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K Y B E R N E T I K A — V O L U M E I * ( 1 9 9 2 ) , N U M B E R 4 , P A G E S 3 0 9 - 3 2 4 

ON M-DIMENSIONAL UNIFIED 
(r,s)-JENSEN DIFFERENCE DIVERGENCE MEASURES 
AND T H E I R APPLICATIONS 

MARIA L. MENENDEZ, LEANDRO PARDO AND INDER J. TANEJA 

During past years the Jensen difference divergence measure (Sibson [18], Rao [12]) has found its 

importance towards applications in various statistical areas. In this paper, we have presented three 

different ways to generalize this measure by using two scalar parameters. These generalizations have been 

put in unified expressions. Some connections with income inequality, generalized mutual information, 

Markov chains, deflation factor etc., have been made. 

1. INTRODUCTION 

Let 

Дn = j p = (Pь..,Pn)|p. >0, X > = 1 | 

be the set of all complete finite discrete probability distributions. For all P G A n, the 

Shannon's entropy is written as 

H{P) = -J2pilog2Pi. (1) 
t=i 

Concavity of Shannon's entropy gives the following inequality : 

M / M \ 

J>//(e,)<// EA;p;' ' (2) 
i=i \ ; = i / 

where P\,P2,...,PM <E A„, i.e., Pi = (pXj,p2j, • •. ,pnj) € An , for each j = 1,2, . . . ,M; 

and A,->0, E!=iA i = •« 

The Jensen difference divergence measure (cf. [12]) or Information radius (cf. [18]) for 

M-probability distribution is given by 

( M \ M 

E v ' A - £ * , # ( / > , ) . (3) 
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We can write 
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M M 

R(PuP2, • • •, PM) = J_ XiD Pi || £ \kPk , 
i=i V *:=i / 

where D(P\\Q) is the Kullback-Leibler's directed divergence given by 

D(P\\Q) = y£Pt\og2^, 

(4) 

(5) 

for all P,QeAn. 
We shall call the measure (3) or (4), the M-dimensional R-divcrgence. We shall now 

present some different ways to generalize this measure. In order to do so, first we shall 
give a unified two parametric generalization of (5). 

1.1. Unified (r, s)-directed divergence 

Taneja [20] wrote some of the known generalizations of the measure (5) in a unified way. 
This unification is given by 

?ЛP\\Q) -

D'ЛP\\Q) = (i - 21-)-11 (±Prú~r)Г"' - l 

D{(P\\Q) = (1 - 2 1 - ) - 1 (2<«-Ч-WTЮ) - 1), 

Ð Í И I ^ ^ ^ т i o g ^ E p ^ r ) , 

D(P\\Q) = -±Pгìoëì^, 

r ^ \ , s ^ \ 

r = \ , s ^ \ 

r ^ \ , s = \ 

r = 1, s = 1 

(6) 

for all r G (0,oo) and s € (-00,00). ^;:(e | |Q) is called unified (r,s)-directed divergence. 
It includes in particular the measures studied by Sharma and Mittal [17], Renyi [14] 
and Kullback and Leibler [7]. It has many interesting properties (cf. [21]). In particular, 
when Q = U, where U = ( £ , . . . , £) € A„, then we can write 

where 

Є'ЛP) = 

FЛPÏÏQ) ~ n'~l (£'Г(U) - Є'T(P)), 

ВД-ІÎ-ЧГÍ^)0-! 

/ /f(P) = (2 1- ' - i ) - 1 (2(t-)H(Я) _ ^ ) , 

lIлn^^ьg^gp:), 

Il(P) = - èp . iog 2 p„ 

(7) 

r = l , s ^ \ 

r - í 1, .» = 1 

r = 1, s = 1 

(8) 
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and 

Є-(V) = 
, 1 - . , \ - l / „ l -( 2 1 - - l ) - , ( n 1 - - l ) , j - U 

logn, s = \ 

311 

(9) 

for all r £ (0,oo) and s £ ( — 00,00). The measure €'(P) is named as unified (r, s)-
entropy. 

