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K Y B E R N E T I K A — V O L U M E 16 (1980), NUMBER 

On Shannon — McMillan's Limit Theorem 
for Pairs of Stationary Random Processes* 

ALBERT PEREZ 

The aim of the present paper is to prove that the conditions for validity of the generalized 
version of the Shannon-McMillan's limit theorem for pairs of stationary random processes as 
given in Perez (1972) are not only sufficient but (in a certain sense) also necessary. Moreover, 
these conditions were replaced by similar ones, concerning finite-dimensional spaces. 

1. INTRODUCTION 

The classical Shannon-McMillan's fundamental limit theorem concerns the 
asymptotic behaviour of the probability of n-letter blocks produced by a discrete 
stationary source. In the case of abstract-alphabet sources we replace naturally the 
above probability by some probability density. Instead of individual sources we, 
thus, need now pairs of sources, the one dominating (in the sense of absolute con
tinuity) the other for every finite n. 

Generalized versions of Shannon-McMillan's limit theorem as developed by the 
author from 1956 and followed by other authors (for a summary of this development cf. 
Perez (1962)) concern, thus, the asymptotic behaviour of the corresponding Radon-
Nikodym density resp. of the entropy density, as called by M. S. Pinsker the logarithm 
of the former. Since in the essence this theory contributes to the study of the asymp
totic behaviour of the likelihood ratio, it is important as well for Information Theory 
as for Mathematical Statistics (for instance, in generalizing the Chernoff's result on 
the asymptotic discernibility of two random processes; cf. Perez (1972)). 

The aim of the present paper is to prove that the conditions for the validity of the 
generalized version of the Shannon-McMillan's limit theorem for pairs of stationary 
random processes as given in Perez (1972) are not only sufficient but (in a certain 

* Presented at the Fifth International Symposium on Information Theory, Tbilisi (USSR), 
July 1979. 



302 sense) also necessary. Moreover, these conditions were replaced by similar ones 
concerning finite-dimensional spaces. 

This version arised in trying to overcome an insufficiency of Perez (1962), the 
Lemma 2.2 of this paper being valid only under the condition of projectivity of the 
system of measures it concerns, i.e. namely for dominating process of Markovian 
type. In the general stationary case it, thus, arised the need to replace this lemma by 
an appropriate one (cf. Lemma 2.1 of Perez (1972)). In the essence, the object of 
my present paper is a further study of this Lemma, representing the crucial point 
in the proof of the generalized version of the Shannon-McMillan's limit theorem 
considered. 

2. FORMULATION 

Let (X0, X0) be a measurable space (abstract alphabet). Let us denote by (Xr s, Xrs) 

for r < s the measurable space X (Xh X,), (Xh Xt) = (X0, X0), i = r + 1, r + 2 , . . . 
i = r+l 

, . . , s , corresponding to letter sequences xr s = (xr + 1, x r + 2 , ..., xs), r, s = - c o , . . . 
. . . , — 1, 0, 1, ..., +oo. In the special case s = r + 1 we shall denote (^r,s> Xrs) by 
(Xs, Xs): it is the measurable space of the s-th "coordinate" xs of x = ... x_ t , x0, 
Xj , . . . . The measurable space of double infinite sequences will be denoted by (X, X): 

(x,x)="x'°(xi,xi). 

Let P and Q be two stationary probability measures on (X, X). By Pr s and Qr s 

we shall denote the restrictions of P and Q on Xr s, respectively. 

Let for every finite n = 1,2,.. . 

(2A) P0n < Q0n 

and denote by /0„(x) the corresponding Radon-Nikodym density. 

In the sequel we shall be interested on conditions for which the following funda
mental statement is valid. 

Statement. The sequence 

(2.2) S- log /0„(x) 

converges in P-mean (to a function h(x) which is invariant with respect to the shift 
transformation T). 



Obviously, if the statement holds then 

(2.3) iim I flog/o, dP = lim i H(P0B, Q0„) = f/r(x) dP = fi < oo , 

i.e., the generalized (relative) entropy rate of P with respect to Q exists and is finite. 
In other words, condition 

(i) lim - H(P0n, Q0„) = A < oo 
n-»oo n 

is necessary for the validity of the Statement. 

