (fl) and (f2) hold true and let a-o G (0,1] be the maximal a for 
which (f3,a) is satisfied. Then the following statement concerning c*o can be made. 
Let ko, k\, Co, c\ G (0,oo) be such that 

/(0) • (1 + u) - f(u) ~ c0 • u
ko for u i 0 and 

f(u) ~ ci • |u - l|fcl f o r w | l 

then ko < 1, ki > 1 and a0 < min (&0, -M < 1. 

2. THE MAIN RESULT 

First we are going to show that /-divergences can be defined in terms of the following 
class of functions 

( (1 + uP)' -2v~l -(1 + w) for pG( l , oo ) 
/ - . («)= S IT* — II r , WGIR+ 

I — o — *or P — °° 

which satisfies limp_oo /p(w) -= foo(u). 

Lemma 1. / p G T and satisfies (fl) and (f2) for all p G (1, oo]. 

P r o o f . Since this assertion is obvious for the case p = oo , let us assume p G 
(l,oo) from now on. For this case 

\im fp(u) = /p(0) = 1 - 21"1 G (0, oo), / p ( l ) = 0 , 
«|o 

(1) fp(u) = (1 + uP)^"1
 .UP-1-2^~1 and hence 

/;(1) = 0 and 

(2) fp(u)= (p- l)-(l + uP)p~2 -UP-2 > 0 VwG(0,oo) and hence 

/ ; ' ( !) = ( p - l ) - 2 i - 2 . 

Therefore fp is an element of T satisfying (fl). The validity of fp(u) _ fp(u) is 
obvious. • 

Remark 3 provides an upper bound for the subset of those a G (0,1], for which 
(f3,a) may hold. 

Remark 4. Owing to 

/p(0) • (1 + u) - fp(u) = 1 + u - (1 + u**)£ ~ u for « | 0 , 

/.,(_) ~ ( p _ i ) . 2 i - 3 . ( w _ i ) 2 for u t 1, 

(the latter being a consequence of (1) and (2)), the maximal a G (0,1] satisfying 
(f3,a) - if there is any - must be a0 < \ • 
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Interpretation of the /-divergences under consideration. Let 

R(Qo, Qi) = co{(Q0(A), QX(AC)), AeA} 

be the risk set of the testing problem (Qo,Qi) £ M.\(Q,,A)2 (whereby uco" means 
"the convex hull o f ) . Then the corresponding /-divergence 

T (n n \ / / ( ? i p + ? o p ) i d / z - 2 i for p e ( l . o o ) 
lfP(QuQo)=< 

{ i J l?i-?o|d// for p = oo 

can be interpreted as the difference or the arc lengths of the lower boundary of the 
risk set and the diagonal 

D = {(x,y)(E[0,l}2:x + y = l}, 

both measured in terms of the lp— norm in IR2 . We denote the arc length in question 
by lp— arc length since it coincides for p = 2 with the ordinary arc length. For further 
reading on the geometric point of view we refer to Feldman and Osterreicher [5] and 
the entry [10] of the author. 

For the limiting case p = oo the corresponding /-divergence If^iQi, Qo) is half 
of the well-known variation distance. For p = 2 it has been shown in [6] that the 
square root of the corresponding /-divergence If2(Qi,Qo) is also a distance. In the 
sequel we are going to show the following generalization of the latter which may be 
conjectured from Remark 4. 

Theorem. For every p £ (l,oo) the square root of the /-divergence Ifp(Qi,Qo) 
defines a distance on M\(Q,A). 

By virtue of Lemma 1 and [6], Theorems 1 and 2, the proof is reduced to that of 
the following Lemma. 

Lemma 2. Let p £ (1, oo). Then the function 

fP(u) 

is (strictly) decreasing. 

P r o o f . Because of 

with 

Л p ( u ) = ( v ^ ~ 0 ' Ш ' 0 p ( u ) 

ФP(U) = -[/ғ(«)+(V" -«)•£(«)] 
= 2>-1(l + u * ) - ( l + г.P)*-1.(l + u P-ł) 
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it suffices to show <j>p(u) < 0 for all u € ( 0 , 1 ) . Owing to <f)p(l) = 0 it suffices to show 
tha t the functions iP defined by ipp(u) = y/u • <f>'p(u) satisfy 

4>p(u) = 2 P - 2 - (1 + up)*~2 • u^1 • \(p - 1) • (1 - y/u) + 
1 + U* 

> 0 

for all u G (0 ,1) . Because of ipp(l) = 0 this, however, follows from 

VCM = -(P - 1 ) • ( p - *) • (i + "p) >~3 • t-p~2 • (i - \A0 • (i - «p) < o, 

which is obvious. 

R E F E R E N C E S 

D 
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