
Kybernetika

Goshaidas Ray; Subimal De
On-line parameter estimation and two-level control of large-scale discrete time systems

Kybernetika, Vol. 33 (1997), No. 4, 427--443

Persistent URL: http://dml.cz/dmlcz/124882

Terms of use:
© Institute of Information Theory and Automation AS CR, 1997

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124882
http://project.dml.cz


K Y B E R N E T I K A — VOLUME 33 (1997), NUMBER 4, P A G E S 4 2 7 - 4 4 3 

ON-LINE PARAMETER ESTIMATION 
AND TWO-LEVEL CONTROL 
OF LARGE-SCALE DISCRETE TIME SYSTEMS 

G O S H A I D A S R A Y AND SUBIMAL D E 

This paper introduces an new approach for parameter estimation and two-level control 
of large-scale discrete systems using input-output data. Parallel recursive least square esti­
mation algorithms based on special observable canonical innovation model are considered 
and subsequently, parallel state estimation schemes are developed by partitioning the con­
ventional Kalman-filter equation. Two-level controller is implemented by using estimated 
parameters. Global output feedback controller is designed to reduce the effect of state in­
teraction between the subsystems and subsequently, a numerically reliable and stable local 
controller based on singular value decomposition (SVD) technique is considered to stabilize 
a'-d improve the performance of the composite system. Simulation studies for parameter 
estimation and control of discrete time systems are carried out by considering a numerical 
example of flight control problem. 

1. INTRODUCTION 

A variety of difsrent identification and parameter estimation algorithms for dynam­
ic processes have been received much attention recently [1], [8], [13]. Among the 
identification algorithms, the ones that perform on-line by sequentially updating the 
parameter estimates from noisy measurements in a stochastic environment are the 
most important issue for engineering application. Many of the powerful results of 
modern stochastic control and estimation theory have been derived on the basis of 
a state space representation of a system. The state space model usually belongs to 
the research area of engineering and control. Often such a model is not available 
a priori and must be deduced from the system in operation. On-line identification 
of state variable model has been at tempted by several research workers. Identi­
fication of a nonparametric model and realization of a state space model through 
transformation was first introduced by Saridis [15]. Identification of an input-output 
representation, the realization of block-observable canonical state space model was 
first proposed by Tse and Weinert [19]. Early eighties El-Sherief [3] has proposed an 
efficient but simpler form of a combined three-stage algorithm in a bootstrap manner 
for simultaneous state estimation, direct identification and control of a state space 
model. The state estimates are obtained using the innovation model of Kailath [7] 
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where the Kalman gain and innovation terms are estimated together with the sys­
tem parameters. Recently, Ray and Rao [14] have extended the work of El-Sherief 
[3] to reduce further computational burden and also developed parallel algorithms 
in order to estimate state and parameters of the system by exploiting a special ob­
servable canonical state space model. Algorithm proposed by these authors require 
the information of s tate estimates in the parameter estimation stage which causes 
the additional telemetry costs and moreover, this may leads to converge parameters 
in wrong values. A recent paper by McElveen and Lee [11] discusses a stochastic 
approximation technique for multi-input multi-output system identification which 
is based on state space formulization of a system. Algorithm proposed by them do 
not require any information of s tate estimates for parameter estimation but on the 
other hand, it requires significant computational burden and accordingly it becomes 
unattractive for large scale systems. 

Extensive work has been done in the past 20 years on the subject of system 
identification and several books have been written, for example, Ljung [9], Eykhoff 
[5], and Soderstrom and Stoica [18]. Also several survey or review papers has been 
written on the field: Astrom and Eykhoff [2], Young [20], and El-Sherief and Sinha 
[4]. A class of research workers has pointed to a number of techniques by which the 
accuracy of an estimated model parameters can be judged and the role of model 
validation procedures for assessing different kinds of errors can be found in [10]. 