In the sequel we shall suppose that the conditional probability functions on Xx 

given x_„ 0 (i.e. measurable with respect to the cr-algebra £_„j0) corresponding to P, 
pP("/x_„ 0) , and to 2 , pQ(-/x_„ 0), are regular for n = 1, 2, ... . 

Let us introduce the probability measure PQ_Bj0j l on 3£_Bl generated by P_„>0 

and P Q ( ' / X - « , O ) in t n e following manner: for E e 3LBj0 and F e J , define the set 
function*) 

(2-4) PQ-,,.oAE >< f ) = [ PQ(Fl*-n,o) d-P-n,0 • 

P Q _ „ 0 1 is then defined as the unique extension on the whole cr-algebra 3E_Bjl of 
the above set function. 

It, obviously, holds for n - 1, 2 , . . . (cf. (2.1)) 

(2.5) P_B j l <̂  PQ_Bj0j l 

Let us denote by g„(x) the corresponding Radon-Nikodym derivative. 
Then one may write (putting/0 0 = l) for n = 1,2, ... 

(2.6) 1 log/0n(x) = - " £ (log/0„+1(x) - log/o t(x)) = - "X log gk(T
kx) 

n n k=o n k = o 

f-^M __ gk(T«x) (by taking g0(x) = f01(x)). 
fok(x) 

Given the stationarity of P, on the base of (2.6) one obtains 

(2.7) - flog f0n dP = - H(P0n, Q0n) = - J flog ^ (T ' x ) dPT" = 
n j n n t = oJ 

i i 

*) Note that PQ(IX-B,O) e x i s t s n o t only a-s- 12-Bj0] but also a.s. [-P_„j0], fl= 1,2,... 
(finite) since by assumption -P_„j0 <̂  G_„,o f o r every n finite. 



= - I flog afc(x) dP = - £ ff(P_M, PG_.i0,i) • 
n t = o J n fc=o 

I i 

By the first sum Cesaro theorem, if the following limit exists 

l imff(P_„> 1 ,Pe„„,0 i l) = 4 

then also 

lim - ff(P0„, Q0„) = A . 
n-»oo n 

In the sequel, condition (i) shall be replaced by assumption 

0') lim ff(P-„,!, Pe_„,0,i) = A < oo , 

Further, provided that the sequence {loga„}„gl converges in P-mean to some 
limit G(x), on the base of (2.6) and the stationarity of P one may write for some 
integrable function h(x) 

(11 åP 

áP + 

- logjo„(x) - h(x) 
n 

-"j_\loggk(T
kx)-G(T*x)) 

n fc=o 

£ - " . £ f | l o g a , ( x ) - G ( x ) | d P + f 
«fc = 0 j J 

ì"І;iogЛ(7*x)-Л(x)|dP й 
n fc=o 

П fc = 0 

dP < 

- I C(T*x) - h(x) àP . 

If now, h(x) is the limit in P-mean of (l/n) £ G(Tkx), which according to the 
fc = 0 

well-known ergodic theorem exists since G(x) is P-integrable, one obtains from (2.8) 
that also the sequence {l/n logj0„(x)}„^1 converges in P-mean to h(x) so that the 
Statement is fulfilled. 

Our attention may, thus, be concentrated on suitable conditions ensuring the 
convergence in P-mean of the sequence {log o„(x)}„gj. 

Indeed, this is the object of Lemma 2.2 of Perez (1962) (valid for the case of pro-
jectivity of the system of probability measures {P2_„,o,i}„feno> i.e. for the case of 
Markovian Q) which in the general stationary case was replaced by Lemma 2.1 
in Perez (1972). 