1.2. M-dimensional unified (r, s)-Jensen difference divergence measures 

This section deals with three different generalizations of A/-dimensional il-divergence 
given by (4). The first generalization is based on the relations (4) and (6), while the 
second is obtained directly. The third is based on the inequality (2) and the unified 
(v. .s)-entropy (8). 

1.2.1. First generalization 

In (4) replace D by T', we can write 

ÍVT-(PUP2,...,PM) = Y,\JT; [PjWf^hPk), (10) 

for all r 6 (0,00) and s £ (—00,00), where T' is as given by (5). More clearly, the 
measure (10) stands as follows: 

ЛV'T(PU...,PM) = 

< 'RT(PX,...,PM), r^í\,sjí\ 

XR\(PU...,PM), r=\, s ^ \ 

*R\(PU...,PM), r - M , 3 = 1 

[ R(PU...,PM), r= 1,3 = 1. 

where 

ìRr(Pu...,Pм) = (\-2ì->Гl'Ľ\j £*<(£,A'»'f "-• 
r - í 1, * - í l 

>R'(PU. ..,PM) = (\- 2 1 - ) - 1 {2('-D"(p" ' ^ ) - 1} , , - S l j 

M fn / M \ 1 " r l 
, / í (A, . . . ,PM) = ( r - l ) - , E A i l o g 2 EPÓÍEAifcP,* , r - í l , 

i=i [,=1 \*=i / 

(П) 

for all ?• Є (0, 00) and .s Є (—00, 00). 
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1.2.2. Second generalization 

In particular, when r = s, we have 

lR>a(PuP2,...,Pм) 

sф\, s > 0. 

-c -»«-)- (g(gлл) (£-—)"-') • (12) 

We shall use the expression appearing in (12) for defining the second generalization of 
M-dimensional fi-divergence. It is given as follows 

2V'r(PUPг,...,Pм) = 

[ 2R'r(PuP2,...,PM), r # l , * - U 
2R\(PUP2,...,PM), r = l , - - M 

2 f í r (e i ,e2, . . . , J P M ) , r - M , - s = l 

{ R(PUP2,...,PM), r = l , s = l , 

(13) 

where 

2R>(PUP2,...,PM) = (\ - 2 1 - ) - 1 

r - S l , 3-M 
L ś ( s л ^ - 1 , 

2 Я S ( Л , P 2 , . . . , Ą, ) = (1 - 21-*)-1 {exp2 [(5 - 1) ОД Pм)] - 1} , sф 1, 

2 P r (P„ e2,..., Pм) = (r - l)-1 log2 { g ( J ) A j ř$) ( £ V * ) } , '• Ф 1. 

for all r € (0,oo) and ,s € (—00,00). 
In particular, when r = s, we have 

(14) 

•v; (P„P2 , .. .,/»*) = 2v; (PUP2,...,PM), S> O. 

1.2.3. Third generalization 

In the inequality (2) if we replace H by £> as of expression (8) we get 

M / M 

J^-OT) < 2 (2>/-i 
j=i \ i = i 

The validity of the above inequality depends upon the concavity of £J. This holds, when 
( r , s ) e r ( c f . [20]), where 

Г = { ( r , a ) | * > 2 - l / r , r > 0 } . 
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Thus , the differeuce 

( M \ M 

j=i / j=i 

for all (r, s) € T can be considered a third generalization of Jensen difference divergence 

measure (3). T h e par t icular case of (15), when r = s has been extensively studied by 

Burbea and Rao [2,3], Kapur [6], Sahoo and Wong [15]. And the case, when s = 1 

has been studied by Rao [12]. We see tha t the nonnegativity of (15) is restrictive with 

respect to pa ramete rs , while this is not so for the measures (10) and (13). T h e measures 

(10) and (13) are presented for the first t ime in this paper. 

In this paper , our aim is to s tudy properties of the measure °V° (P i , P2,..., PM) 

(a = 1 and 2) such as convexity, Schur-convexity, mouotonicity with respect to the 

pa ramete r s , generalized da t a processing inequalities etc. Some applications towards 

income inequality, deflation factor, generalized mutual information, Markov Chains e tc . 

are specified. 