The aim of this paper is to employ a special observable canonical model in order to 
reduce computational burden and also an a t tempt is made to develop a numerically 
reliable combined parameter estimation and two-level coiilrol scheme to regulate the 
system performance. This paper is organized as follows: 

A formal statement of the problem is given in Section 2. In Section 3, we consider 
the development of proposed parameter estimation based two-level control algorithm 
for linear time-invariant discrete time systems. In Section 4, we illustrate the ap­
plication of the proposed scheme by simulating a flight control problem and study 
the effectiveness of the proposed algorithm. Finally, some conclusions are made in 
Section 5. 

2. PROBLEM STATEMENT 

Let us consider the following m-input, p-output, nth-order linear time-invariant 
discrete-time multivariable stochastic system 

X(k + 1) = AX(k) +BU(k) + Tu(k) (1) 

Y(k) = CX(k) + V(k) (2) 

where X(k) is the n-dimensional state vector, U(k) is the m-dimensional feedback 
control vector, Y(k) is the p-dimensional measured output vector, co(k) is the Tri­
dimensional input noise vector and rj(k) is the p-dimensional measurement noise 
vector. It is assumed that the system (1) and (2) is completely controllable and 
observable and the system matrices are constant but unknown. The sequences co(k) 
and r](k) are assumed to be white noises and have Gaussian distribution with the 



On-Line Parametєr Estimation and Two-Level Control . . . 429 

following statistics 

E{u(k)} = E{r,(k)} = 0 

E{u(k)u(iy} = nsk} 

E{n(k)n(l)'} = A6kl 

E{u(k)r,(l)'} = 0 

where 6kl is the Kronecker delta. It is also assumed that the initial state X(0) is a 
Gaussian random variable with known mean X(0) and covariance P(0). 

The above system model (1) and (2) can be transformed into a one-way observable 
canonical form using a suitable transformation matrix M [6] and it is given by 

X(k + l) = AX(k) + BU(k) + тuj(k) 

Y(k) = ČX(k) + n(k) 

with 
X(k) = MX(k) and A = M~lAM, B = M~lB, 

T = M~1T and C = CM. 

The matrices A and C have the following special structures. 

A = 

Åu 0_ 
^ 2 1 ^ 2 2 

Apl A 
P2 A 

with 

Aц — 

AІJ 

•a«(l) 1 0 
-a«(2) 0 1 

l -aц(ni) 0 0 

-aгj(І) 0 0 
-aгj(2) 0 0 

ІІJ(ПІ) 0 0 

pp 

•••0 
•••0 

J ntxnt 

(3) 

(4) 

аnd 

C 

1 0 0--- 0 0--- 0--- 0 - - 0 
0 0 0--- 0 !••• 0--- 0--- 0 

0 0 0- • 0 0••• 0--- !••• 0 
pXП 
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where rij, i = l,2,...,p are the observability structural parameters or indices of 
the system that are assumed, in the present situation, to be known. In general, if 
structural parameters are not known, they can be estimated in advance from the 
input-output records [19]. It follows from the observability property assumed for the 
systems, that the order "n" of the system is related to the set of indices n. for the 
canonical model as follows 

p 

= J2ni 
1 = 1 

It is necessary to mention here that the matrices B and r do not have any special 
structures and the number of parameters involves in A and B can be expressed as 

p 

7_J(j x n.) + n x m 

i= i 

which is much less in number compared to the original system parameters. This 
transformation in turn reduces the computational burden further for the case where 
all the system parameters of the model are unknown and need to be estimated 
on-line to obtain appropriate feedback controller parameters. To ensure identifiabil-
ity, we transform the system (3) and (4) into the following equivalent steady state 
innovations model with one noise source e(k) [7]. 

X(k + l) = AX(k) + BU(k) + Ke(k) (5) 

Y(k) = CX(k)+e(k) (6) 

where K is the steady-state Kalman gain matr ix of dimension (n x p) and e(k) is 
innovation sequence with E{ e(k) } = 0 and E{ e(k)e'(l) } = E\6ki respectively. 
The aim of the paper is to design an efficient and numerically relaiable linear regu­
lator for the system (1) and (2) using the on-line parameter estimation and two-level 
control scheme that is based on the innovation model (5) and (6). 