Lemma 2.1 (Perez (1972)). If 

(1) PQ('IX-«.O) = limpe(-/x_„>0) a.s. [P] 



(so that Pt2_00,0,! is a probability measure) 

(2) H(P_ 0 0 , i ,Pe_ 0 0 j 0 , i)<oo ) 

(3) dP = 0 *) lim f|log dp^xjx,^^) 

" " " J I dpQ(x,/x_n,o) 

then the sequence {log a„(x)}„gl converges in P-mean. In particular, 

(2.9) lim H(P_B,i, PG-„,o,i) = H ( P - . . i . PQ-oo.o.i) = 

= lim - Я(P0,„, ß0,„) = A . 

Proof, (new) 

dpP(x!/x_в,0) 
— — log 

dp^Xi/x-^^) dp^Xi/x-^.o) 

-= I | i o g dPp(Xi/^-»,o) _ l o g dpQ(Xi/x-oo,o) 
dpДxj/x-^^) dp^/x,,,,,}) 

-M dP = 

dP = 

dP < 

log dpP(xi/x-_,o) dP + 
dpP(x1/x_n,0) 

One, thus, under (3) derives that A„ -> 0 iff 

dpP(x1/x_0 0,0) 
lim log 

d p p ^ / x ^ д , ) 

dp6(xi/x-oo,o) 

dpß(xi/x_и>0) 

dP = O 

dP . 

or, equivalently, iff 

(2.10) l i m f l o g d p , ( * i / x . . , 0 ) d p = 0 ; 

•-«J dpP(x1lx^„t0) 

*) By introducing the probability measure Pg-^,0,1 on X.^xA by P g - ^ o . i ^ x 

x F) = J£pQ(F/x_„;0)dP_oo,o for £e£_ T O , 0 , F e X j , as extension of PQ_nfiA, 
condition (3) may be written (implicitely assuming: PQ-00,0,1 ^ PQ-'n.o.i) 

(3') lim l o g d P ß ^ | d p _ 0 

dPß^.oд I 



306 since the integral in (2A0) represents a generalized entropy, so that, according to the 
well-known Pinsker's inequality, 

dMxi/x-<-,o) 
dpP(xi/*-п,o) 

+ Г 

dPá|logË___________)dP 

log 

à.pP{xljx_Пt0) 

dpP(xi/x-„,o) dí 

log 

dpP(x1/x_„,o) 

Combining (2A0) with assumption (3) it reduces to prove 

lim | (log 5__W___-g) _ l og ____0__^_____L)>| d 
dpP(x1/x_„,0) dpQ(xi/x_„,0)y 

(2.11) lim ff(P_„д, Pß-„ , 0 д) = H(P-_, i , P ß - _ . o д ) , 

what is also a necessary condition for _„ -> o since it means 

lоg 
dP_, 

dPß-оо.OД 

dP-„д 

dPß-„,од 
d P - O. 

If, now, PQ_^i denotes the restriction of PQ-^ ,0,i on£_„ 1 ? since P _ n l <̂  PQ - ^ j 

(resulting from P-Xil <^ P_-a>,o,i which holds under assumption (2) ff(P_00l, 

PQ-00,0,1) < °°) o n e m a y write 

(2.12) 

so that 

log 
dP-„д 

dPß-„,oд 
= log 

dP_„д 

dPß-ľд 
f- + log 

d P ß ^ д 

dPß-„.oд 

; ^ ^ - l o g ^ - l o g І ^ ) d P . 
dPg-=0,0.1 ~dPQ<_7,i 

Since, on the other hand, under (2) 

(2.120 log 
d P _ r log 

dP_„д 

d P ß -

d P - O 
•<_Pe-_.o,i ~dPQ_2_| 

(cf. Lemma 2.2 of Perez (1962)) it results: <5„ -» 0 and, thus, under (2) and (3) 

(2.13) A„ - 0 iff A„ = flog dPe"C0"'1 dP - o . 
V ' J dPe_„,0.i 



Let us denote by B„ the quantity figuring in (3) (without | J) 

(2.14) B„ = flog dP-(*il*-<°J>} d P = flog d f g - » / > • ' dP (cf. (3')) . 
V J dpQ(x1/x_„,0) J dPQL-'o,, V V U 

We obtain immediately 

(2-15) A„ = //(P_„,1, PQ-„,0.1) - H(P_„A, PgL- ' i ) 

(2.16) _.„ = i-(P-oo,i, PQL^o,,) - _-(P-._._, Pe- , .0 .1) 

Denoting 

(2.17) ^ % ^ = * „ 
V ^ dPeL-.io.i 

we obtain the expressions (cf. (2A3) and (2A4)) 

(2.18) A. = flog SP{s„ | aE_nil} dP 

(2.19) B„ = flog s„ dP = [sP {log s„ | 3£_B>1} dP , 

where by SP{- [ 3E_nl} we denote the conditional expectation corresponding to P 
and measurable with respect to £_„,). 