2. P R O P E R T I E S O F M-DIMENSIONAL UNIFIED (r , .s)-JENSEN D I F F E R E N C E 

DIVERGENCE MEASURES 

T h e definition of convexity for M-probabil i ty distributions is well known in the l i terature , 

while, the Schur-convexity for M-probabil i ty distributions is not very much known. It 

is defined as follows: 

D e f i n i t i o n 1 . Let Pj = (ptj,. ..,pnj) € A„ and Qj = ( o , 7 , . . . ,</„,) € A„ , j = 

1 , 2 , . . . , M. A function F : A„ x A„ x • • • x A„ — • 1R (reals) is Schui-convex on 

A „ x A „ x - - - A „ i f ( r 1 PM)^(Ql,...,QM)\mp\WHF(Pl,...,PM)<F(Qi,...,QM), 

where (F\,..., PM) -< (Q\,. • • ,QM) means tha t there is a doubly stochastic mat r ix 

{a ; ( } , i, t = I,... ,n, with 

such tha t 

Pij 

Y,au = J2<iч = l 

~ J2""'!'•" V j = 1,2 M; i = 1,2,....n. 

Now we shall s tudy some relations in the measures appearing in the expressions (10) 

and (13). 

We can write 

'/rr (/>„...,/>„) = E A ^ A o H ^ i l ^ W J (16) 

2P>°(Pi PM) = C;s(
iRx

r(P].....PM)) (17) 
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*R\(PU...,PM) = ^ G A f l í P i l l f ^ f i . J J (18) 
lR\(Pu...,PM) = G,(R(PU...,PM)) (19) 

where 

«•»-{-. - 2 1 - ' ) - 1 (2ť~V*-l), 3-M 

s = 1. 
(20) 

The function G, given by (20) satisfies many interesting properties given in the following 
result. 

Result 1. For x > 0, —oo < s < oo, the followings are true: 

(i) Gs(~) > 0 with equality iff x = 0; 

(ii) G,(x) is an increasing function of x; 

(iii) G,(z) is an increasing function of s; 

(iv) G,(x) is a convex function of x for s > 1; 

(v) o,(x) is a concave function of x for s < 1. 

We shall now present some interesting properties of the Af-dimensional unified (r, s)-
Jensen difference divergence measures given by (10) and (13), i. e., for "v* (Pi, P2,..., PM) 
(a = 1 and 2). From now onwards, it is understood that P\,P%,..., PM ~ A„, r € (0, oo) 
and s e (-00,00). 

Property 1. We have, "v? (/>,, P2,..., PM) > 0 (a = 1 and 2), with equality iff 
M 

Pij = .CPtj^j for all i = l , . . . , n , j = 1 , . . . , A/. 
i=i 

Proof . In view of the relations (16) - (19) and the result 1, it is sufficient to prove the 
nonnegativity of 2R\ (P\,P2,..., PM), because the measures D\, D and R are already 
nonnegative. The nonnegativity of 2/? r (PUP2,..., PM) can be proved by using Jensen's 
inequality. D 

Property 2. 

< 2V;(PU...,PM), s<r 
^(PUP2,...,PM) , 

I > 2 v r
s (A,- - - ,PM), s>r. 

Proof . In view of the. continuity of the measures a v r (a = 1 and 2) with respect to 
e parameters, it is sufficient to prove the result for aR° (a = 1 and 2), r ^ I, a -4 1, 
le result for aR' (a = 1 and 2) can be derived using Jensen's inequality. • 
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Prope r ty 3. a v* (Pi, P2 ..., PM) (« = 1 and 2) are increasing functions of r 
(s fixed) and of s (r fixed). In particular, when r = s, the result still holds. 

P roo f . In view of the relations (16) — (19) and the result 1 (iii), the measures 
"V' (P\,P2,..., PM) (<* = 1 and 2) are increasing functions of s (r fixed). Now we shall 
prove the increasing character with respect to r. For all P\, P2,...,PM € An t let us 
consider 

EriilE-w* Г r Í Ą Ц E ^ ) -

pц 

E*=i A*P<* 

i - n ^ i 

r - U 

for each j = 1,2,..., M. 
We can write, 

тr(ВД) = E*i/r 
where Ғ,- = (/ij, . . . , /„,-) with Дf = = . / - ( 

L*=i A*PІ* 

j = l,2,...,M, 

for every i = 1,2,..., n, j = 1,2,..., M. 