Exploiting the observable canonical structure, we develop 'p'-parallel recursive 
least square estimators to estimate the transform system parameters A, B along 
with the Kalman filters gain K. After estimating the system parameters, the com­
posite system states X(k) can be estimated directly by parti t ioning the conventional 
Kalman filter equation. Subsequently, the updated system parameters are then used 
to implement a two-level controller and it is discussed in detail in the next section. 

3. ON-LINE P A R A M E T E R ESTIMATION AND T W O - L E V E L 
CONTROLLER 

Let us consider the system described by the equations (5) and (6), the structures of 
A and C for the canonical model have already given in Section 2 and the structures 
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of B and K are given below 

Г 6 n ( l ) 6 1 2(1) 
6n(2) 6 1 2 (2) 

6 ц ( n i ) 6 i 2 ( n i ) 

6pl(l) 6 p 2 ( l ) 
Ьpi(2) Эp2( 

••6lm(l) 
• • 6 l m ( 2 ) 

An\) 

6 p m ( l ) 
6 p m ( 2 ) 

6 p i ( n p ) 6 p 2 ( n p ) •••6pm(np) J 

,K = 

lcц(l) 
kn(2) 

lci2(l) 
lci2(2) 

lcц(ni) lci2(n^ 

lCpl(l) lcp2(l) 
lcPi(2) lcp2(2) 

• • - l C l m ( l ) 

••• lClm(2) 

. ( » i ) 

i ( l ) 

.(2) 

kpi(np) kp2{np) • • • kpm{np) 

Due to the special structure of the innovation model (5) and (6), one can express 
the ith subsystem output yi(k) in terms of past outputs, inputs and innovation 
sequences and obtained the following ARMAX model. 

yi(k) = a'i(k) 0i(k-l)+ ei(k), îori= l , 2 , . . . , p (?) 

where 

6i(k - 1) = [ct;i(l).. .an(ni)\.. .\aa(l). ..aa(m)\ 

bn(l).. .bn(m)\ • • • \bim(l) • ••bim(ni)\dil(l).. .da(ni)\ ... \da(l).. .dii(m)\ 

^»,(*H-i)(l) • ••*ť,(ť+i)(nť)| • • • \kip(l) • ..kip(ni)]' for i < p (8) 
dij(l) = atj(l) + kij(l) for i = 1, 2, . . . ,p; j = 1, 2, . . . , i; l = 1, 2, . . . , m 

and 

a'i = [ -yi(k - 1), -yi(k-2)...-yi(k-m)\.-.\- yt(k - 1) 
-yi(k - m)\ui(k - 1).. .ux(k - m)\ .. .\um(k - 1)... 

.. .um(k - m)\ei(k - 1). . .ei(k - m)\ • •• \ep(k - 1).. .ep(k - m) ] (9) 

By using a recursive least-square algorithm, one may obtain an unbiased estimate of 
the parameter vector 0,-. More interestingly, equation (7) indicates that the param­
eter vector 6i for each subsystem can be estimated independently using p-parallel 
estimators. The following self-tuning control scheme may be used for identification 
and control of a multivariate discrete time systems. 

Stage 1: Parameter estimation based on recursive least-square algorithm [5]. 
The parameters of the system matrices A, B and K of (5) can be obtained using 

the following set of equations for i = 1,2,... ,p. 