By Jensen's inequality, since log is a concave function, one obtains 

(2.20) SP{\og s„ | •£_„,!} ^ log «fP{s„ | £_„, t} 

so that 

(2.21) A„ £ P„ 

From (2.15) and (2.12') we obtain 

(2.22) hmA„ = hmff(P_„,1,Pe-n,o,1)- H(P-_,i, PQ-«.o.i) 

limA„ = lim/-(P_„,1, P2-„,o, ,)- II(P-_,1»I>e-_,o.i) 

Since, one the other hand, 

H(P_„A, Pfi.,,0(1) =_ fl(P-_.,, PQLto.O , 

it follows from (2.16) and (2.22) that 

(2.23) I S A„ ^ Dm B„ 



lim A„ < lim B„ 

Now, comparing (2.21) and (2.23) we obtain 

(2.24) jimA„ = IimB„ 

lim A„ = lim B„ 

By assumption (3), however, we have lim B„ = O and, thus, from (2.24) we obtain 

lim A„ = 0, what, according to (2A3), completes the proof of the lemma (cf. (2.11)). 

Q.E.D. 
In the next section we shall prove some stronger results. 

3. SOME NEW RESULTS 

The following theorem represents a stronger version of the Lemma 2.1 (Perez 
(1972)) proved in a new way in section 2. 

Theorem 1. For well-defined probability measure Pe~a>,o,i f° r which it holds 

0) - f (P_ 0 0 , 1 ,PO- w ,o , i )< » 

the condition 

(ü log d P Є - æ , 0 , : dP = O 
dpe'-to,! 

(where PQ-„]o,i is the extension on X-^^ of PQ-n.o.i defined by 

PQ(-toAE x F) = [ PG(r/x-n>0)dP_00,0 

for _ e l . - i 0 , Ee.^i) is necessary and sufficient for the convergence in P-mean 
of the sequence 

d P e - n . O . i U l 

Proof. The sufficiency was already proved in Section 2. As to the necessity of (ii) 
it is proved as follows. We have (cf. (2.12)) 

(3.1) , - n d P _ д а l , d P _ n ] - log 
dPЄ-oo.oл dPЄ-и,oд 

dP = 



dPQL-^ 

dPQ-00,0,1 "dPQL?,! g d P e 7 ^ 
d P - ^ ! . d P - n l 

0 0 , 1 log d P . 

Let us introduce the probability measure P (_"j on £-Xiil by extending P _ B | 1 as 
follows. 

E e l . ^ j . As, in Section 2, PQ(-°„^ is the restriction of P Q . . , M o n L , , , . 
It holds for n = 1,2,... 

(3.3) 

Indeed, let 

Then 

C = łx 

P-_,i « P"(-_.i 

. d P _ „ л 

dPß-„,o,i 
= 0 e ï . л , . 

PL-MC„) = P - „ . 1 ( C „ ) = P_„. 1(C„) = O . 

If for some set E e X-„A it holds P . ^ ^ E ) > O then 

P-^xfP) = P - ^ . ^ E - C„) + ?_„, ! (£ n C„) = P - ^ . ^ E - C„) > 0 . 