For each j , Tr (Pj\\Fj) is an increasing function of r (cf. [1]). Since log2(-) is an increasing 
function this gives that 

•— l o S* (Tr(PillPi) = D\ iPj II É A * ^ ) 

is an increasing function of r for each j = 1,2,... ,M. In view of the relation (16), we 
conclude that the measure XR' (Px,...,PM) is increasing in r (s fixed). Again using the 
fact that T r(P,| |P,) is increasing in r, for each j , we conclude that Ej=i AjT r(P,||P>) is 
increasing in r. Since log2(-) is increasing we get that 

1 
r - 1 E A i T r ( P , l | P i ) = 2 ^ ( P I , . . . , P M ) 

is increasing in r. In view of the relation (17) we conclude that 2RT(Pi,... ,PM) is 
increasing in r (s fixed). Now we shall consider the particular case, i.e., when r = s. In 
this case, we have 

* # : ( / > ! , . . . , p M ) = ( 1 - 2 1 - ) " Eţp^j( |> ' -i 
2( s - 1 ' 2 я - i ' P l P м » - l ] , a - t l , a = l,2. - 0 - 2 1 -

Using the result 1 (iii), we conclude that RS

S(P\, • • •, PM) is increasing in s. 
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Property 4. °V' (P\,P2,..., PM) (« = 1 a n ( ' 2) are convex functions of 
(PX,P2, ...,PM) for all s>r> 0, with P, € A„, i = 1, . . . ,n. 

Proof . In view of continuity of aV" (a = 1 and 2) with respect to the parameters r 
and s, it is sufficient to show the convexity of aRs

r(P\, P 2 , . . . , PM) (« = 1 and 2), for all 
s>r > 0 , r - i 1, 9^ 1. 

For a = 1. It can easily be checked that the function given by 

KГ(PU, ... ,Pnj) = 53 p\3 ( 5 3 X k P i k 

is convex for r > 1 and concave for 0 < r < 1, for each j = 1,2,..., M. This is equivalent 
to say that the following inequalities hold 

-rЧ*=ł 

(21) 

/" 53 pTj 5 3 X k p i k ) + pi 53 ih ( 5 3 **** 
.=i \fc=i / .=i \fc=i J 

> ( E [ r u m + I-3*J)' /'i ( E A*P«*J + -a ( E A*9«*J 

r > 1, | " | o r 0 < r < 1, «=| < 0 

< ( E (."i/>.j + /'2%)r Ui ( E A*«*J + /'2 ( E A*9«*J ] 

0 < ?• < 1, ffj > 0 or ?• > 1, ~ <0 

for each j = 1,2,..., M; /.,, /(2 > 0, /«i + fi2 = 1. 
We know that the function /(:") = x' is convex for i > 1 or t < 0 and is concave for 
0 < t < 1. Using this, we have 

E í D + /«2 5 3 4 53A*w 

/*i E PÍJ ( E A*P«* + /'2 E (/íj ( E V/,/ i=i v=i / .=i \k=i 

/(i E /JÚ E A*Í>«* + /'2 E (/u E - W 
i=i \fc=i / .=1 \fc=i 

' Й" > j "г 75} < 0 

(22) 

, 0 < fŕł < 1. 

for each j = 1,2,..., M; /.., /«2 > 0, /t, + f<% = 1. 
.Joining the inequalities (21) and (22) and multiplying the resultant inequality by Aj, 
adding for all j = 1,2,..., M, subtracting I on both sides and multiplying by (] — 2 1 - s ) - 1 
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(s ^ 1), we get the convexity of xRr (P., P2,..., PM) for all s > r > 0. In particular 
when r = s, the inequalities (21) still hold. This completes the result for a = 1. 