0i(k) = Bi + 9i[yi(k)-a'i(k)$i(k-l)] 

9i(k) = P^k-^a^il + a'iP^k-^a^k)]'1 

Pt(k-l)ai(k)[Pi(k-l) ai(k)Y 
Pi(k) = ñ(к-l) 

[l + at(kyPi(k-l)ai(k)] 

(Ю) 

(П) 

(12) 
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The matrix Pi(k) is a symmetric matrix and 9i(k) is defined as the estimate of 
9i(k) at the Mh iteration. The parameter estimation algorithm may be expected 
to converge to the correct parameter values under certain conditions [6], [9]. It can 
be noted that the parameter estimates Oi(k), for i = 1,2,.. .,p, yield the estimates 
of the matrices A, B and K of the innovation model. Estimated parameters can 
then be used to obtain the states of the system using the following 'p' partitioned 
Kalman-filter equations. 

fi(k+i/k) = %i(k)Xi(k/k-i)+^2%j(k)%(k/k-i) 
i = l 

m ^ P ^ 

+J2% ui(k)+£7-i(*)«i(*) (13) 
3=1 J = l 

ei(k) = yi(k)-CiiX~i(k/k-l), i=l,2,...p. (14) 

Stage 2: Design of two-level controller for interconnected discrete time system. 

(i) Design procedure of global controller (U3(k)): 
Let us rewrite the equations (5) and (6) in the following form 

X(k + 1) = %(k) X(k) + %i(k) X(k) + %(k) U(k) + 1t(k) e(k) (15) 

Y(k) = CX(k) + e(k) (16) 

Ad(k) = diag. block of matrix A 

AQ?(k) = off diag. block of matrix A 

U(k) = Ug+U,(k) 

= global output feedback controller 

+local state feedback controller. 

One can select the global output feeedback controller gain Lg(k) in the following 
manner 

%(k)Ug(k)+%t(k)X(k) = 0 

%(k)[-Lg(k)Y(k)] = -Jot(k)X(k) 

f(k)Lg(k)C = %t(k) 

Lg(k) = [ .S ' (A) f (A) ] - 1 B' (* )3or (* )?p7^ ' ] - 1 (17) 

to reduce the effect of state interaction between the subsystems [16]. It can be 
noted that the matrix C C is unity matrix due to the special structure of C and the 
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rank of the matr ix B (k)B(k) is £ra). Using the expression (17), the global output 
feedback control signal Ug = —Lg(k)Y(k) is generated to reduce the effect of state 
interactions which in turn makes the composite system weakly coupled. 

(ii) Design procedure for local controller. (L;(&)): 
Let us consider interaction-free ith subsystem and each decoupled subsystem dy­
namics is described by the following set of equations (for i = 1,2,... ,p) 

where 

Xi(k + 1) = Aц XІ + Bц(k) U!г(к) + u*(k) 

Yг(k) = цXi(k) + Г)i(k) 

p л 

u* = 22 KІJ eг(k). 

í*=i 

(18) 

(19) 

It is assumed that the pair (Au(k), Ba(k)) is controllable. Note that the above two 
equations are obtained while the global control signal is employed to the transformed 
system model (3) and (4) and the effect of input interaction terms are not taken into 
consideration in equation (18). This assumption will simplify the development of a 
local controller. Local controllers are used to regulate the system performance and 
also to stabilize the composite system. 

Given the system (18) and (19), our problem is now to design a local controller 

Uu(k) = -Li(k)Xi(k/k-l) for i = 1,2,. . .p 

so as to minimize the performance index 

k}-\ 

Ji[Uц(k)] = E Xi'(kJ)ŇiXi(kJ)+ J2 Xi>(k)QlXi(k) + UH'(k)RlUu(k) 
k-0 

(20) 

(21) 

We have not offered any criterion on the choice of Qi and R4 matr ix in equation 
(21) A methodology for selection of these weights can be found in s tandard text 
book [17]. The optimal control sequences { Un(k)} for i = 1,2, .. .ra are obtained 
using the following procedures (see the Appendix): 

The local control law for the ith subsystem is given by 

Uli(k) = -Li(k)Xi(k/k-l) (22) 

and the local controller gain Li(k) is computed by the following backward recur­
sion for j = kf — 1, kf — 2 , . . . , 1. Now, we construct the following matr ix 

7. 0) 
(i + i) 

S.0") 
0 ¥>> (*/) NІ. (23) 