Since, on the other hand, P_,-,i ^ PQ-_,o,i (according to assumption (i)) it 
follows that 

PQ_0O,0,1(£ - C„) > 0. 
But then 

PLt , (E ) = _«- . . (£ - C„) = f - ^ - d P g . ^ o , , > 0 

and, thus, (3.3) is proved, the corresponding Radon-Nikodym derivative being 

(34) d P _ 0 0 , 1 = d p , , , , / d f - , , , 

__«•>. dPe_.,o.1/c_pe(-").i 

Thus, (3.1) may be written 

_ ^ ._,._____ (3.5) .4, = dP 

If _f„ -* 0, then in particular 

(3-6) ;™J log dPgLt, 
dPQ-„,0,i 

dP = O 



310 since it holds also 

(3.7) 

and 

(3.8) 

log 
d P ß L ^ 

dPQ-nл.i 
dP S Л„ + í i d / J - - i 

І0g- 2^i 

o й d P — * dP = 0 , 
dÄ-î. 

dP = 0 , 

dP 

due to the fact that the entropy 

H(P_^1,P<Z\l)=^og^^dP = H(P-« 0 i l ,PG- . .o . i ) - H(P_„, t, P g ^ ) 

converges to zero under assumption (i). 

(Remark. What is just proved (cf. (3.5) and (3.6)) says more: A necessary and 
sufficient condition for A„ -* O is (3.6) under assumption (i).) 

From (3.6) in particular it follows 

f dPoL°) 

lim A„ s= lim log 5_j_i_ _p _ n 

„->_J dPg_„>0jl 

so that by (2.24) [proved under (i)] 

(3.9) lim B„ = lim flog dPg;°°.<__ d p = 0 

„ . _ J dPQL-io., 

= lim logs„dP (cf. (2.17)) 

Thus, for proving (ii), i.e. 

(ii) lim | logs„|dP = O 

it is sufficient (cf. (3.9)) to prove that 

(3.10) lim J l o g s „ d P = O . 

On the base of (3.6), i.e. of 

lim |log_3
P{s„/3:_„1}|dP= O 



we have 

(3.11) lim J log<rP{s„/3E_„,1}dP = 0 (cf. (2.20)). 
n " x J _ p ( l o g s „ / „ _ „ , , } _ 0 

But (Jensen's inequality and log concave) 

0 <[ log5„dP < J ^P{logs„/X_„il}dP < 
J s „ _ i J . f P { iog S „/s_„, i }go 

log(TP{s„/X_„,1} dP -+ O 
lags„/X-„,i}>0 

according to (3.11). Thus, (3.10) is proved and this completes the proof of the theorem. 

Q.E.D. 

Theorem 2. Under P0„ = Q0n (1 <. n < co), a necessary and sufficient condition 
for the convergence in the P-mean of the sequence 

log dP-„,, 

dPQ-„,o,iJ 

is the fulfillment of 

(j) lim H(P_ M , Pe-„,o,i) = ^ < co 

and 

(JІ) lim log dPð-ÏÏ.0,. 

dPß ( - to . i 
dP = 0 

(where PQ-^'.o.i is the probability measure on £__,,! obtained by extension of 

-P8-„,o,i a n d defined through 

PQ(_»„,0jl(E x F)=( pQ(F/x_„,0)dP_co,0 

for EE£_X0, f e J , ) , 

Proof. For proving the sufficiency of the pair (j) and (jj) we may proceed as in 
the proof of Lemma 2.1 in Section 2. The only difference is that instead of An -> 0 
we have to prove that (m > n) 

Л„,„ = 
d P _ m l , d P _ л l 

l o g ^ ^ - ^ log dPQ-m,o,i dPo,_„> 0 > 1 

for n -> oo (and, thus, m -> oo). 

dP-> 0 



312 Under (jj), it reduces to prove 

lim = 0 , 

d P _ m . . dP_„ t 

__i log Ь І -

d P ß _ m o i dPß_„>0>1 

dP = 

= H(P_m > 1 ,Pe-m ,0, l) - Il(P-n,l,P2-n,0,i), 

what takes place according to (j). 

As to the necessity of the pair (j) and (jj), it may be reduced to the necessity 
proof of Theorem 1, where the role of Pg-o>,o,i i s played by the following proba
bility measure: A„m -» 0 means that there is a limit function G(x) such that 

(3.12) -*_____-- - G dP = O . 
dPQ-„,0,i 

Observing that under assumption P0„ = Q0„ for n = 1, 2, . . . 