For a = 2. To prove the convexity of xRr (P i , . . . , PM) we used the functions 
Kr(pij, • • • ,Pnj) (j = 1,2,... ,M). Instead, using it again, if we use the fact that the 
function 

M M n ( M \X~T 

Y, Wr (P«,, • • • ,Pnj) = £ Xj; £ > • J2 XkPik (23) 
i=l j=l i=l \«r=l / 

is convex in AM for r > 1 and is concave in AM for 0 < r < 1, and proceeding on the 
similar lines as before we get the required result. Q 

Property 5. "V" (Pi, P., • • •, PM) (a = \ and 2) are Schur-convex functions of 

(P„ P 2 , . . . , PM) G A M , i.e., ( P „ P 2 , . . . , P M ) X (QUQI,...,QM) implies 

"Vs (P,, P 2 , . . . , PM) <" vr
s (Qi, Q2, • - -, QM) (a=\ and 2) 

P roof . By the definition of (Pi, P 2 , . . . , PM) -< (<3i. <?2,.. •, QM) implies that 

Pij = ^2aitqtj Vj = 1,2,..., M; i = \,2,...,n, 
t=i 

where an, are as given in Definition 1. This gives, 

pTa ( X ! X k P i k J = ( z 3 a" 9<J ) ( 1 3 £ a«< A* °< 
for all j = l,2,.. . ,Af; i = l , 2 , . . . , n . 

For a = 1. From Holder inequality, we have 

( V = l í = l 

(24) 

Po(EAfcP'*j 
í » / M V~r 

> E « « 9 Í , T S A * * * ) » ° 
(=1 \/fc=l / 

/A í \ J - r 

<E«í«9ý(EA-í«*) . 
l t=i Vfc=t / 

< r < 1, 

r > l , 

for all j - 1 ,2 , . . . ,M and »' = 1,2,...,n. 

Summing over all i = 1,2,...,n, using the fact that ]T)"_, a.. = 1 for all f = 1,2,... ,n 
and raising both sides of the resultant inequality by ~f, we have 

S[|;*(IHT 
J=l > 0, 0 < r < 1, or 2=i < 0, r > 1 

4S*(I.A"")'T-
*5J- < 0, 0 < r < l or «=1 > 0, r > 1 

Гn ,м У " ' ] ^ 
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for each j = 1,2,... ,M. 

Multiplying by A,, summing over all j = 1,2,..., M, subtracting 1 on both sides, mul
tiplying by (1 — 21 - s)~1 (s / 1) and simplifying, we get 

lK(P\,P2,...,PM))< xK(Q\,Qi,...,QM), r - H , s ~ U . 

For a = 2. From relation (24) proceeding on the similar lines as before we get the 
required result. • 

P rope r ty 6. If P3(B) = ( £ ] £ . Pkj bn,..., £f= 1 pk] bnk) € An for each 

j = 1,2,..., A/, where B = {bik}, bik>0, i= \,2,...,n; k=\,2,...,M is a stochastic 

matrix with £}"_, bik = 1 for each k = \,2,... ,M, then 

aVs
T(P\(B),...,PM(B))< aV°(P\,...,PM) (a = l a n d 2). 

P roof . Follows on the lines similar to Property 5. Q 

P rope r ty 7. If the stochastic matrix B given in Property 6 is such that exists an i0 

for which b,ok > c > 0, VA: = 1,2,. . . ,M, then 

aV: (P\(B),..., PM(B)) < (1 - c) nV; (P\,..., P„) (a = 1 and 2), 

for all .s > 7- > 0. 

P roof . For given B, fix B\ such that 

B = (1 - c)B\ + cB2, 

where 

( 0, otlierwise. 

Using convexity property of a V r (Pi , . •., PM) (a = \ and 2) and the property 6, we have 

n v ; ( p 1 ( P ) , . . . , P M ( P ) ) < ( i - c ) " v ; ( p 1 ( p 1 ) , . . . , P M ( B 1 ) ) + a v ; ( P 1 ( S 2 ) , . . . , P M ( P 2 ) ) 

< ( l - c ) a V ; ( P , , . . . , P M ) (a=\ and 2) 

for all s>r> 0, since °Vr
s (P\(B2),..., PM(B2)) = 0 (a = 1 and 2). 