Note that the superscript indicates the backward recursion and Tt- w) is a Householder 
matrix which transform the above matr ix into special form. 
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Define the following matrices 

SiWATid* 
0 

LІ^ = an d Ą Ö Ï = 
(n^+m,) Xn, 

&CЛҖ..CЛ 

ч/яľ7^ (ni+mi) xm, 

. ( 2 4 ) 

and the singular value decomposition of the real matrix E(U) is a factorization of 
Ei CJ') into a product of the matrices 

K-0') 
E.ü) = P.ü) 

0 м г '(л (25) 

where Pt- «') and Mi CJ) are the orthogonal matrices of dimension (mi + rii) x (m; +rii) 
and (m; x me) respectively. The product of the matrices P,-'^ ' and Lt^) can be 
partitioned in the following manner: 

Я'СЛг.О-) 
(Л 

0 ) 5 j R n , x n , ; p . O ^ f l n . X n , (26) 

The stationary values of V; C ,̂ Mj C*) and <pi C-0 at fcth time index can be obtained 
by simply iterating the above equations (23) - (26) in backward recursion and their 
stationary values are denoted as Vi(k), Mi(k) and (f>i(k) respectively. Then the local 
controller gain matrix at time index 'k' is given by 

Li(k) = Mi(k)[Vi(k)]-1Mk) (27) 

p-CECOUPLE STATE AND 

PARAMETER ESTIMATION 

SCHEME 

fbrM 
Ľ L 

LOCAL 

C O N T R O L L E R 

-Ljlkl, i = 1, 2....p 

G L O B A L 

C O N T R O L L E R 

- L n l k l 

kl , £ • ( k l . C 

Y [ k l 

U u Ik lJL JLU L j (k l J L u L P ( k ) 

Fig. 1. Block diagram for two level control scheme for unknown systems. 

Local controller design based on SVD technique (equations (23)-(26)) exhibits nu­
merically more stable and reliable. Effectiveness of the proposed algorithm will be 
considered by demonstrating with a numerical example of flight control problem. A 
block diagram of the proposed control scheme for multivariable unknown discrete 
time systems is shown in Figure 1. 
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4. RESULTS AND SIMULATION STUDY 

In order to study the effectiveness of the proposed scheme, we have considered multi-
input multi-output (MIMO) linearized flight control problem [12]. The linearized 
continuous model is discretized with a sampling period T = 0.01 sec for the MACH= 
0.9, 10,000ft MSL flight condition. The discretized model is given below. 

X(k+l) 

+ 

1.00 - 2 . 6 9 4 e - 8 
- 3 . 2 1 6 e - l 0.9998 

- 7 . 8 4 2 6 e - 6 -3.83e - 7 
3 .63e-6 - 5 . 3 8 3 e - 5 

1.59e-3 - 4 . 9 7 e - 4 
3 .13e -4 2 . 0 5 e - l 

- 3 . 6 6 e - 3 - 4 . 1 5 e - 3 
- 3 . 1 8 e - 1 - 9 . 9 2 e - 4 

2.77e-4 9.95e-3 
ñ i i r . n oзß 

9.979 ' Я.8-1- - 3 
5.51< - 2 0.99 

X(к) 

y(к) = 0.0 
1.0 

0.0 
0.0 

0.0 
•1.0 

1.0 
1.0 

l.o'h - 3 - l . 9 7 e - 4 

U(k) + 
з.i;І - 2 

-З.ббe - 1 
_'.05e - 1 

- l . l б e - 3 
ш(k) 

-3.18e- 1 - ' .92e-2 

(28) 

<(к)+ v(к)- (29) 

The states represents the pitch angle (deg), forward velocity (fps), angle of attack 
(deg) and pitch rate (deg/sec) respectively. The control vector represents the eleva­
tor deflection and flaperon deflection commands. 

System (28)-(29) is transformed into the following observable canonical form [6]. 