P_n>1 s P G - , , 0 , . 

(and not only P_„ ;1 <̂  PQ_„>0,i used up to now) we de/me Pg-^ .o . i by 

(3.13) 

for E e X_ml. 

Then 

Pß-=o,o,i(£) = ľ e - ^ d P - ^ , , 

G = log 
d P _ r 

dPQ-co.O,! 

and (3.12) gives in particular 

lim tf(P_„,1; PQ_n,0,i) = H(P-»,i> P2-oo,o,i) • 

Now, this limit is moreover necessarily finite if A„m -* 0. Thus, for the Po,_K,,0,i 
as defined by (3.13) condition (i) of Theorem 1 is satisfied. But under this condition 
(equivalent under our special definition of PQ_x0l to condition (j)) the condition 
(ii) (written for this PQ-^.o,!) is necessary for A„ -> 0 (written for this Pg-oo.o.i) 
or A„ „, -> 0. But condition (ii) implies condition (jj) since 

log dPg(-to,: 
dPß(-æ„!o,i 

dP < dPß-c.,0,1 

dPß^.o.i 
dP + dPß-^,0,1 

dPß(-to,i 
d P . 



(Remark that all the P(_L*_0,i'
s a r e equivalent to P_ _, _ and, thus, equivalent also 313 

to PQ-cco.i as defined by (3.13), so that all the densities above exist). 
Thus, condition (jj) is also necessary. This completes the proof that conditions (j) 

(jj) are also necessary. Q.E.D. 

4. REMARKS 

1) On the base of definition (3.13) we obtain 

(4.1) PQ-oo.o.ivE x F) = f e-cdP__.,_ = 
J ExF 

e~G d_7p(x1/x_oc,0)dP_a),0 = d p ^ X i / x - ^ o j d P - ^ o = 
J E x f J £ x F 

= fpQ(F/x_c o ,0)dP_a D ,0 

for £ e i E _ o o 0 and f £ „ 1 defining 

(4.2) P Q ^ - C O . O ) = [ e - C ( J t " — 0 ) d p ^ / x ^ , , ) . 

Thus, we see that P_>-__(0,x as defined by (3.13) has the form of Pg_„,o,i so that, 
by extension, it is denoted in a similar way. 

2) The question arises: 

In what extent pQ('lx_x0) as defined by (4.2) corresponds to pe(-/x_co 0) = 

= lim pe(-/x_„,0) a.s. [P] as taken in condition (l) of Lemma 2.1 (Section 2). 

We have [P] 

dpe(x_/x_„,0) = d P 8 - „ , o a = 1 

dpP(x_/x_„,o) dP_„,_ gn 

Thus, 

(4.3) PG(P/x_„,0) = f 1 dpP(x_/x_„,0) = f e- l o s g" dp/,(x1/x_„,o) • 
J F g„ JF 

Now, under {log _7„}„gl converges in P-mean to G = log g we have, in particular, 

log gn -* log g in P-probability => _/_/„ -> 1 in P-probability. 

Since, on the other hand, 

pP(-/x_n,o)->pP(-/x_00,0) a.s. [P] or 



dpP(x1/x_„>0) 

it follows that 

dpfalx.^ = 9 d ^ M ^ j . n p . p r o b a b i l i t y 

dpQ(x1/x_„i0) o„ dpP(x1/x_- j0) 

<i/*-_.,o) . 0 i n p r o b a b i l i t y 
dpQ(x1/x_„.0) 

But this is derivable directly from the necessary condition (ii) or (jj): 

00 
. àpQ(x1jx^a>t0)\ 

' dpQ(Xi/x_„i0)l 
dP-> 0 

It seems that condition (1) in Lemma 2.1 (section 2) is superfluous. Condition (3) 

must however be formulated as follows: "let there exists a.s. [P] a conditional 

probability function j>Q(-/x_00j0) such that (3) resp. (ii) holds". Condition (2) 

resp. (i) must then follow condition (3). 

(Received December 22, 1979.) 
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