3. APPLICATIONS 

In this section, we shall specify some applications of the unified (r, s)-divergence measures 
given in Section 1. The applications are given towards income inequality, deflation factor, 
generalized mutual information and Markov chains. 
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3 .1 . Generalized measures of income inequality 

Following the approach of Nayak and Gastwirth [10], the generalized measures of income 
inequality are defined as: 

"j;(e1,p2,...,eM) = ° v ' ( ^ - - y (25) 

€} (£ W 

for all ?• € (0, oo) and s 6 (—oo, oo) when a = 1 and 2, and (7-, .s) £ f, when a = 3. 
Following the approach of Theil [23, 24], the generalized measure of income inequality 

is written as 

WHO = S^TJp. W 
where U is uniform distribution and P £ A„. Some particular cases of measure (26) are 
studied by Kapur [5]. 

3.2. General mutual information 

Let us consider a bidimensional random variable (X, Y) taking the values (a;,, j/j), 
t = 1 , . . . , n; j = 1,2,..., M with joint and marginal probability distributions given by 

PXY = {p(xu Vj)} , Px = {P(xi)} and Py = {p(yj)} 

for all i = 1,2,.. . ,n; j = 1,2,...,A/. 
The conditional probability distributions are given by 

Px\Y=Vl = {p(x,\y})} aud Py\x=x, = {p(yi\xi)} 

for all i = 1,2,. . . , n ; j = 1,2,..., M. 
Let us also denote 

Px x PY = {p(x,)p(y3)} , t = 1,2,... ,n; j = 1,2,... , M. 

Let us take \j = p(yj) and ptJ = p(x, | j/j), then from (11), we have 

M 

xR\(Pu...,PM) = YL PiVi) Dt (Px/Y^y, \\Px). 
i=i 

Hence 
M 

*V:(X; Y) = £ p ( 3 / i ) ^ (Px\Y=y, II P x ) , 
j». 

for all 7- € (0,oo) and s € (—00,00), where in this particular case 
1 V,f(.Y; Y) = ' Vr

s ( P , , . . . , P w ) , and ^ r
s is as given in (6). 
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Similarly, we can write 

2V'r(X;Y)=rr(PXY\\PXxPY) 

for all r e (0, oo) and s e (-00,00). 
Again making the same substitutions as above, we have 

3R'r(Pu...,PM) = 

= (2'-'-iy1\[£(T)p(yj)p(xi\yj)\ -\\=H'r(X)-H'r(X\Y). 

Hence 
3vr*(A-; Y) = S'T(X) - S'r(X\Y), (27) 

for all (r,s) 6 T. 
In particular, when r = s = 1, we have 

M 

*V\(X; Y) = 2V}(X; Y) - 3V\(X; Y) = R(X; Y) = Y,p(yj)D(Px]Y=y) \\ PX) 
i=i 

= D(PXY\\PXXPY) = H(X)-H(X\Y), 

where H(X) and H(X\Y) are the Shannon's entropy and Shannon's conditional entropy 
respectively. 

The measure R(X; Y) is famous in the literature on Information Theory as mutual in
formation between the random variables X and Y. We call the measures av.f (X; Y) (a = 
1,2 and 3), the unified (r,s)-mutual information. 

For the three discrete random variables X, Y and W, let us define the expressions 
"V,5 (a = 1,2 and 3) as follows: 

1 
aV^(X;Y\W) = Y,P(W') " v r ( * ; Y \ W = w,), 

/=i 

where for each value w, of W, we have 

M 

>V'r(X;Y\W = w,) = J2P(yj\v>i)rr'(Px]Y=yJ,w=„l,\\Px\>v^X 
J=I 

2V'r(X; YI W = w,) = T'r(PXY\W=„, || PX1 w=utl x Px,w=w,), 

and 

with 

3Vr
3 (X; Y I W = w,) = S'r(X | W = w,) - S'r (X\Y,W = w,), 

м 
S'r (X\ Қ W = «,.) = £ P (y, | w,) S'r (PXp=Уì,w=wt) 
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for all r G (0, oo) and s € (-oo, oo) when a = 1 and 2, and (r,s) 6 T when a = 3. The 
expressions 2v* and 3v* can be also understood as follows : 

2vr» (X; Y\W) = T'r (PXY\W || Px\w x PY\w) 

and 

3V'r(X; Y\W) = e'r(X | W) - e'r(X \ Y, W). 

The following proposition holds. 

Proposition 1 . 