X(k+1) = 

1.9798 1 
-0.9695 0 

0 0 
0 0 

-0.0002 0 1.9524 1 
0.0 0 -0.95 0 

+ 

Y(к) = 1.0 
0.0 

-0.3179 
0.3112 
0.0021 

-0.0020 

0.0 
0.0 

-0.0992 
0.097 

0.0037 
-0.0036 

X(k) + 

ш(к) 

-0.3179 
0.3112 
0.0021 

-0.0020 

-0.0992 
0.097 

0.0037 
-0.0036 

U(к) 

0.0 
1.0 

0.0 
0.0 

X(k) + rì(k). 

(30) 

(31) 

The proposed algorithm has been tested by using the following initial data: 

• Input noise covariance matrix 

Q -. 

• Measurement noise covariance matrix 

Л = 

0.40 0.0 
0.0 0.40 

*1X 

0.01 0.0 
0.0 0.01 

Initial value of state X(0) = [ 0 0 0 0 ] ' . 
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1st stage: Parameter estimation part 

• Subsystem 1: 

Pi(0) = 10 6 x 7 1 0 x l 0 , X1(l/0) = [ 0 0 ]' 

0.(0) = [0 0 | 0.1 0.1 | 0.1 0.1 | 00 |0 0 ] \ 

• Subsystem 2: 

P2(0) = 10 6 x 7 1 2 x l 2 , N2(l/0) = [ 0 0 ]' 

02(0) 0 0[ 0 0 | 0.1 0.1 | 0.1 0.1 | 0 0 | 0 0 ] 

2nd stage: The following initial data are considered for the design of controller, 

i) Centralized controller: 

" 15.0 0.0 
Q = diag[ 30.0 30.0 9.0 9.0 ] R = 

0.0 15.0 

ii) Two-level controller: 

Choice for weighting matrices are given below: 

• Subsystem 1: 
Qi = diag [1.0 1.0] and R1 = 1.0. 

• Subsystem 2: 
Q2 = diag[1.0 1.0] and R2 = 1.0. 

Effectiveness of the proposed method is verified by simulating the flight control 
problem and the results are compared with the centralized scheme. Convergence of 
model and controller parameter estimates are presented in Figures 2-5. It can be 
observed from the figures that the performance of the proposed scheme is very close 
to the centralized method. Tables 1-4 shows the parameter estimates at different 
iteration stages and error norms of the parameter estimates are also included in the 
tables. 

T a b l e 1. Error Norms = v / T j (Actual value - Estimated value) , 
51 stands for centralized scheme and 52 stands for proposed method. 

Sch eme usec Transformed system parameters of matrix A 

flll(l) a n ( 2 ) g j j j l ) a2i(2) 022(1) "22(2) 
True Value -1.9798 0.9695 -0.0002 0.0 -1.9524 0.9519 
Estimate after 5 1 -1.9770 0.9696 0.0006 -0.0008 -1.9815 0.9815 
25 iterations 5 2 -1.9700 0.9697 -0.0922 0.0910 -1.7330 0.7333 
Estimate after 5 1 -1.9690 0.9694 -0.0002 -0.0007 -1.9793 0.9793 
50 iterations 5 2 -1.9700 0.9696 -0.0003 0.0 -1.9793 0.9792 
Estimate after 5 1 -1.9694 0.9694 -0.0002 0.0 -1.9793 0.9793 
75 iteгations 5 2 -1.9699 0.9695 -0.0002 0.0 -1.9793 0.9793 
Error norm 5 1 49.82 17.19 2.39 3.08 3.78 6.42 
afteг 100 iterations 5 2 51.97 19.91 1.96 1.61 3.94 3.78 
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T a b l e 2. Error N 

Scheme used 

orms = \/Уj (Actual value -

Transformed system 
Ь п ( l ) Ьц(2) 

- Estimated value) . 

parameters of matrix B 
612(2) 621(2) 622(2) 

True Value -0.3179 0.3112 0.0970 -0.0020 -0.0036 
Estimate after 
25 iterations 

51 
52 

-0.3179 
-0.3179 

0.3112 
0.3112 

0.0970 
0.0970 

-0.0023 
0.0277 

-0.0037 
0.0064 

Estimate after 
50 iterations 

51 
52 

-0.3176 
-0.3176 

0.3112 
0.3112 

0.0969 
0.0970 

-0.0021 
-0.0021 

-0.0037 
-0.0036 

Estimate afteг 
75 iterations 

51 
52 

-0.3177 
-0.3179 

0.3112 
0.3112 

0.0969 
0.0969 

-0.0021 
-0.0021 

-0.0037 
-0.0037 

Error norm 
after 100 iterations 

51 
52 

0.653 
0.613 

11.154 
16.586 

7.047 
19.235 

0.727 
0.6085 

0.451 
0.7428 

Table 3. 
Centralized controller parameters 

' 11 ll2 łiз ři4 -2-1 '22 l23 Һi 
Tгue Value 3.896 2.558 0.291 0.272 1 .230 0.813 -0.341 -0.307 
Estimate after 3.436 2.135 0.313 0.293 1 .090 0.685 -0.443 -0.399 
25 iterations 
Estimate after 3.412 2.112 0.305 0.285 1 .113 0.707 -0.432 -0.390 
50 iteгations 
Estimate after 3.415 2.115 0.305 0.285 1 .110 0.705 -0.433 -0.390 
75 iteгations 
Estimate after 3.414 2.114 0.305 0.285 1. .111 0.705 -0.432 -0.390 
100 iterations 

Table 4a. 
Global controller parameters (proposed scheme) 

' .9,П '.9,12 '.9ДЗ '.9,14 

True Value 0.0102 0.0 -0.0328 0.0 

Es f.imate after 10.6200 0.0 -34.0600 0.0 

25 iterations 
Estimate after 0.0156 0.0 -0.0501 0.0 

50 iterations 
Estimate after 0.0123 0.0 -0.0395 0.0 

75 iterations 
Estimate after 0.0129 0.0 -0.0414 0.0 

100 iterations 

Table 4b . 
Local controller parameters (proposed scheme) 

Subsystem 1 Subsysi tem 2 

h h h h 
True Value 4.237 3.127 -0.8777 -0.7971 
Estimate after 
25 iterations 

3.530 2.485 -2.7590 -2.6940 

. Estimate afteг 
50 iterations 

3.530 2.482 1.0970 -0.9972 

Estimate afteг 
75 iterations 

3.530 2.482 -1.0850 -0.9860 

Estimate after 
100 iterations 

3.530 2.482 -1.0870 -0.9878 
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5. CONCLUSIONS 

A new form of the on-line parameter estimation and two-level control of unknown 

large scale discrete time system is presented in this paper based on the use of an 

innovation model. Proposed scheme is based on a special observable canonical model 

(one-way coupling form) and considerably less number of parameters (X2i=i ( z x n 0 + 

n x m + n x p) are involved in the parameter estimation algorithm compared to the 

other existing bootstrap algorithms. It must be noted that the 'p'-parallel parameter 

estimation schemes and subsequently, 'p'-pa.Tal\e\ state estimators are implemented 

by exploiting the observable canonical structure of the innovation model. Two-level 

controller is developed for a large scale systems with a view to reduce the effect of 

state interaction between the subsystem while the global output feedback control law 

is used and subsequently, numerically sound and accurate method in the formulation 

of local control law based on SVD technique is designed to achieve regulated system 

response. It is observed that the conventional linear-quadratic regulator (LQR) 

based local controller leads to serious numerical problems while the transformed 

innovation model is weakly controllable and the elements of input matr ix B(k) are 

relatively small. It is also observed that the local controller based on SVD technique 

increases the computational burden but, on the other hand, the proposed method 

possess good numerical properties. Results of the proposed method is compared with 

the centralized controller based on SVD technique. Simulation results are presented 

in Figures 2 - 5 , which indicates that the proposed method works quite satisfactorily. 