(i) For all r £ (0, oo) and s _ (—oo, oo), we have 
(a) aV;(X; Y) > 0 (a = 1 and 2) with equality iff X and Y are independent; 
(b) °v r '(X; Y | W) > 0 (Q = 1 and 2) with equality iff X and Y are independent 

given W. 

(ii) For all (r, s) _ T, we have 
(a) aV'(X; Y) > 0 with equality iff X and Y are independent; 
(b) avi(X; Y | W) > 0 with equality iff A" and Y are independent given W. 

P r o o f . Part (i) (a) and (b) follows from the Property 1. In order to prove part (ii) 
(a) and (b) it is sufficient to prove (b) part, i.e., equivalent to prove the following: 

e'r(X\Y,W)<e'r(X\Y) 

with equality iff X and Y are independent given W. It can be proved by using concavity 
of£ ; : for ( r ,5)er (cf . [20]) . 

3 .3 . Markov chain 

We shall now apply the concept of unified (r, s)-mutual information discussed above to 
Markov Chains. 

Definition (Markov chain). A sequence of random variables X\, A_, . . . forms a 
Markov chain denoted by X\ Q A_ © . . . if for every i, the random variable Xi+\ is 
conditionally independent of (X\,X<i,...,X._i) given X{. 

Proposition 2. The random variables X, Y and W form a Markov chain, i.e., 
X 0 Y 6 W iff "V^X; W \ Y) = 0 (a = 1, 2 and 3). 

The proof is obvious from the definitions and Proposition 1. 



322 M.L. MENENDEZ, L. PARDO AND I.J. TANEJA 

Proposition 3. If X Q Y 0 W, then 

V'T(X; Y) 
(a) aV3

T(X; W) < 
' aV'T(X;W) 

for all r G (0, oo), and s € (—oo, oo) when a = 1 and 2, and (r, s) € T, when a = 3. 

(b) £'T(X | Y) < £'T(X | W), for all (r,s) e T. 

P roof , (a) For a = 1 and 2 the result follows from Property 6. For a = 3, we have 
the following identity : 

3V'T(X;W)-r *Vr(X; Y \ W) = 3V'T(X; Y) + 3V'T(X; W \ Y). 

Since X, Y and W form a Markov chain, then by Proposition 2, 3V*(X;W\Y) = 0. 
Also, 3 v r ( X ; Y | VV) > 0. Thus, the required result follows immediately from the above 
identity. 
(b) From Proposition 2, we have 

3V'T(X; W | Y) = 0 

for (r,s) 6 T. This implies that 

# ( X | Y) = £r'(X | Y, W) < £'T(X | W), (from Prop. 1 (b)) 

for all (r, a) € T, whenever AT, Y and W forms a Markov chain. D 

Proposition 4 . If X 0 Y 0 W 0 T, then 

0vr
3(X;T)< av;"(Y;iy) 

for all r G (0, oo), s € (—oo, oo) when o = 1 and (r, 5) € T, when a = 3. 

P roo f . Since X, Y, W and T forms a Markov chain, then X, Y and T and Y, VV 
and T also form Markov ch*ins. Applying Proposition 3(a) over these two sub-Markov 
chains, we get the required result. • 

3 .4 . Deflation factor 

Nayak [9], considered the following decomposition for the entropy of degree s 

£;(X,Y) = £'a(X) + JTp(xi)w',(p(*i))£:(Y\X~xi), s>0 (28) 
;=i 

where w's (p(xi)) is the "deflation factor" (cf. [11]) given by 

ws
5(p(xi)) = p(x,y~\ 
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The expression (28) given in [9] is for one parameter. This can be generalized for two 
parameter family of measures ill the following way: 

) < £;(X) + t,p(xi)wt(P(xi))£;(Y\X^ Xi) r > s > 2 - 1/r > 1 
'T 

> £Sr(X) + T,p(xi)ws
r(p(x,))£;(Y \X = Xi) 1 > r > s > 2 - 1/r 

;=i 

(29) 

where 

w'Mxi)) = p(xi)TH-\ r -4 1. 

As specified in [9], here also the above expression (29) does not applies in the case of 

Renyi 's entropy of order r. In part icular , when r — s, the expression (29) reduces to 

(28). For the proof of inequalities (29) refer to [13]. 
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