A P P E N D I X 

Let us consider a linear discrete time system is described by 

X(k + 1) = AX(k) + BU(k) (32) 

Y(k) = CX(k) (33) 

The matrices have the proper dimensions and it is assumed t h a t the (A, B) is control­

lable pair. Our aim is to develop an numerically reliable control law that minimizes 

the quadratic performance index 

J[U(k)] = E x'(kf)NX(kf)+ J2 {x'(k)QX(k) + u'(k)RU(k)} 
к = 0 

(34) 

Let us assume that the optimal control actions {U°(0) ,U°(1) . . .U°(kf — 2)} 

have already obtained by adopting Bellman's dynamic programming principle of 

optimality and the cost function that is to be minimized by U (Kj — 1) at the last 

stage is 

J(kf-l) = x'(kf)NX(kf)+u'(kf-l)R(kf-l)U(kf-l) 

= [A X(kf -1) + B U(kf - 1)] ' N [AX(kf -1) + B U(kf - 1)] 

+ u'(kf-l)R(kf-l)U(kf-l) 
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N A V N B 
0 \/Ҡ'(kf -1) . 

X(kf - 1) 

[ U(kj -1) J 

N A 
0 

LX(kf-l) + Z(kf-l)U(kf-l)\\2 

= Z(kf - 1). 

(35) 

(36) 

L and 
N B 

R'(kf-l) 

We perform a singular value decomposition on 

Z(kf -1) = P(kf - 1) 
V(kf - 1) 

0 
M (kf - 1). (37) 

Using the expression (35), we obtain the following relation from equation (34) 

J(kf - 1) = || V(k} -l)M'(kf- 1) U(kf -1)+ 4>(kf - 1) X(kf - 1) | 

+ || tp(kf-l)X(kf-l) | | 2 (38) 

Enuation (36) indicates that the minimum of J(kf — 1) with respect to U(kf — 1) is 
obtained for 

U*(kf-1) = -M(kf-l)[V(kf-l)-l]<f>(kf-l) 

and the corresponding minimum residual is 

J*(ks-1) 

(39) 

mm J(kf -1) = y(kf - l)X(kf - 1 ) | | 2 . (40) 
U{kf-1) 

It is assumed that all control actions U(k) prior to &th sequence have been deter-
mired, so that {U(k),..., U(kf — 1)} are the only control actions yet to be exerted. 
Using the principle of optimality, the optimal control action at stage 'fc' is obtained 
by minimizing the following cost function with respect to U(k). 

J(k) = \\X(k + l)\\Q(k) + \\U(k)\\R(k) + J, (k +1). 

Using the relation (36), we obtained 

J(k) = \\X(k + l)\\Q(k) + \\U(k)\\R(k)+\\<p(k + l)X(k + l)\\2 

Vo(k)' 

(41) 

T(k) 

<p(k+l) . 

" VQЩ' 
. <p(k + i) 

X(k + 1) + || y/вЩ'u(k) 

X(k+1) + || y/Ř(k)'U(k) | | : 

= || x/Š(k)X(k + 1)\\ + || \/Ř(kjU(k) (42) 
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Where T(k) is a Householder matr ix such that 

T(k) y/QW' 
<p(k + l) 

S(к) 
0 

Now, we can express X(k + 1) in terms of X(k) and U(k) using the expression (30) 

and obtained the following relation 

J(k) S(k)A S(k)B 1 [ X(k) 

0 y/R(k)' J [ U(k) 

\\L(k)X(k) + Z(k)U(k)\\\ (43) 

The equation has the same form as that of equation (A.5) and using the equations 

( 3 5 ) - ( 3 7 ) , we can write the control law as 

U*(k)= -M(k)V(k)-1<j)(k) 

The minimum value of J at H h stage is thus obtained as 

J(k) 

(44) 

min J(k) = | M * ) x ( * ) | | 2 . 
U(k)...U(kf-l) 
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